1
|
Mann E, Kimber MS, Whitfield C. Bioinformatics analysis of diversity in bacterial glycan chain-termination chemistry and organization of carbohydrate-binding modules linked to ABC transporters. Glycobiology 2020; 29:822-838. [PMID: 31504498 DOI: 10.1093/glycob/cwz066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
The structures of bacterial cell surface glycans are remarkably diverse. In spite of this diversity, the general strategies used for their assembly are limited. In one of the major processes, found in both Gram-positive and Gram-negative bacteria, the glycan is polymerized in the cytoplasm on a polyprenol lipid carrier and exported from the cytoplasm by an ATP-binding cassette (ABC) transporter. The ABC transporter actively participates in determining the chain length of the glycan substrate, which impacts functional properties of the glycoconjugate products. A subset of these systems employs an additional elaborate glycan capping strategy that dictates the size distribution of the products. The hallmarks of prototypical capped glycan systems are a chain-terminating enzyme possessing a coiled-coil molecular ruler and an ABC transporter possessing a carbohydrate-binding module, which recognizes the glycan cap. To date, detailed investigations are limited to a small number of prototypes, and here, we used our current understanding of these processes for a bioinformatics census of other examples in available genome sequences. This study not only revealed additional instances of existing terminators but also predicted new chemistries as well as systems that diverge from the established prototypes. These analyses enable some new functional hypotheses and offer a roadmap for future research.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. Int J Mol Sci 2019; 20:ijms20143530. [PMID: 31330931 PMCID: PMC6678494 DOI: 10.3390/ijms20143530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.
Collapse
|
3
|
Vinnitskiy DZ, Ustyuzhanina NE, Nifantiev NE. Natural bacterial and plant biomolecules bearing α-d-glucuronic acid residues. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1010-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil. Microbiology (Reading) 2015; 161:1018-1033. [DOI: 10.1099/mic.0.000068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/28/2015] [Indexed: 12/28/2022] Open
|
5
|
Roles of predicted glycosyltransferases in the biosynthesis of the Rhizobium etli CE3 O antigen. J Bacteriol 2013; 195:1949-58. [PMID: 23435981 DOI: 10.1128/jb.02080-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer. The genetic regions required for its synthesis have been identified, and the nucleotide sequences are known. The structure of the O antigen has been determined, but the roles of specific genes in synthesizing this structure are relatively unclear. Within the known O-antigen genetic clusters of this strain, nine open reading frames (ORFs) were found to contain a conserved glycosyltransferase domain. Each ORF was mutated, and the resulting mutant lipopolysaccharide (LPS) was analyzed. Tricine SDS-PAGE revealed stepwise truncations of the O antigen that were consistent with differences in mutant LPS sugar compositions and reactivity with O-antigen-specific monoclonal antibodies. Based on these results and current theories of O-antigen synthesis, specific roles were deduced for each of the nine glycosyltransferases, and a model for biosynthesis of the R. etli CE3 O antigen was proposed. In this model, O-antigen biosynthesis is initiated with the addition of N-acetyl-quinovosamine-phosphate (QuiNAc-P) to bactoprenol-phosphate by glycosyltransferase WreU. Glycosyltransferases WreG, WreE, WreS, and WreT would each act once to attach mannose, fucose, a second fucose, and 3-O-methyl-6-deoxytalose (3OMe6dTal), respectively. WreH would then catalyze the addition of methyl glucuronate (MeGlcA) to complete the first instance of the O-antigen repeat unit. Four subsequent repeats of this unit composed of fucose, 3OMe6dTal, and MeGlcA would be assembled by a cycle of reactions catalyzed by two additional glycosyltransferases, WreM and WreL, along with WreH. Finally, the O antigen would be capped by attachment of di- or tri-O-methylated fucose as catalyzed by glycosyltransferase WreB.
Collapse
|
6
|
Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates. ISME JOURNAL 2011; 5:1722-34. [PMID: 21562597 DOI: 10.1038/ismej.2011.55] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We investigated the genomic diversity of a local population of the symbiotic bacterium Sinorhizobium medicae, isolated from the roots of wild Medicago lupulina plants, in order to assess genomic diversity, to identify genomic regions influenced by duplication, deletion or strong selection, and to explore the composition of the pan-genome. Partial genome sequences of 12 isolates were obtained by Roche 454 shotgun sequencing (average 5.3 Mb per isolate) and compared with the published sequence of S. medicae WSM 419. Homologous recombination appears to have less impact on the polymorphism patterns of the chromosome than on the chromid pSMED01 and megaplasmid pSMED02. Moreover, pSMED02 is a hot spot of insertions and deletions. The whole chromosome is characterized by low sequence polymorphism, consistent with the high density of housekeeping genes. Similarly, the level of polymorphism of symbiosis genes (low) and of genes involved in polysaccharide synthesis (high) may reflect different selection. Finally, some isolates carry genes that may confer adaptations that S. medicae WSM 419 lacks, including homologues of genes encoding rhizobitoxine synthesis, iron uptake, response to autoinducer-2, and synthesis of distinct polysaccharides. The presence or absence of these genes was confirmed by PCR in each of these 12 isolates and a further 27 isolates from the same population. All isolates had rhizobitoxine genes, while the other genes were co-distributed, suggesting that they may be on the same mobile element. These results are discussed in relation to the ecology of Medicago symbionts and in the perspective of population genomics studies.
Collapse
|
7
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
8
|
Abstract
The establishment of nitrogen-fixing symbiosis between a legume plant and its rhizobial symbiont requires that the bacterium adapt to changing conditions that occur with the host plant that both promotes and allows infection of the host root nodule cell, regulates and resists the host defense response, permits the exchange of metabolites, and contributes to the overall health of the host. This adaptive process involves changes to the bacterial cell surface and, therefore, structural modifications to the lipopolysaccharide (LPS). In this chapter, we describe the structures of the LPSs from symbiont members of the Rhizobiales, the genetics and mechanism of their biosynthesis, the modifications that occur during symbiosis, and their possible functions.
Collapse
|
9
|
Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol 2008; 74:3783-94. [PMID: 18441119 DOI: 10.1128/aem.02302-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide polymorphism associated with the O-antigen-encoding locus, rfb, in Enterobacter sakazakii was determined by PCR-restriction fragment length polymorphism analysis. Based on the analysis of these DNA profiles, 12 unique banding patterns were detected among a collection of 62 strains from diverse origins. Two common profiles were identified and were designated serotypes O:1 and O:2. DNA sequencing of the 12,500-bp region flanked by galF and gnd identified 11 open reading frames, all with the same transcriptional direction. Analysis of the proximal region of both sequences demonstrated remarkable heterogeneity. A PCR assay targeting genes specific for the two prominent serotypes was developed and applied for the identification of these strains recovered from food, environmental, and clinical samples.
Collapse
|
10
|
Fernández de Córdoba FJ, Rodríguez-Carvajal MA, Tejero-Mateo P, Corzo J, Gil-Serrano AM. Structure of the O-Antigen of the Main Lipopolysaccharide Isolated from Sinorhizobium fredii SMH12. Biomacromolecules 2008; 9:678-85. [DOI: 10.1021/bm701011d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco J. Fernández de Córdoba
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41071 Sevilla, Spain, and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of La Laguna, E-38206 La Laguna, Spain
| | - Miguel A. Rodríguez-Carvajal
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41071 Sevilla, Spain, and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of La Laguna, E-38206 La Laguna, Spain
| | - Pilar Tejero-Mateo
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41071 Sevilla, Spain, and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of La Laguna, E-38206 La Laguna, Spain
| | - Javier Corzo
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41071 Sevilla, Spain, and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of La Laguna, E-38206 La Laguna, Spain
| | - Antonio M. Gil-Serrano
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41071 Sevilla, Spain, and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of La Laguna, E-38206 La Laguna, Spain
| |
Collapse
|
11
|
da Silva VS, Shida CS, Rodrigues FB, Ribeiro DCD, de Souza AA, Coletta-Filho HD, Machado MA, Nunes LR, de Oliveira RC. Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. BMC Genomics 2007; 8:474. [PMID: 18154652 PMCID: PMC2262912 DOI: 10.1186/1471-2164-8-474] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 12/21/2007] [Indexed: 01/18/2023] Open
Abstract
Background The xylem-inhabiting bacterium Xylella fastidiosa (Xf) is the causal agent of Pierce's disease (PD) in vineyards and citrus variegated chlorosis (CVC) in orange trees. Both of these economically-devastating diseases are caused by distinct strains of this complex group of microorganisms, which has motivated researchers to conduct extensive genomic sequencing projects with Xf strains. This sequence information, along with other molecular tools, have been used to estimate the evolutionary history of the group and provide clues to understand the capacity of Xf to infect different hosts, causing a variety of symptoms. Nonetheless, although significant amounts of information have been generated from Xf strains, a large proportion of these efforts has concentrated on the study of North American strains, limiting our understanding about the genomic composition of South American strains – which is particularly important for CVC-associated strains. Results This paper describes the first genome-wide comparison among South American Xf strains, involving 6 distinct citrus-associated bacteria. Comparative analyses performed through a microarray-based approach allowed identification and characterization of large mobile genetic elements that seem to be exclusive to South American strains. Moreover, a large-scale sequencing effort, based on Suppressive Subtraction Hybridization (SSH), identified 290 new ORFs, distributed in 135 Groups of Orthologous Elements, throughout the genomes of these bacteria. Conclusion Results from microarray-based comparisons provide further evidence concerning activity of horizontally transferred elements, reinforcing their importance as major mediators in the evolution of Xf. Moreover, the microarray-based genomic profiles showed similarity between Xf strains 9a5c and Fb7, which is unexpected, given the geographical and chronological differences associated with the isolation of these microorganisms. The newly identified ORFs, obtained by SSH, represent an approximately 10% increase in our current knowledge of the South American Xf gene pool and include new putative virulence factors, as well as novel potential markers for strain identification. Surprisingly, this list of novel elements include sequences previously believed to be unique to North American strains, pointing to the necessity of revising the list of specific markers that may be used for identification of distinct Xf strains.
Collapse
Affiliation(s)
- Vivian S da Silva
- Núcleo Integrado de Biotecnologia - Universidade de Mogi das Cruzes, Av. Dr, Cândido Xavier de Almeida Souza 200, Mogi das Cruzes, SP 08780-911, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 2006; 103:3834-9. [PMID: 16505379 PMCID: PMC1383491 DOI: 10.1073/pnas.0508502103] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the complete 6,530,228-bp genome sequence of the symbiotic nitrogen fixing bacterium Rhizobium etli. Six large plasmids comprise one-third of the total genome size. The chromosome encodes most functions necessary for cell growth, whereas few essential genes or complete metabolic pathways are located in plasmids. Chromosomal synteny is disrupted by genes related to insertion sequences, phages, plasmids, and cell-surface components. Plasmids do not show synteny, and their orthologs are mostly shared by accessory replicons of species with multipartite genomes. Some nodulation genes are predicted to be functionally related with chromosomal loci encoding for the external envelope of the bacterium. Several pieces of evidence suggest an exogenous origin for the symbiotic plasmid (p42d) and p42a. Additional putative horizontal gene transfer events might have contributed to expand the adaptive repertoire of R. etli, because they include genes involved in small molecule metabolism, transport, and transcriptional regulation. Twenty-three putative sigma factors, numerous isozymes, and paralogous families attest to the metabolic redundancy and the genomic plasticity necessary to sustain the lifestyle of R. etli in symbiosis and in the soil.
Collapse
Affiliation(s)
- Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
- *To whom correspondence may be addressed. E-mail:
or
| | - Rosa I. Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Ismael Hernández-González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Arturo Medrano-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Gabriel Moreno-Hagelsieb
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Sarath Chandra Janga
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Miguel A. Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Verónica Jiménez-Jacinto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
| | - Guillermo Dávila
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos, 62210, México
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
14
|
Clarke BR, Cuthbertson L, Whitfield C. Nonreducing Terminal Modifications Determine the Chain Length of Polymannose O Antigens of Escherichia coli and Couple Chain Termination to Polymer Export via an ATP-binding Cassette Transporter. J Biol Chem 2004; 279:35709-18. [PMID: 15184370 DOI: 10.1074/jbc.m404738200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The chain length of bacterial lipopolysaccharide O antigens is regulated to give a modal distribution that is critical for pathogenesis. This paper describes the process of chain length determination in the ATP-binding cassette (ABC) transporter-dependent pathway, a pathway that is widespread among Gram-negative bacteria. Escherichia coli O8 and O9/O9a polymannans are synthesized in the cytoplasm, and an ABC transporter exports the nascent polymer across the inner membrane prior to completion of the LPS molecule. The polymannan O antigens have nonreducing terminal methyl groups. The 3-O-methyl group in serotype O8 is transferred from S-adenosylmethionine by the WbdD(O8) enzyme, and this modification terminates polymerization. Methyl groups are added to the O9a polymannan in a reaction dependent on preceding phosphorylation. The bifunctional WbdD(O9a) catalyzes both reactions, but only the kinase activity controls chain length. Chain termination occurs in a mutant lacking the ABC transporter, indicating that it precedes export. An E. coli wbdD(O9a) mutant accumulated O9a polymannan in the cytoplasm, indicating that WbdD activity coordinates polymannan chain termination with export across the inner membrane.
Collapse
Affiliation(s)
- Bradley R Clarke
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|