1
|
Yañez-Olvera AG, Gómez-Díaz AG, Sélem-Mojica N, Rodríguez-Orduña L, Lara-Ávila JP, Varni V, Alcoba F, Croce V, Legros T, Torres A, Torres Ruíz A, Tarrats F, Vermunt A, Looije T, Cibrian-Jaramillo A, Valenzuela M, Siri MI, Barona-Gomez F. A host shift as the origin of tomato bacterial canker caused by Clavibacter michiganensis. Microb Genom 2024; 10:001309. [PMID: 39471242 PMCID: PMC11521342 DOI: 10.1099/mgen.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
The Actinomycetota (formerly Actinobacteria) genus Clavibacter includes phytopathogens with devasting effects in several crops. Clavibacter michiganensis, the causal agent of tomato bacterial canker, is the most notorious species of the genus. Yet, its origin and natural reservoirs remain elusive, and its populations show pathogenicity profiles with unpredictable plant disease outcomes. Here, we generate and analyse a decade-long genomic dataset of Clavibacter from wild and commercial tomato cultivars, providing evolutionary insights that directed phenotypic characterization. Our phylogeny situates the last common ancestor of C. michiganensis next to Clavibacter isolates from grasses rather than to the sole strain we could isolate from wild tomatoes. Pathogenicity profiling of C. michiganensis isolates, together with C. phaseoli and C. californiensis as sister taxa and the wild tomato strain, was found to be congruent with the proposed phylogenetic relationships. We then identified gene enrichment after the evolutionary event, leading to the appearance of the C. michiganesis clade, including known pathogenicity factors but also hitherto unnoticed genes with the ability to encode adaptive traits for a pathogenic lifestyle. The holistic perspective provided by our evolutionary analyses hints towards a host shift event as the origin of C. michiganensis as a tomato pathogen and the existence of pathogenic genes that remain to be characterized.
Collapse
Affiliation(s)
- Alan Guillermo Yañez-Olvera
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ambar Grissel Gómez-Díaz
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Nelly Sélem-Mojica
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Lorena Rodríguez-Orduña
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - José Pablo Lara-Ávila
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Vanina Varni
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
| | - Florencia Alcoba
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Valentina Croce
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Alfonso Torres Ruíz
- Departamento de Investigación y Desarrollo, Koppert México, Querétaro, Mexico
| | - Félix Tarrats
- Centro Universitario CEICKOR, Bernal, Querétaro, Mexico
| | | | | | | | | | - María Inés Siri
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Brochu AS, Dumonceaux TJ, Valenzuela M, Bélanger R, Pérez-López E. A New Multiplex TaqMan qPCR for Precise Detection and Quantification of Clavibacter michiganensis in Seeds and Plant Tissue. PLANT DISEASE 2024; 108:2272-2282. [PMID: 38381965 DOI: 10.1094/pdis-06-23-1194-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, what makes Cm an even more dangerous pathogen is its ability to infect seeds and plants without causing symptoms. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection, and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- L'Institute EDS, Université Laval, Québec City, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Dr. Daniel Alkalay Lowitt, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123, Chile
| | - Richard Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Edel Pérez-López
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
3
|
Verma RK, Roman-Reyna V, Raanan H, Coaker G, Jacobs JM, Teper D. Allelic variations in the chpG effector gene within Clavibacter michiganensis populations determine pathogen host range. PLoS Pathog 2024; 20:e1012380. [PMID: 39028765 PMCID: PMC11290698 DOI: 10.1371/journal.ppat.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/31/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| | - Veronica Roman-Reyna
- Dept. Of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hagai Raanan
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Gilat Research Center, Negev, Israel
| | - Gitta Coaker
- Dept. of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jonathan M. Jacobs
- Dept. of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Doron Teper
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Oh EJ, Hwang IS, Kwon CT, Oh CS. A Putative Apoplastic Effector of Clavibacter capsici, ChpG Cc as Hypersensitive Response and Virulence (Hrv) Protein in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:370-379. [PMID: 38148291 DOI: 10.1094/mpmi-09-23-0145-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Clavibacter bacteria use secreted apoplastic effectors, such as putative serine proteases, for virulence in host plants and for hypersensitive response (HR) induction in nonhost plants. Previously, we have shown that Clavibacter capsici ChpGCc is important for the necrosis development in pepper (Capsicum annuum) leaves. Here, we determine the function of ChpGCc, along with three paralogous proteins, for HR induction in the apoplastic space of a nonhost plant, Nicotiana tabacum. The full-length and signal peptide-deleted (ΔSP) mature forms of all proteins fused with the tobacco PR1b signal sequence were generated. The full-length and ΔSP forms of ChpGCc and only the ΔSP forms of ChpECc and Pat-1Cc, but none of the ChpCCc, triggered HR. Based on the predicted protein structures, ChpGCc carries amino acids for a catalytic triad and a disulfide bridge in positions like Pat-1Cm. Substituting these amino acids of ChpGCc with alanine abolished or reduced HR-inducing activity. To determine whether these residues are important for necrosis development in pepper, alanine-substituted chpGCc genes were transformed into the C. capsici PF008ΔpCM1 strain, which lacks the intact chpGCc gene. The strain with any variants failed to restore the necrosis-causing ability. These results suggest that ChpGCc has a dual function as a virulence factor in host plants and an HR elicitor in nonhost plants. Based on our findings and previous results, we propose Clavibacter apoplastic effectors, such as ChpGCc, Pat-1Cm, Chp-7Cs, and ChpGCm, as hypersensitive response and virulence (Hrv) proteins that display phenotypic similarities to the hypersensitive response and pathogenicity (Hrp) proteins found in gram-negative bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Osdaghi E, van der Wolf JM, Abachi H, Li X, De Boer S, Ishimaru CA. Bacterial ring rot of potato caused by Clavibacter sepedonicus: A successful example of defeating the enemy under international regulations. MOLECULAR PLANT PATHOLOGY 2022; 23:911-932. [PMID: 35142424 PMCID: PMC9190974 DOI: 10.1111/mpp.13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacterial ring rot of potato (Solanum tuberosum) caused by the gram-positive coryneform bacterium Clavibacter sepedonicus is an important quarantine disease threatening the potato industry around the globe. Since its original description in 1906 in Germany, management of ring rot has been a major problem due to the seedborne nature (via seed tubers not true seeds) of the pathogen allowing the bacterium to be transmitted long distances via infected tubers. DISEASE SYMPTOMS On growing potato plants: interveinal chlorosis on leaflets leading to necrotic areas and systemic wilt. On infected tubers: vascular tissues become yellowish brown with a cheesy texture due to bacterial colonization and decay. HOST RANGE Potato is the main host of the pathogen, but natural infection also occurs on eggplant, tomato, and sugar beet. TAXONOMIC STATUS OF THE PATHOGEN Class: Actinobacteria; Order: Actinomycetales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter sepedonicus (Spieckermann and Kotthoff 1914) Li et al. 2018. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES) Aplanobacter sepedonicus; Bacterium sepedonicum; Corynebacterium sepedonicum; Corynebacterium michiganense pv. sepedonicum; Clavibacter michiganensis subsp. sepedonicus. MICROBIOLOGICAL PROPERTIES Gram-positive, club-shaped cells with creamy to yellowish-cream colonies for which the optimal growth temperature is 20-23°C. DISTRIBUTION Asia (China, Japan, Kazakhstan, Nepal, North Korea, Pakistan, South Korea, Uzbekistan, the Asian part of Russia), Europe (Belarus, Bulgaria, Czech Republic, Estonia, Finland, Georgia, Germany, Greece, Hungary, Latvia, Lithuania, Norway, Poland, Romania, European part of Russia, Slovakia, Spain, Sweden, Turkey, Ukraine), and North America (Canada, Mexico, USA). PHYTOSANITARY CATEGORIZATION CORBSE: EPPO A2 list no. 51. EU; Annex designation I/A2.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Jan M. van der Wolf
- Business Unit Biointeractions and Plant HealthWageningen University and ResearchWageningenNetherlands
| | - Hamid Abachi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Xiang Li
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | - Solke H. De Boer
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | | |
Collapse
|
6
|
Verma RK, Teper D. Immune recognition of the secreted serine protease ChpG restricts the host range of Clavibacter michiganensis from eggplant varieties. MOLECULAR PLANT PATHOLOGY 2022; 23:933-946. [PMID: 35441490 PMCID: PMC9190982 DOI: 10.1111/mpp.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 05/06/2023]
Abstract
Bacterial wilt and canker caused by Clavibacter michiganensis (Cm) inflict considerable damage in tomato-growing regions around the world. Cm has a narrow host range and can cause disease in tomato but not in many eggplant varieties. The pathogenicity of Cm is dependent on secreted serine proteases, encoded by the chp/tomA pathogenicity island (PI), and the pCM2 plasmid. Screening combinations of PI deletion mutants and plasmid-cured strains found that Cm-mediated hypersensitive response (HR) in the Cm-resistant eggplant variety Black Queen is dependent on the chp/tomA PI. Singular reintroduction of PI-encoded serine proteases into Cm∆PI identified that the HR is elicited by the protease ChpG. Eggplant leaves infiltrated with a chpG marker exchange mutant (CmΩchpG) did not display an HR, and infiltration of purified ChpG protein elicited immune responses in eggplant but not in Cm-susceptible tomato. Virulence assays found that while wild-type Cm and the CmΩchpG complemented strain were nonpathogenic on eggplant, CmΩchpG caused wilt and canker symptoms. Additionally, bacterial populations in CmΩchpG-inoculated eggplant stem tissues were c.1000-fold higher than wild-type and CmΩchpG-complemented Cm strains. Pathogenicity tests conducted in multiple Cm-resistance eggplant varieties demonstrated that immunity to Cm is dependent on ChpG in all tested varieties, indicating that ChpG-recognition is conserved in eggplant. ChpG-mediated avirulence interactions were disabled by alanine substitution of serine231 of the serine protease catalytic triad, suggesting that protease activity is required for immune recognition of ChpG. Our study identified ChpG as a novel avirulence protein that is recognized in resistant eggplant varieties and restricts the host range of Cm.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| | - Doron Teper
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| |
Collapse
|
7
|
Park IW, Hwang IS, Oh EJ, Kwon CT, Oh CS. Nicotiana benthamiana, a Surrogate Host to Study Novel Virulence Mechanisms of Gram-Positive Bacteria, Clavibacter michiganensis, and C. capsici in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:876971. [PMID: 35620684 PMCID: PMC9127732 DOI: 10.3389/fpls.2022.876971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 06/11/2023]
Abstract
Clavibacter michiganensis is a Gram-positive bacterium that causes bacterial canker and wilting in host plants like tomato. Two major virulence genes encoding a cellulase (celA) and a putative serine protease (pat-1) have been reported. Here we show that Nicotiana benthamiana, a commonly used model plant for studying molecular plant-pathogen interactions, is a surrogate host of C. michiganensis and C. capsici. When a low concentration of two Clavibacter species, C. michiganensis and C. capsici, were infiltrated into N. benthamiana leaves, they caused blister-like lesions closely associated with cell death and the generation of reactive oxygen species and proliferated significantly like a pathogenic bacterium. By contrast, they did not cause any disease symptoms in N. tabacum leaves. The celA and pat-1 mutants of C. michiganensis still caused blister-like lesions and cankers like the wild-type strain. When a high concentration of two Clavibacter species and two mutant strains were infiltrated into N. benthamiana leaves, all of them caused strong and rapid necrosis. However, only C. michiganensis strains, including the celA and pat-1 mutants, caused wilting symptoms when it was injected into stems. When two Clavibacter species and two mutants were infiltrated into N. tabacum leaves at the high concentration, they (except for the pat-1 mutant) caused a strong hypersensitive response. These results indicate that C. michiganensis causes blister-like lesions, canker, and wilting in N. benthamiana, and celA and pat-1 genes are not necessary for the development of these symptoms. Overall, N. benthamiana is a surrogate host of Clavibacter species, and their novel virulence factors are responsible for disease development in this plant.
Collapse
Affiliation(s)
- In Woong Park
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Choon-Tak Kwon
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
8
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
9
|
Oh EJ, Hwang IS, Park IW, Oh CS. Comparative Genome Analyses of Clavibacter michiganensis Type Strain LMG7333 T Reveal Distinct Gene Contents in Plasmids From Other Clavibacter Species. Front Microbiol 2022; 12:793345. [PMID: 35178040 PMCID: PMC8844524 DOI: 10.3389/fmicb.2021.793345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Clavibacter michiganensis, a Gram-positive, plant-pathogenic bacterium belonging to Actinobacteria, is a causal agent of bacterial canker in tomatoes. Although LMG7333T is the type strain of C. michiganensis, it has not been used in many studies, probably because of a lack of the complete genome sequence being available. Therefore, in this study, the complete genome sequence of this type strain was obtained, and comparative genome analysis was conducted with the genome sequences of two other C. michiganensis strains and type strains of Clavibacter species, of which their complete genome sequences are available. C. michiganensis LMG7333T carries one chromosome and two plasmids, pCM1 and pCM2, like two other C. michiganensis strains. All three chromosomal DNA sequences were almost identical. However, the DNA sequences of two plasmids of LMG7333T are similar to those of UF1, but different from those of NCPPB382, indicating that both plasmids carry distinct gene content among C. michiganensis strains. Moreover, 216 protein-coding sequences (CDSs) were only present in the LMG7333T genome compared with type strains of other Clavibacter species. Among these 216 CDSs, approximately 83% were in the chromosome, whereas others were in both plasmids (more than 6% in pCM1 and 11% in pCM2). However, the ratio of unique CDSs of the total CDSs in both plasmids were approximately 38% in pCM1 and 30% in pCM2, indicating that the high gene content percentage in both plasmids of C. michiganensis are different from those of other Clavibacter species, and plasmid DNAs might be derived from different origins. A virulence assay with C. michiganensis LMG7333T using three different inoculation methods, root-dipping, leaf-clipping, and stem injection, resulted in typical disease symptoms, including wilting and canker in tomato. Altogether, our results indicate that two plasmids of C. michiganensis carry distinct gene content, and the genome information of the type strain LMG7333T will help to understand the genetic diversity of the two plasmids of Clavibacter species, including C. michiganensis.
Collapse
Affiliation(s)
- Eom-Ji Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - In Woong Park
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea.,Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
10
|
Hwang IS, Oh EJ, Song E, Park IW, Lee Y, Sohn KH, Choi D, Oh CS. An Apoplastic Effector Pat-1 Cm of the Gram-Positive Bacterium Clavibacter michiganensis Acts as Both a Pathogenicity Factor and an Immunity Elicitor in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:888290. [PMID: 35432427 PMCID: PMC9006514 DOI: 10.3389/fpls.2022.888290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Clavibacter michiganensis, a Gram-positive plant-pathogenic bacterium, utilizes apoplastic effectors for disease development in host plants. Here, we determine the roles of Pat-1Cm (a putative serine protease) in pathogenicity and plant immunity. Pat-1Cm was found to be a genuine secreted protein, and the secreted mature form did not carry the first 33 amino acids predicted to be a signal peptide (SP). The pat-1Cm mutant impaired to cause wilting, but still caused canker symptom in tomato. Moreover, this mutant failed to trigger the hypersensitive response (HR) in a nonhost Nicotiana tabacum. Among orthologs and paralogs of pat-1Cm , only chp-7Cs from Clavibacter sepedonicus, a potato pathogen, successfully complemented pat-1Cm function in pathogenicity in tomato, whereas all failed to complement pat-1Cm function in HR induction in N. tabacum. Based on the structural prediction, Pat-1Cm carried a catalytic triad for putative serine protease, and alanine substitution of any amino acids in the triad abolished both pathogenicity and HR-inducing activities of Pat-1Cm in C. michiganensis. Ectopic expression of pat-1Cm with an SP from tobacco secreted protein triggered HR in N. tabacum, but not in tomato, whereas a catalytic triad mutant failed to induce HR. Inoculation of the pat-1Cm mutant mixed with the mutant of another apoplastic effector CelA (cellulase) caused severe wilting in tomato, indicating that these two apoplastic effectors can functionally cooperate in pathogenicity. Overall, these results indicate that Pat-1Cm is a distinct secreted protein carrying a functional catalytic triad for serine protease and this enzymatic activity might be critical for both pathogenicity and HR-eliciting activities of Pat-1Cm in plants.
Collapse
Affiliation(s)
- In Sun Hwang
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Eunbee Song
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - In Woong Park
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Yoonyoung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Immunity Research Center, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- *Correspondence: Chang-Sik Oh,
| |
Collapse
|
11
|
Chen X, Tan Q, Lyu Q, Yu C, Jiang N, Li J, Luo L. Unmarked Gene Editing in Clavibacter michiganensis Using CRISPR/Cas9 and 5-Fluorocytosine Counterselection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:4-14. [PMID: 34543054 DOI: 10.1094/mpmi-07-21-0179-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-pathogenic bacteria in the genus Clavibacter are important quarantine species that cause considerable economic loss worldwide. The development of effective gene editing techniques and additional selectable markers is essential to expedite gene functional analysis in this important Gram-positive genus. The current study details a highly efficient unmarked CRISPR/Cas9-mediated gene editing system in Clavibacter michiganensis, which couples the expression of cas9 and single-guide RNA with homology-directed repair templates and the negative selectable marker codA::upp within a single plasmid. Initial experiments indicated that CRISPR/Cas9-mediated transformation could be utilized for both site-directed mutagenesis, in which an A to G point mutation was introduced at the 128th nucleotide of the C. michiganensis rpsL gene to generate a streptomycin-resistant mutant, and complete gene knockout, in which the deletion of the C. michiganensis celA or katA genes resulted in transformants that lacked cellulase and catalase activity, respectively. In subsequent experiments, the introduction of the codA::upp cassette into the transformation vector facilitated the counterselection of unmarked transformants by incubation in the absence of the selective antibiotic, followed by plating on M9 agar containing 5-fluorocytosine at 100 μg/ml, in which an unmarked katA mutant lacking the transformation vector was recovered. Compared with conventional homologous recombination, the unmarked CRISPR/Cas9-mediated system was more useful and convenient because it allowed the template plasmid to be reused repeatedly to facilitate the editing of multiple genes, which constitutes a major advancement that could revolutionize research into C. michiganensis and other Clavibacter spp.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xing Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Qing Tan
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Qingyang Lyu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Chengxuan Yu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Na Jiang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Jianqiang Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Laixin Luo
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| |
Collapse
|
12
|
Valenzuela M, González M, Velásquez A, Dorta F, Montenegro I, Besoain X, Salvà-Serra F, Jaén-Luchoro D, Moore ERB, Seeger M. Analyses of Virulence Genes of Clavibacter michiganensis subsp. michiganensis Strains Reveal Heterogeneity and Deletions That Correlate with Pathogenicity. Microorganisms 2021; 9:microorganisms9071530. [PMID: 34361965 PMCID: PMC8305413 DOI: 10.3390/microorganisms9071530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/04/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is the causal agent of bacterial canker of tomato. Differences in virulence between Cmm strains have been reported. The aim of this study was the characterization of nine Cmm strains isolated in Chile to reveal the causes of their differences in virulence. The virulence assays in tomato seedlings revealed different levels of severity associated with the strains, with two highly virulent strains and one causing only mild symptoms. The two most virulent showed increased cellulase activity, and no cellulase activity was observed in the strain causing mild symptoms. In three strains, including the two most virulent strains, PCR amplification of the 10 virulence genes analyzed was observed. In the strain causing mild symptoms, no amplification was observed for five genes, including celA. Sequence and cluster analyses of six virulence genes grouped the strains, as has been previously reported, except for gene pelA1. Gene sequence analysis from the genomes of five Chilean strains revealed the presence of deletions in the virulence genes, celB, xysA, pat-1, and phpA. The results of this study allow us to establish correlations between the differences observed in disease severity and the presence/absence of genes and deletions not previously reported.
Collapse
Affiliation(s)
- Miryam Valenzuela
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
- Correspondence: (M.V.); (M.S.)
| | - Marianela González
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile;
| | - Alexis Velásquez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
| | - Fernando Dorta
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2540064, Chile;
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, 071 22 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, SE-41346 Gothenburg, Sweden
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile;
- Correspondence: (M.V.); (M.S.)
| |
Collapse
|
13
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
14
|
Méndez V, Valenzuela M, Salvà-Serra F, Jaén-Luchoro D, Besoain X, Moore ERB, Seeger M. Comparative Genomics of Pathogenic Clavibacter michiganensis subsp. michiganensis Strains from Chile Reveals Potential Virulence Features for Tomato Plants. Microorganisms 2020; 8:microorganisms8111679. [PMID: 33137950 PMCID: PMC7692107 DOI: 10.3390/microorganisms8111679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)—that grouped Chilean strains in three distinct clusters—and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| |
Collapse
|
15
|
Peritore-Galve FC, Miller C, Smart CD. Characterizing Colonization Patterns of Clavibacter michiganensis During Infection of Tolerant Wild Solanum Species. PHYTOPATHOLOGY 2020; 110:574-581. [PMID: 31725349 DOI: 10.1094/phyto-09-19-0329-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clavibacter michiganensis is the Gram-positive causal agent of bacterial canker of tomato, an economically devastating disease with a worldwide distribution. C. michiganensis colonizes the xylem, leading to unilateral wilt, stem canker, and plant death. C. michiganensis can also infect developing tomato fruit through splash dispersal, forming exterior bird's eye lesions. There are no documented sources of qualitative resistance in Solanum spp.; however, quantitative trait loci conferring tolerance in Solanum arcanum and Solanum habrochaites have been identified. Mechanisms of tolerance and C. michiganensis colonization patterns in wild tomato species remain poorly understood. This study describes differences in symptom development and colonization patterns of the wild type (WT) and a hypervirulent bacterial expansin knockout (ΔCmEXLX2) in wild and cultivated tomato genotypes. Overall, WT and ΔCmEXLX2 cause less severe symptoms in wild tomato species and are impeded in spread and colonization of the vascular system. Laser scanning confocal microscopy and scanning electron microscopy were used to observe preferential colonization of protoxylem vessels and reduced intravascular spread in wild tomatoes. Differences in C. michiganensis in vitro growth and aggregation were determined in xylem sap, which may suggest that responses to pathogen colonization are occurring, leading to reduced colonization density in wild tomato species. Finally, wild tomato fruit was determined to be susceptible to C. michiganensis through in vivo inoculations and assessing lesion numbers and size. Fruit symptom severity was in some cases unrelated to severity of symptoms during vascular infection, suggesting different mechanisms for colonization of different tissues.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Christine Miller
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
16
|
Thapa SP, Davis EW, Lyu Q, Weisberg AJ, Stevens DM, Clarke CR, Coaker G, Chang JH. The Evolution, Ecology, and Mechanisms of Infection by Gram-Positive, Plant-Associated Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:341-365. [PMID: 31283433 DOI: 10.1146/annurev-phyto-082718-100124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gram-positive bacteria are prominent members of plant-associated microbial communities. Although many are hypothesized to be beneficial, some are causative agents of economically important diseases of crop plants. Because the features of Gram-positive bacteria are fundamentally different relative to those of Gram-negative bacteria, the evolution and ecology as well as the mechanisms used to colonize and infect plants also differ. Here, we discuss recent advances in our understanding of Gram-positive, plant-associated bacteria and provide a framework for future research directions on these important plant symbionts.
Collapse
Affiliation(s)
- Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| | - Qingyang Lyu
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Danielle M Stevens
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Integrative Genetics and Genomics, University of California, Davis, California 95616, USA
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA;
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
17
|
Sen Y, Aysan Y, Mirik M, Ozdemir D, Meijer-Dekens F, van der Wolf JM, Visser RGF, van Heusden S. Genetic Characterization of Clavibacter michiganensis subsp. michiganensis Population in Turkey. PLANT DISEASE 2018; 102:300-308. [PMID: 30673530 DOI: 10.1094/pdis-02-17-0276-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The pathogenic gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. is the most harmful bacterium to tomatoes in many countries with a cooler climate. Multilocus sequence analysis was performed on five housekeeping genes (bipA, gyrB, kdpA, ligA, and sdhA) and three virulence-related genes (ppaA, chpC, and tomA) to determine evolutionary relationships and population structure of 108 C. michiganensis subsp. michiganensis strains collected from Turkey between 1996 and 2012. Based on these analyses, we concluded that C. michiganensis subsp. michiganensis in Turkey is highly uniform. However, at least four novel C. michiganensis subsp. michiganensis strains were recently introduced, possibly at the beginning of the 1990s. The singletons might point to additional sources or to strains that have evolved locally in Turkey.
Collapse
Affiliation(s)
- Yusuf Sen
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Yesim Aysan
- Cukurova University, Faculty of Agriculture, Department of Plant Protection, 01330 Adana, Turkey
| | - Mustafa Mirik
- Namik Kemal University, Department of Plant Protection, TR-59030 Tekirdag, Turkey
| | - Duygu Ozdemir
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Fien Meijer-Dekens
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Jan M van der Wolf
- Wageningen University and Research, Bio-interactions and Plant Health, 6700 AB, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Sjaak van Heusden
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
18
|
Lu Y, Ishimaru CA, Glazebrook J, Samac DA. Comparative Genomic Analyses of Clavibacter michiganensis subsp. insidiosus and Pathogenicity on Medicago truncatula. PHYTOPATHOLOGY 2018; 108:172-185. [PMID: 28952422 DOI: 10.1094/phyto-05-17-0171-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clavibacter michiganensis is the most economically important gram-positive bacterial plant pathogen, with subspecies that cause serious diseases of maize, wheat, tomato, potato, and alfalfa. Much less is known about pathogenesis involving gram-positive plant pathogens than is known for gram-negative bacteria. Comparative genome analyses of C. michiganensis subspecies affecting tomato, potato, and maize have provided insights on pathogenicity. In this study, we identified strains of C. michiganensis subsp. insidiosus with contrasting pathogenicity on three accessions of the model legume Medicago truncatula. We generated complete genome sequences for two strains and compared these to a previously sequenced strain and genome sequences of four other subspecies. The three C. michiganensis subsp. insidiosus strains varied in gene content due to genome rearrangements, most likely facilitated by insertion elements, and plasmid number, which varied from one to three depending on strain. The core C. michiganensis genome consisted of 1,917 genes, with 379 genes unique to C. michiganensis subsp. insidiosus. An operon for synthesis of the extracellular blue pigment indigoidine, enzymes for pectin degradation, and an operon for inositol metabolism are among the unique features. Secreted serine proteases belonging to both the pat-1 and ppa families were present but highly diverged from those in other subspecies.
Collapse
Affiliation(s)
- You Lu
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| | - Carol A Ishimaru
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| | - Jane Glazebrook
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| | - Deborah A Samac
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| |
Collapse
|
19
|
Thapa SP, Pattathil S, Hahn MG, Jacques MA, Gilbertson RL, Coaker G. Genomic Analysis of Clavibacter michiganensis Reveals Insight Into Virulence Strategies and Genetic Diversity of a Gram-Positive Bacterial Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:786-802. [PMID: 28677494 DOI: 10.1094/mpmi-06-17-0146-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.
Collapse
Affiliation(s)
- Shree P Thapa
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Sivakumar Pattathil
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | - Michael G Hahn
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | | | - Robert L Gilbertson
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Gitta Coaker
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| |
Collapse
|
20
|
Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann K, Eichenlaub R, Sessa G, Manulis‐Sasson S. Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. MOLECULAR PLANT PATHOLOGY 2017; 18:336-346. [PMID: 26992141 PMCID: PMC6638269 DOI: 10.1111/mpp.12400] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 05/03/2023]
Abstract
Clavibacter michiganensis ssp. michiganensis (Cmm) causes substantial economic losses in tomato production worldwide. The disease symptoms observed in plants infected systemically by Cmm are wilting and canker on the stem, whereas blister-like spots develop in locally infected leaves. A wide repertoire of serine proteases and cell wall-degrading enzymes has been implicated in the development of wilt and canker symptoms. However, virulence factors involved in the formation of blister-like spots, which play an important role in Cmm secondary spread in tomato nurseries, are largely unknown. Here, we demonstrate that Cmm virulence factors play different roles during blister formation relative to wilting. Inoculation with a green fluorescent protein (GFP)-labelled Cmm382 indicates that penetration occurs mainly through trichomes. When spray inoculated on tomato leaves, the wild-type Cmm382 and Cmm100 (lacking plasmids pCM1 and pCM2) strains form blister-like spots on leaves, whereas Cmm27 (lacking the chp/tomA pathogenicity island) is non-pathogenic, indicating that plasmid-borne genes, which have a crucial role in wilting, are not required for blister formation. Conversely, mutations in chromosomal genes encoding serine proteases (chpC and sbtA), cell wall-degrading enzymes (pgaA and endX/Y), a transcriptional regulator (vatr2), a putative perforin (perF) and a putative sortase (srtA) significantly affect disease incidence and the severity of blister formation. The transcript levels of these genes, as measured by quantitative reverse transcription-polymerase chain reaction, showed that, during blister formation, they are expressed early at 8-16 h after inoculation, whereas, during wilting, they are expressed after 24-72 h or expressed at low levels. Plant gene expression studies suggest that chpC is involved in the suppression of host defence.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Michal Reuven
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Orit Dror
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Galit Sharabani
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Karl‐Heinz Gartemann
- Department of Genetechnology/MicrobiologyUniversity of BielefeldBielefeld33501Germany
| | - Rudolf Eichenlaub
- Department of Genetechnology/MicrobiologyUniversity of BielefeldBielefeld33501Germany
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Shulamit Manulis‐Sasson
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| |
Collapse
|
21
|
Fu HY, Sun SR, Wang JD, Ahmad K, Wang HB, Chen RK, Gao SJ. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan) PCR Assay. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2681816. [PMID: 27725937 PMCID: PMC5048053 DOI: 10.1155/2016/2681816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 11/26/2022]
Abstract
Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.
Collapse
Affiliation(s)
- Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jin-Da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kashif Ahmad
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Heng-Bo Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ru-Kai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
22
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 1008] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
23
|
A Proteomic Study of Clavibacter Michiganensis Subsp. Michiganensis Culture Supernatants. Proteomes 2015; 3:411-423. [PMID: 28248277 PMCID: PMC5217389 DOI: 10.3390/proteomes3040411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/30/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022] Open
Abstract
Clavibacter michiganensis, subsp. michiganensis is a Gram-positive plant pathogen infecting tomato (Solanum lycopersicum). Despite a considerable economic importance due to significant losses of infected plants and fruits, knowledge about virulence factors of C. michiganensis subsp. michiganensis and host-pathogen interactions on a molecular level are rather limited. In the study presented here, the proteome of culture supernatants from C. michiganensis subsp. michiganensis NCPPB382 was analyzed. In total, 1872 proteins were identified in M9 and 1766 proteins in xylem mimicking medium. Filtration of supernatants before protein precipitation reduced these to 1276 proteins in M9 and 976 proteins in the xylem mimicking medium culture filtrate. The results obtained indicate that C. michiganensis subsp. michiganensis reacts to a sucrose- and glucose-depleted medium similar to the xylem sap by utilizing amino acids and host cell polymers as well as their degradation products, mainly peptides, amino acids and various C5 and C6 sugars. Interestingly, the bacterium expresses the previously described virulence factors Pat-1 and CelA not exclusively after host cell contact in planta but already in M9 minimal and xylem mimicking medium.
Collapse
|
24
|
Bae C, Oh EJ, Lee HB, Kim BY, Oh CS. Complete genome sequence of the cellulase-producing bacterium Clavibacter michiganensis PF008. J Biotechnol 2015; 214:103-4. [DOI: 10.1016/j.jbiotec.2015.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022]
|
25
|
Lu Y, Hatsugai N, Katagiri F, Ishimaru CA, Glazebrook J. Putative Serine Protease Effectors of Clavibacter michiganensis Induce a Hypersensitive Response in the Apoplast of Nicotiana Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1216-26. [PMID: 26075829 DOI: 10.1094/mpmi-02-15-0036-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clavibacter michiganensis subspp. michiganensis and sepedonicus cause diseases on solanaceous crops. The genomes of both subspecies encode members of the pat-1 family of putative serine proteases known to function in virulence on host plants and induction of hypersensitive responses (HR) on nonhosts. One gene of this family in C. michiganensis subsp. sepedonicus, chp-7, is required for triggering HR in Nicotiana tabacum. Here, further investigation revealed that mutation of the putative catalytic serine residue at position 232 to threonine abolished the HR induction activity of Chp-7, suggesting that enzymatic activity is required. Purified Chp-7 triggered an HR in N. tabacum leaves in the absence of the pathogen, indicating Chp-7 itself is the HR elicitor from C. michiganensis subsp. sepedonicus. Ectopic expression of chp-7 constructs in N. tabacum leaves revealed that Chp-7 targeted to the apoplast triggered an HR while cytoplasmic Chp-7 did not, indicating that Chp-7 induces the HR in the apoplast of N. tabacum leaves. Chp-7 also induced HR in N. sylvestris, a progenitor of N. tabacum, but not in other Nicotiana species tested. ChpG, a related protein from C. michiganensis subsp. michiganensis, also triggered HR in N. tabacum and N. sylvestris. Unlike Chp-7, ChpG triggered HR in N. clevelandii and N. glutinosa.
Collapse
Affiliation(s)
- You Lu
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
- 3 Plant Biological Sciences Graduate Program, University of Minnesota, 1445 Gortner Ave., St. Paul, MN 55108, U.S.A
| | - Noriyuki Hatsugai
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
| | - Fumiaki Katagiri
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
| | - Carol A Ishimaru
- 2 Microbial and Plant Genomics Institute, and
- 4 Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, U.S.A
| | - Jane Glazebrook
- 1 Department of Plant Biology
- 2 Microbial and Plant Genomics Institute, and
| |
Collapse
|
26
|
Sen Y, van der Wolf J, Visser RGF, van Heusden S. Bacterial Canker of Tomato: Current Knowledge of Detection, Management, Resistance, and Interactions. PLANT DISEASE 2015; 99:4-13. [PMID: 30699746 DOI: 10.1094/pdis-05-14-0499-fe] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis is the causal agent of bacterial canker of tomato. The disease was first described in 1910 in Michigan, USA. C. michiganensis subsp. michiganensis (from now on called clavibacter) was initially thought to be a phloem parasite, but was later found to be a xylem-invading bacterium. The host range comprises mainly solanaceous crops such as tomato, pepper, and eggplant. Strains show great variability in virulence and are usually described as being hypervirulent, hypovirulent, or nonvirulent. Clavibacter lacks a type III secretion system, and only a few virulence factors have been experimentally determined from the many putative virulence factors. As the molecular mode of infection by clavibacter is unknown, researchers have avoided intensive work on this organism. Genetic plant mechanisms conferring resistance to clavibacter are apparently complex, and breeders have yet to develop disease-resistant cultivars.
Collapse
Affiliation(s)
- Yusuf Sen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands, and Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
| | - Jan van der Wolf
- Plant Research International Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sjaak van Heusden
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
27
|
Savidor A, Chalupowicz L, Teper D, Gartemann KH, Eichenlaub R, Manulis-Sasson S, Barash I, Sessa G. Clavibacter michiganensis subsp. michiganensis Vatr1 and Vatr2 Transcriptional Regulators Are Required for Virulence in Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:1-12. [PMID: 27839071 DOI: 10.1094/mpmi-02-14-0018-r.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The plant pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) is a Gram-positive bacterium responsible for wilt and canker disease of tomato. While disease development is well characterized and diagnosed, molecular mechanisms of Cmm virulence are poorly understood. Here, we identified and characterized two Cmm transcriptional regulators, Vatr1 and Vatr2, that are involved in pathogenicity of Cmm. Vatr1 and Vatr2 belong to TetR and MocR families of transcriptional regulators, respectively. Mutations in their corresponding genes caused attenuated virulence, with the Δvatr2 mutant showing a more dramatic effect than Δvatr1. While both mutants grew well in vitro and reached a high titer in planta, they caused reduced wilting and canker development in infected plants compared with the wild-type bacterium. They also led to a reduced expression of the ethylene-synthesizing tomato enzyme ACC-oxidase compared with wild-type Cmm and to reduced ethylene production in the plant. Transcriptomic analysis of wild-type Cmm and the two mutants under infection-mimicking conditions revealed that Vatr1 and Vatr2 regulate expression of virulence factors, membrane and secreted proteins, and signal transducing proteins. A 70% overlap between the sets of genes positively regulated by Vatr1 and Vatr2 suggests that these transcriptional regulators are on the same molecular pathway responsible for Cmm virulence.
Collapse
Affiliation(s)
- Alon Savidor
- 1 Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Laura Chalupowicz
- 2 Department of Plant Pathology and Weed Research, ARO, the Volcani Center, Bet Dagan 50250, Israel
| | - Doron Teper
- 1 Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karl-Heinz Gartemann
- 1 Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
- 3 Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| | - Rudolf Eichenlaub
- 3 Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| | - Shulamit Manulis-Sasson
- 2 Department of Plant Pathology and Weed Research, ARO, the Volcani Center, Bet Dagan 50250, Israel
| | - Isaac Barash
- 1 Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guido Sessa
- 1 Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Savidor A, Chalupowicz L, Teper D, Gartemann KH, Eichenlaub R, Manulis-Sasson S, Barash I, Sessa G. Clavibacter michiganensis subsp. michiganensis Vatr1 and Vatr2 transcriptional regulators are required for virulence in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1035-1047. [PMID: 24940988 DOI: 10.1094/mpmi-02-14-0061-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The plant pathogen Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterium responsible for wilt and canker disease of tomato. Although disease development is well characterized and diagnosed, molecular mechanisms of C. michiganensis subsp. michiganensis virulence are poorly understood. Here, we identified and characterized two C. michiganensis subsp. michiganensis transcriptional regulators, Vatr1 and Vatr2, that are involved in pathogenicity of C. michiganensis subsp. michiganensis. Vatr1 and Vatr2 belong to TetR and MocR families of transcriptional regulators, respectively. Mutations in their corresponding genes caused attenuated virulence, with the Δvatr2 mutant showing a more dramatic effect than Δvatr1. Although both mutants grew well in vitro and reached a high titer in planta, they caused reduced wilting and canker development in infected plants compared with the wild-type bacterium. They also led to a reduced expression of the ethylene-synthesizing tomato enzyme ACC-oxidase compared with wild-type C. michiganensis subsp. michiganensis and to reduced ethylene production in the plant. Transcriptomic analysis of wild-type C. michiganensis subsp. michiganensis and the two mutants under infection-mimicking conditions revealed that Vatr1 and Vatr2 regulate expression of virulence factors, membrane and secreted proteins, and signal-transducing proteins. A 70% overlap between the sets of genes positively regulated by Vatr1 and Vatr2 suggests that these transcriptional regulators are on the same molecular pathway responsible for C. michiganensis subsp. michiganensis virulence.
Collapse
|
29
|
Załuga J, Stragier P, Baeyen S, Haegeman A, Van Vaerenbergh J, Maes M, De Vos P. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle. BMC Genomics 2014; 15:392. [PMID: 24885539 PMCID: PMC4059874 DOI: 10.1186/1471-2164-15-392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/09/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. RESULTS To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. CONCLUSIONS The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and adaptation mechanisms present in the genus Clavibacter.
Collapse
Affiliation(s)
- Joanna Załuga
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Pieter Stragier
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Steve Baeyen
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Annelies Haegeman
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Johan Van Vaerenbergh
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Martine Maes
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
- />BCCM/LMG Bacteria collection - Laboratory of Microbiology Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| |
Collapse
|
30
|
Bouizgarne B, Ait Ben Aouamar A. Diversity of Plant Associated Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2014. [DOI: 10.1007/978-3-319-05936-5_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Yasuhara-Bell J, Kubota R, Jenkins DM, Alvarez AM. Loop-mediated amplification of the Clavibacter michiganensis subsp. michiganensis micA gene is highly specific. PHYTOPATHOLOGY 2013; 103:1220-1226. [PMID: 23802869 DOI: 10.1094/phyto-03-13-0078-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Loop-mediated amplification (LAMP) was used to specifically identify Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker of tomato. LAMP primers were developed to detect micA, a chromosomally stable gene that encodes a type II lantibiotic, michiganin A, which inhibits growth of other C. michiganensis subspecies. In all, 409 bacterial strains (351 C. michiganensis subsp. michiganensis and 58 non-C. michiganensis subsp. michiganensis) from a worldwide collection were tested with LAMP to determine its specificity. LAMP results were compared with genetic profiles established using polymerase chain reaction (PCR) amplification of seven genes (dnaA, ppaJ, pat-1, chpC, tomA, ppaA, and ppaC). C. michiganensis subsp. michiganensis strains produced eight distinct profiles. The LAMP reaction identified all C. michiganensis subsp. michiganensis strains and discriminated them from other C. michiganensis subspecies and non-Clavibacter bacteria. LAMP has advantages over immunodiagnostic and other molecular detection methods because of its specificity and isothermal nature, which allows for easy field application. The LAMP reaction is also not affected by as many inhibitors as PCR. This diagnostic tool has potential to provide an easy, one-step test for rapid identification of C. michiganensis subsp. michiganensis.
Collapse
|
32
|
Zaluga J, Van Vaerenbergh J, Stragier P, Maes M, De Vos P. Genetic diversity of non-pathogenic Clavibacter strains isolated from tomato seeds. Syst Appl Microbiol 2013; 36:426-35. [DOI: 10.1016/j.syapm.2013.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
33
|
Varani AM, Monteiro-Vitorello CB, Nakaya HI, Van Sluys MA. The role of prophage in plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:429-451. [PMID: 23725471 DOI: 10.1146/annurev-phyto-081211-173010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A diverse set of phage lineages is associated with the bacterial plant-pathogen genomes sequenced to date. Analysis of 37 genomes revealed 5,169 potential genes (approximately 4.3 Mbp) of phage origin, and at least 50% had no function assigned or are nonessential to phage biology. Some phytopathogens have transcriptionally active prophage genes under conditions that mimic plant infection, suggesting an association between plant disease and prophage transcriptional modulation. The role of prophages within genomes for cell biology varies. For pathogens such as Pectobacterium, Pseudomonas, Ralstonia, and Streptomyces, involvement of prophage in disease symptoms has been demonstrated. In Xylella and Xanthomonas, prophage activity is associated with genome rearrangements and strain differentiation. For other pathogens, prophage roles are yet to be established. This review integrates available information in a unique interface ( http://propnav.esalq.usp.br ) that may be assessed to improve research in prophage biology and its association with genome evolution and pathogenicity.
Collapse
Affiliation(s)
- Alessandro M Varani
- Departamento de Genética (LGN), Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba/SP, Brazil
| | | | | | | |
Collapse
|
34
|
Lindeberg M. Genome-enabled perspectives on the composition, evolution, and expression of virulence determinants in bacterial plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:111-132. [PMID: 22559066 DOI: 10.1146/annurev-phyto-081211-173022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Genome sequence analyses of bacterial plant pathogens are revealing important insights into the molecular determinants of pathogenicity and, through transcript characterization, responses to environmental conditions, evidence for small RNAs, and validation of uncharacterized genes. Genome comparison sheds further light on the processes impacting pathogen evolution and differences in gene repertoire among isolates contributing to niche specialization. Information derived from pathogen genome analysis is providing tools for use in diagnosis and interference with host-pathogen interactions for the purpose of disease control. However, the existing information infrastructure fails to adequately integrate the increasing numbers of sequence data sets, bioinformatic analyses, and experimental characterization, as required for effective systems-level analysis. Enhanced standardization of data formats at the point of publication is proposed as a possible solution.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
35
|
Flügel M, Becker A, Gartemann KH, Eichenlaub R. Analysis of the interaction of Clavibacter michiganensis subsp. michiganensis with its host plant tomato by genome-wide expression profiling. J Biotechnol 2012; 160:42-54. [PMID: 22326627 DOI: 10.1016/j.jbiotec.2012.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 01/12/2012] [Accepted: 01/24/2012] [Indexed: 11/26/2022]
Abstract
Genome-wide expression profiles of the phytopathogenic actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm) strain NCPPB382 were analyzed using a 70mer oligonucleotide microarray. Cmm causes bacterial wilt and canker of tomato, a systemic disease leading to substantial economic losses worldwide. Global gene expression was monitored in vitro after long- and short-term incubation with tomato homogenate to simulate conditions in planta and in vivo ten days after inoculation of tomatoes. Surprisingly, both in the presence of tomato homogenate and in planta known virulence genes (celA, chpC, ppaA/C) were down-regulated indicating that the encoded extracellular enzymes are dispensable in late infection stages where plant tissue has already been heavily destroyed. In contrast, some genes of the tomA-region which are involved in sugar metabolism showed an enhanced RNA-level after permanent growth in supplemented medium. Therefore, these genes may be important for utilization of plant derived nutrients. In the plant Cmm exhibited an expression profile completely different from that in vitro. Especially, the strong expression of genes of the wco-cluster (extracellular polysaccharide II), 10 genes encoding surface or pilus assembly proteins, and CMM_2382, coding for a putative perforin suggest a possible role of these genes in the plant-pathogenic interaction.
Collapse
Affiliation(s)
- Monika Flügel
- Lehrstuhl für Gentechnologie/Mikrobiologie, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, Bielefeld, Germany
| | | | | | | |
Collapse
|
36
|
Chalupowicz L, Zellermann EM, Fluegel M, Dror O, Eichenlaub R, Gartemann KH, Savidor A, Sessa G, Iraki N, Barash I, Manulis-Sasson S. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. PHYTOPATHOLOGY 2012; 102:23-31. [PMID: 21879791 DOI: 10.1094/phyto-05-11-0135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The vascular pathogen Clavibacter michiganensis subsp. michiganensis is responsible for bacterial wilt and canker of tomato. Pathogenicity of this bacterium is dependent on plasmid-borne virulence factors and serine proteases located on the chromosomal chp/tomA pathogenicity island (PAI). In this study, colonization patterns and movement of C. michiganensis subsp. michiganensis during tomato infection was examined using a green fluorescent protein (GFP)-labeled strain. A plasmid expressing GFP in C. michiganensis subsp. michiganensis was constructed and found to be stable in planta for at least 1 month. Confocal laser-scanning microscopy (CLSM) of inoculated stems showed that the pathogen extensively colonizes the lumen of xylem vessels and preferentially attaches to spiral secondary wall thickening of the protoxylem. Acropetal movement of the wild-type strain C. michiganensis subsp. michiganensis NCPPB382 (Cmm382) in tomato resulted in an extensive systemic colonization of the whole plant reaching the apical region after 15 days, whereas Cmm100 (lacking the plasmids pCM1 and pCM2) or Cmm27 (lacking the chp/tomA PAI) remained confined to the area surrounding of the inoculation site. Cmm382 formed biofilm-like structures composed of large bacterial aggregates on the interior of xylem walls as observed by CLSM and scanning electron microscopy. These findings suggest that virulence factors located on the chp/tomA PAI or the plasmids are required for effective movement of the pathogen in tomato and for the formation of cellular aggregates.
Collapse
Affiliation(s)
- L Chalupowicz
- Department of Plant Pathology and Weed Research, ARO, Bet Dagan, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Balaji V, Sessa G, Smart CD. Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis. PHYTOPATHOLOGY 2011; 101:349-57. [PMID: 21062112 DOI: 10.1094/phyto-05-10-0132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis is an actinomycete, causing bacterial wilt and canker disease of tomato (Solanum lycopersicum). We used virus-induced gene silencing (VIGS) to identify genes playing a role in host basal defense response to C. michiganensis subsp. michiganensis infection using Nicotiana benthamiana as a model plant. A preliminary VIGS screen comprising 160 genes from tomato known to be involved in defense-related signaling identified a set of 14 genes whose suppression led to altered host-pathogen interactions. Expression of each of these genes and three additional targets was then suppressed in larger-scale VIGS experiments and the effect of silencing on development of wilt disease symptoms and bacterial growth during an N. benthamiana-C. michiganensis subsp. michiganensis compatible interaction was determined. Disease susceptibility and in planta bacterial population size were enhanced by silencing genes encoding N. benthamiana homologs of ubiquitin activating enzyme, snakin-2, extensin-like protein, divinyl ether synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase 2, and Pto-like kinase. The identification of genes having a role in the host basal defense-response to C. michiganensis subsp. michiganensis advances our understanding of the plant responses activated by C. michiganensis subsp. michiganensis and raises possibilities for devising novel and effective molecular strategies to control bacterial canker and wilt in tomato.
Collapse
Affiliation(s)
- Vasudevan Balaji
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, NY, USA
| | | | | |
Collapse
|
38
|
Eichenlaub R, Gartemann KH. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:445-64. [PMID: 21438679 DOI: 10.1146/annurev-phyto-072910-095258] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Clavibacter michiganensis subspecies are actinomycete plant pathogens residing mainly in the xylem vessels that infect economically important host plants. In the Clavibacter subspecies michiganensis and sepedonicus, infecting tomato and potato, respectively, essential factors for disease induction are plasmid encoded and loss of the virulence plasmids converts these biotrophic pathogens into endophytes. The genes responsible for successful colonization of the host plant, including evasion/suppression of plant defense reactions, are chromosomally encoded. Several serine proteases seem to be involved in colonization. They are secreted by Clavibacter, but their targets remain unknown. A type 3 secretion system (T3SS) translocating effectors into the plant cells is absent in these gram-positive pathogens. With the development of the modern 'omics technologies for RNA and proteins based on the known genome sequences, a new phase in the investigation of the mechanisms of plant pathogenicity has begun to allow the genome-wide investigation of the Clavibacter-host interaction.
Collapse
Affiliation(s)
- Rudolf Eichenlaub
- Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany.
| | | |
Collapse
|
39
|
Feng J, Hwang R, Hwang SF, Strelkov SE, Gossen BD, Zhou QX, Peng G. Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. MOLECULAR PLANT PATHOLOGY 2010; 11:503-12. [PMID: 20618708 PMCID: PMC6640502 DOI: 10.1111/j.1364-3703.2010.00623.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the most serious diseases of cultivated cruciferous crops in the world. However, the basis for pathogenicity in P. brassicae is not well understood. In this study, a serine protease gene (PRO1) was cloned from P. brassicae and its molecular characteristics were investigated. Southern analysis and specific polymerase chain reaction (PCR) amplification indicated that PRO1 is a single-copy gene present in a broad range of P. brassicae pathotypes. Northern analysis revealed that the expression of PRO1 was induced during plant infection, and that the quantity of transcript fluctuated according to the stage of pathogenesis. Amino acid sequence analysis suggested that the encoded protein (Pro1) belongs to the S28 family of proteases, with a predicted signal peptide and a theoretical molecular mass of 49.4 kDa. The open reading frame (ORF) of PRO1 was transferred into Pichia pastoris and Pro1 was heterologously produced. Pro1 showed proteolytic activity on skimmed milk and N-succinyl-Ala-Ala-Phe-7-amido-4-methylcoumarin, and the activity could be inhibited by serine protease inhibitors and the chelating agent ethylenediaminetetraacetic acid. The optimal temperature of Pro1 was 25 degrees C, and it exhibited high activity at pH 6.0-6.4. These values coincide with the temperature and pH conditions favourable for P. brassicae resting spore germination in the field. When Pro1 was used to treat canola root exudates, it enhanced the stimulating effect of the root exudates on P. brassicae resting spore germination, indicating that Pro1 may play a role during clubroot pathogenesis by stimulating resting spore germination through its proteolytic activity.
Collapse
Affiliation(s)
- Jie Feng
- Crop Diversification Centre North, Alberta Agriculture and Rural Development, Edmonton, AB, T5Y 6H3, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Chalupowicz L, Cohen-Kandli M, Dror O, Eichenlaub R, Gartemann KH, Sessa G, Barash I, Manulis-Sasson S. Sequential expression of bacterial virulence and plant defense genes during infection of tomato with Clavibacter michiganensis subsp. michiganensis. PHYTOPATHOLOGY 2010; 100:252-61. [PMID: 20128699 DOI: 10.1094/phyto-100-3-0252] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The molecular interactions between Clavibacter michiganensis subsp. michiganensis and tomato plant were studied by following the expression of bacterial virulence and host-defense genes during early stages of infection. The C. michiganensis subsp. michiganensis genes included the plasmid-borne cellulase (celA) and the serine protease (pat-1), and the serine proteases chpC and ppaA, residing on the chp/tomA pathogenicity island (PAI). Gene expression was measured following tomato inoculation with Cmm382 (wild type), Cmm100 (lacking the plasmids pCM1 and pCM2), and Cmm27 (lacking the PAI). Transcriptional analysis revealed that celA and pat-1 were significantly induced in Cmm382 at initial 12 to 72 h, whereas chpC and ppaA were highly expressed only 96 h after inoculation. Interdependence between the expression of chromosomal and of plasmid-located genes was revealed: expression of celA and pat-1 was substantially reduced in the absence of the chp/tomA PAI, whereas chpC and ppaA expressions were reduced in the absence of the virulence plasmids. Transcription of chromosomal genes involved in cell wall degradation (i.e., pelA1, celB, xysA, and xysB), was also induced at early stages of infection. Expression of the host-defense genes, chitinase class II and pathogenesis-related protein-5 isoform was induced in the absence of the PAI at early stages of infection, suggesting that PAI-located genes are involved in suppression of tomato basal defenses.
Collapse
Affiliation(s)
- L Chalupowicz
- Deparment of Plant Pathology and Weed Research, ARO, the Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nissinen R, Xia Y, Mattinen L, Ishimaru CA, Knudson DL, Knudson SE, Metzler M, Pirhonen M. The putative secreted serine protease Chp-7 is required for full virulence and induction of a nonhost hypersensitive response by Clavibacter michiganensis subsp. sepedonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:809-19. [PMID: 19522563 DOI: 10.1094/mpmi-22-7-0809] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular biological studies on Clavibacter michiganensis subsp. sepedonicus, the causal agent of bacterial ring rot of potato, have gained greater feasibility due to the recent availability of whole genomic sequences and genetic tools for related taxa. Here, we describe the first report of construction and characterization of a transposon (Tn) mutant library of C. michiganensis subsp. sepedonicus sp. strain R10. Since virulence of R10 in potato has been shown previously to be associated with elicitation of a nonhost hypersensitive response (HR), the mutant library was screened initially for loss of HR in tobacco. The screen identified two HR-negative mutants containing Tn insertions within the same gene, CMS2989 (chp-7), although at distinct locations. chp-7 is one of 11 pat-1 homologs in C. michiganensis subsp. sepedonicus. HR-negative mutants of R10 multiplied to the same extent as wild type in planta but were less virulent in potato. Complementation with chp-7 restored virulence as well as the HR phenotype. Together, these findings demonstrate a role for chp-7 in C. michiganensis subsp. sepedonicus-plant interactions.
Collapse
Affiliation(s)
- Riitta Nissinen
- Department of Applied Biology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Balaji V, Sessa G. Activation and manipulation of host responses by a Gram-positive bacterium. PLANT SIGNALING & BEHAVIOR 2008; 3:839-841. [PMID: 19704516 PMCID: PMC2634391 DOI: 10.4161/psb.3.10.5935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 05/28/2023]
Abstract
The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease.
Collapse
Affiliation(s)
- Vasudevan Balaji
- Department of Plant Sciences; Tel-Aviv University; Tel-Aviv Israel
| | | |
Collapse
|
43
|
Stork I, Gartemann KH, Burger A, Eichenlaub R. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato. MOLECULAR PLANT PATHOLOGY 2008; 9:599-608. [PMID: 19018991 PMCID: PMC6640399 DOI: 10.1111/j.1364-3703.2008.00484.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Genes for seven putative serine proteases (ChpA-ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm. The genes chpA, chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant.
Collapse
Affiliation(s)
- Ines Stork
- Fakultät für Biologie, Lehrstuhl für Mikrobiologie/Gentechnologie, Universitaetsstr. 25, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
44
|
Hogenhout SA, Loria R. Virulence mechanisms of Gram-positive plant pathogenic bacteria. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:449-456. [PMID: 18639483 DOI: 10.1016/j.pbi.2008.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 05/07/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
Actinobacteria and Firmicutes comprise a group of highly divergent prokaryotes known as Gram-positive bacteria, which are ancestral to Gram-negative bacteria. Comparative genomics is revealing that, though plant virulence genes are frequently located on plasmids or in laterally acquired gene clusters, they are rarely shared with Gram-negative bacterial plant pathogens and among Gram-positive genera. Gram-positive bacterial pathogens utilize a variety of virulence strategies to invade their plant hosts, including the production of phytotoxins to allow intracellular and intercellular replication, production of cytokinins to generate gall tissues for invasion, secretion of proteins to induce cankers and the utilization and manipulation of sap-feeding insects for introduction into the phloem sieve cells. Functional analysis of novel virulence genes utilized by Actinobacteria and Firmicutes is revealing how these ancient prokaryotes manipulate plant, and sometimes insect, metabolic processes for their own benefit.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich NR4 7UH, United Kingdom.
| | | |
Collapse
|
45
|
Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. PLANT PHYSIOLOGY 2008; 146:1797-809. [PMID: 18245454 PMCID: PMC2287351 DOI: 10.1104/pp.107.115188] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive actinomycete, causing bacterial wilt and canker disease in tomato (Solanum lycopersicum). Host responses to gram-positive bacteria and molecular mechanisms associated with the development of disease symptoms caused by Cmm in tomato are largely unexplored. To investigate plant responses activated during this compatible interaction, we used microarray analysis to monitor changes in host gene expression during disease development. This analysis was performed at 4 d postinoculation, when bacteria were actively multiplying and no wilt symptoms were yet visible; and at 8 d postinoculation, when bacterial growth approached saturation and typical wilt symptoms were observed. Of the 9,254 tomato genes represented on the array, 122 were differentially expressed in Cmm-infected plants, compared with mock-inoculated plants. Functional classification of Cmm-responsive genes revealed that Cmm activated typical basal defense responses in the host, including induction of defense-related genes, production and scavenging of free oxygen radicals, enhanced protein turnover, and hormone synthesis. Cmm infection also induced a subset of host genes involved in ethylene biosynthesis and response. After inoculation with Cmm, Never ripe (Nr) mutant plants, impaired in ethylene perception, and transgenic plants with reduced ethylene synthesis showed significant delay in the appearance of wilt symptoms, compared with wild-type plants. The retarded wilting in Nr plants was a specific effect of ethylene insensitivity, and was not due to altered expression of defense-related genes, reduced bacterial populations, or decreased ethylene synthesis. Taken together, our results indicate that host-derived ethylene plays an important role in regulation of the tomato susceptible response to Cmm.
Collapse
Affiliation(s)
- Vasudevan Balaji
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bentley SD, Corton C, Brown SE, Barron A, Clark L, Doggett J, Harris B, Ormond D, Quail MA, May G, Francis D, Knudson D, Parkhill J, Ishimaru CA. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation. J Bacteriol 2008; 190:2150-60. [PMID: 18192393 PMCID: PMC2258862 DOI: 10.1128/jb.01598-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/01/2008] [Indexed: 12/21/2022] Open
Abstract
Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome.
Collapse
Affiliation(s)
- Stephen D Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol 2008; 190:2138-49. [PMID: 18192381 DOI: 10.1128/jb.01595-07] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.
Collapse
|
48
|
Holtsmark I, Takle GW, Brurberg MB. Expression of putative virulence factors in the potato pathogen Clavibacter michiganensis subsp. sepedonicus during infection. Arch Microbiol 2007; 189:131-9. [PMID: 17846750 DOI: 10.1007/s00203-007-0301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/29/2007] [Accepted: 08/18/2007] [Indexed: 01/05/2023]
Abstract
The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity.
Collapse
Affiliation(s)
- Ingrid Holtsmark
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk, Høgskoleveien 7, 1432 , As, Norway
| | | | | |
Collapse
|
49
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 628] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Gitaitis R, Walcott R. The epidemiology and management of seedborne bacterial diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:371-97. [PMID: 17474875 DOI: 10.1146/annurev.phyto.45.062806.094321] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although seed production has been moved to semiarid regions to escape seedborne pathogens, seedborne bacterial diseases continue to be problematic and cause significant economic losses worldwide. Infested seeds are responsible for the re-emergence of diseases of the past, movement of pathogens across international borders, or the introduction of diseases into new areas. Considerable attention has been paid to improving the sensitivity and selectivity of seed health assays by using techniques such as flow cytometry and the polymerase chain reaction. There has also been progress in understanding infection thresholds and how they influence seed sample size determination and ultimately the reliability of seed health testing. Disease development and dissemination of pathogens from contaminated seedlots can be predicted using formulas that take into account inoculum density and environmental pressures. In general, seeds infested with bacterial pathogens are distributed within a Poisson distribution. In a subset of contaminated seeds, bacteria are distributed in non-Gaussian distributions, e.g., a lognormal distribution.
Collapse
Affiliation(s)
- Ronald Gitaitis
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, Georgia 31793, USA.
| | | |
Collapse
|