1
|
Deryugina EI, Zajac E, Zilberberg L, Muramatsu T, Joshi G, Dabovic B, Rifkin D, Quigley JP. LTBP3 promotes early metastatic events during cancer cell dissemination. Oncogene 2018; 37:1815-1829. [PMID: 29348457 PMCID: PMC5889352 DOI: 10.1038/s41388-017-0075-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/04/2023]
Abstract
Latent Transforming Growth Factor β (TGFβ) Binding Proteins (LTBPs) are important for the secretion, activation and function of mature TGFβ, especially so in cancer cell physiology. However, specific roles of the LTBPs remain understudied in the context of the primary tumor microenvironment. Herein, we investigated the role of LTBP-3 in the distinct processes involved in cancer metastasis. By using three human tumor cell lines of different tissue origin (epidermoid HEp-3 and prostate PC-3 carcinomas and HT-1080 fibrosarcoma) and several metastasis models conducted in both mammalian and avian settings, we show that LTBP-3 is involved in the early dissemination of primary cancer cells, namely in the intravasation step of the metastatic cascade. Knockdown of LTBP-3 in all tested cell lines led to significant inhibition of tumor cell intravasation, but did not affect primary tumor growth. LTBP-3 was dispensable in the late steps of carcinoma cell metastasis that follow tumor cell intravasation, including vascular arrest, extravasation and tissue colonization. However, LTBP-3 depletion diminished the angiogenesis-inducing potential of HEp-3 cells in vivo, which was restorable by exogenous delivery of LTBP-3 protein. A similar compensatory approach rescued the dampened intravasation of LTBP-3-deficient HEp-3 cells, suggesting that LTBP-3 regulates the induction of the intravasation-supporting angiogenic vasculature within developing primary tumors. Using our recently developed microtumor model, we confirmed that LTBP-3 loss resulted in the development of intratumoral vessels with an abnormal microarchitecture incompatible with efficient intravasation of HEp-3 carcinoma cells. Collectively, these findings demonstrate that LTBP-3 represents a novel oncotarget that has distinctive functions in the regulation of angiogenesis-dependent tumor cell intravasation, a critical process during early cancer dissemination. Our experimental data are also consistent with the survival prognostic value of LTBP3 expression in early stage head and neck squamous cell carcinomas, further indicating a specific role for LTBP-3 in cancer progression towards metastatic disease.
Collapse
Affiliation(s)
| | - Ewa Zajac
- The Scripps Research Institute, La Jolla, CA, USA
| | - Lior Zilberberg
- The New York University School of Medicine, New York, NY, USA
| | | | - Grishma Joshi
- The New York University School of Medicine, New York, NY, USA
| | - Branka Dabovic
- The New York University School of Medicine, New York, NY, USA
| | - Daniel Rifkin
- The New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
2
|
Parallels and distinctions in the direct cell-to-cell spread of the plant and animal viruses. Curr Opin Virol 2011; 1:403-9. [PMID: 22440842 DOI: 10.1016/j.coviro.2011.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/23/2011] [Indexed: 01/07/2023]
Abstract
The paradigm that viruses can move directly, and in some cases covertly, between contacting target cells is now well established for several virus families. The underlying mechanisms of cell-to-cell spread, however, remain to be fully elucidated and may differ substantially depending on the viral exit/entry route and the cellular tropism. Here, two divergent cell-to-cell spread mechanisms are exemplified: firstly by human retroviruses, which rely upon transient adhesive structures that form between polarized immune cells termed virological synapses, and secondly by herpesviruses that depend predominantly on pre-existing stable cellular contacts, but may also form virological synapses. Plant viruses can also spread directly between contacting cells, but are obliged by the rigid host cell wall to move across pore structures termed plasmodesmata. This review will focus primarily on recent advances in our understanding of animal virus cell-to-cell spread using examples from these two virus families to highlight differences and similarities, and will conclude by comparing and contrasting the cell-to-cell spread of animal and plant viruses.
Collapse
|
3
|
Yaegashi H, Tamura A, Isogai M, Yoshikawa N. Inhibition of long-distance movement of RNA silencing signals in Nicotiana benthamiana by Apple chlorotic leaf spot virus 50 kDa movement protein. Virology 2008; 382:199-206. [PMID: 18954886 DOI: 10.1016/j.virol.2008.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/06/2008] [Accepted: 09/18/2008] [Indexed: 11/17/2022]
Abstract
Apple chlorotic leaf spot virus 50 kDa movement protein (P50) acts as a suppressor of systemic silencing in Nicotiana benthamiana. Here, we investigate the mode of action of P50 suppressor. An agroinfiltration assay in GFP-expressing N. benthamiana line16c (GFP-plant) showed that P50 could not prevent the short-distance spread of silencing. In grafting experiments, the systemic silencing was inhibited in GFP-plants (scion) grafted on P50-expressing N. benthamiana (P50-plant; rootstock) when GFP silencing was induced in rootstock. In double-grafted plants, GFP-plant (scion)/P50-plant (interstock)/GFP-plant (rootstock), the systemic silencing in scion was inhibited when GFP silencing was induced in rootstock. Analysis of P50 deletion mutants indicated that the N-terminal region (amino acids 1-284) is important for its suppressor activity. In gel mobility shift assay, P50 lacks binding ability with siRNAs. These results indicated that P50 has a unique suppressor activity that specifically inhibits the long-distance movement of silencing signals.
Collapse
Affiliation(s)
- Hajime Yaegashi
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | | | | | | |
Collapse
|
4
|
Yaegashi H, Takahashi T, Isogai M, Kobori T, Ohki S, Yoshikawa N. Apple chlorotic leaf spot virus 50 kDa movement protein acts as a suppressor of systemic silencing without interfering with local silencing in Nicotiana benthamiana. J Gen Virol 2007; 88:316-324. [PMID: 17170464 DOI: 10.1099/vir.0.82377-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apple chlorotic leaf spot virus (ACLSV) is the type species of the genus Trichovirus and its single-stranded, plus-sense RNA genome encodes a 216 kDa protein (P216) involved in replication, a 50 kDa movement protein (P50) and a 21 kDa coat protein (CP). In this study, it was investigated whether these proteins might have RNA silencing-suppressor activities by Agrobacterium-mediated transient assay in the green fluorescent protein-expressing Nicotiana benthamiana line 16c. The results indicated that none of these proteins could suppress local silencing in infiltrated leaves. However, systemic silencing in upper leaves induced by both single- and double-stranded RNA could be suppressed by P50, but not by a frame-shift mutant of P50, P216 or CP. Moreover, when P50 was expressed separately from where silencing signals were generated in a leaf, systemic silencing in upper leaves was inhibited. Collectively, our data indicate that P50 acts as a suppressor of systemic silencing without interfering with local silencing, probably by inhibiting the movement of silencing signals.
Collapse
Affiliation(s)
- Hajime Yaegashi
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Tsubasa Takahashi
- The 21st Century Center of Excellence Program, Iwate University, Morioka 020-8550, Japan
| | - Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Takashi Kobori
- Kyoto Prefectural Institute of Agricultural Biotechnology, Soraku-gun, Kyoto 619-0244, Japan
| | - Satoshi Ohki
- Graduate School of Life and Environmental Sciences, University of Osaka Prefecture, Sakai 599-8531, Japan
| | - Nobu Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
- The 21st Century Center of Excellence Program, Iwate University, Morioka 020-8550, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
5
|
Yoshikawa N, Saitou Y, Kitajima A, Chida T, Sasaki N, Isogai M. Interference of Long-Distance Movement of Grapevine berry inner necrosis virus in Transgenic Plants Expressing a Defective Movement Protein of Apple chlorotic leaf spot virus. PHYTOPATHOLOGY 2006; 96:378-385. [PMID: 18943419 DOI: 10.1094/phyto-96-0378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Transgenic Nicotiana occidentalis plants expressing a movement protein (P50) and partially functional deletion mutants (DeltaA and DeltaC) of the Apple chlorotic leaf spot virus (ACLSV) showed resistance to Grapevine berry inner necrosis virus (GINV). The resistance is highly effective and GINV was below the level of detection in both inoculated and uninoculated upper leaves. In contrast, GINV accumulated in inoculated and uninoculated leaves of nontransgenic (NT) plants and transgenic plants expressing a dysfunctional mutant (DeltaG). On the other hand, in some plants of a transgenic plant line expressing a deletion mutant (DeltaA', deletion of the C-terminal 42 amino acids), GINV could spread in inoculated leaves, but not move into uninoculated leaves. In a tissue blot hybridization analysis of DeltaA'-plants inoculated with GINV, virus could be detected in leaf blade, midribs, and petiole of inoculated leaves, but neither in stems immediately above inoculated leaves nor in any tissues of uninoculated leaves. Immunohistochemical analysis of GINV-inoculated leaves of DeltaA'-plants showed that GINV could invade into phloem parenchyma cells through bundle sheath of minor veins, suggesting that the long-distance transport of GINV might be inhibited between the phloem cells and sieve element (and/or within sieve element) rather than bundle sheath-phloem interfaces. Immunogold electron microscopy using an anti-P50 antiserum showed that P50 accumulated on the parietal layer of sieve elements and on sieve plates. The results suggested that resistance in P50-transgenic plants to GINV is due to the interference of both long-distance and cell-to-cell movement of the virus.
Collapse
|
6
|
Huang YW, Geng YF, Ying XB, Chen XY, Fang RX. Identification of a movement protein of rice yellow stunt rhabdovirus. J Virol 2005; 79:2108-14. [PMID: 15681413 PMCID: PMC546594 DOI: 10.1128/jvi.79.4.2108-2114.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice yellow stunt rhabdovirus (RYSV) encodes seven genes in its negative-sense RNA genome in the order 3'-N-P-3-M-G-6-L-5'. The existence of gene 3 in the RYSV genome and an analogous gene(s) of other plant rhabdoviruses positioned between the P and M genes constitutes a unique feature for plant rhabdoviruses that is distinct from animal-infecting rhabdoviruses in which the P and M genes are directly linked. However, little is known about the function of these extra plant rhabdovirus genes. Here we provide evidence showing that the protein product encoded by gene 3 of RYSV, P3, possesses several properties related to a viral cell-to-cell movement protein (MP). Analyses of the primary and secondary protein structures suggested that RYSV P3 is a member of the "30K" superfamily of viral MPs. Biolistic bombardment transcomplementation experiments demonstrated that RYSV P3 can support the intercellular movement of a movement-deficient potexvirus mutant in Nicotiana benthamiana leaves. In addition, Northwestern blot analysis indicated that the RYSV P3 protein can bind single-stranded RNA in vitro, a common feature of viral MPs. Finally, glutathione S- transferase pull-down assays revealed a specific interaction between the RYSV P3 protein and the N protein which is a main component of the ribonucleocapsid, a subviral structure believed to be involved in the intercellular movement of plant rhabdoviruses. Together, these data suggest that RYSV P3 is likely a MP of RYSV, thus representing the first example of characterized MPs for plant rhabdoviruses.
Collapse
Affiliation(s)
- Yan-Wei Huang
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
7
|
Isogai M, Yoshikawa N. Mapping the RNA-binding domain on the Apple chlorotic leaf spot virus movement protein. J Gen Virol 2005; 86:225-229. [PMID: 15604450 DOI: 10.1099/vir.0.80493-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA-binding properties of the cell-to-cell movement protein (MP) of Apple chlorotic leaf spot virus were analysed. MP was expressed in Escherichia coli and was used in UV-crosslinking analysis, using a digoxigenin–UTP-labelled RNA probe and gel-retardation analysis. The analyses demonstrated that MP bound cooperatively to single-stranded RNA (ssRNA). When analysed for NaCl dependence of the RNA-binding activity, the majority of the MP could bind ssRNA even in binding buffer with 1 M NaCl. Furthermore, competition binding experiments showed that the MP bound preferentially to ssRNA and single-stranded DNA without sequence specificity. MP deletion mutants were used to identify the RNA-binding domain by UV-crosslinking analysis. Amino acid residues 82–126 and 127–287 potentially contain two independently active, single-stranded nucleic acid-binding domains.
Collapse
Affiliation(s)
- Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Japan
| |
Collapse
|