1
|
Xu C, Guo M, Han X, Ren C, Liu C, Fu W, Qi J, Ge Z, Ma Z, Chen Y. Fungal Pathogen Diversity and Fungicide Resistance Assessment in Fusarium Crown Rot of Wheat in the Huanghuai Region of China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2299-2311. [PMID: 39815893 DOI: 10.1021/acs.jafc.4c09274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Fusarium crown rot (FCR) poses a major threat to wheat production in the Huanghuai wheat region of China. This study aims to enhance understanding of pathogen populations causing FCR, focusing on their pathogenicity, trichothecene genotypes, and fungicide resistance. During the 2022-2023 growing seasons, we collected 1820 fungal isolates from 233 locations in this region. Our results identified Fusarium pseudograminearum, Fusarium graminearum, and Fusarium asiaticum as the primary pathogens, with F. pseudograminearum exhibiting the highest virulence. Three trichothecene genotypes were identified, including nivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol. No correlation was observed between trichothecene genotype and virulence, except in F. asiaticum. Antifungal assays demonstrated that all six tested fungicides effectively inhibited F. pseudograminearum, with fludioxonil being particularly effective. Field surveys identified isolates resistant to difenoconazole and pyraclostrobin. Laboratory analysis also revealed strains with FpSdhC1A83 V and FpSdhC1S80N mutations conferring resistance to cyclobutrifluram. These findings offer critical insights for developing effective control strategies to manage FCR.
Collapse
Affiliation(s)
- Chenghui Xu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Meiling Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chunjiang Ren
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chao Liu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weitao Fu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Junshan Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Meng J, Zan F, Liu Z, Zhang Y, Qin C, Hao L, Wang Z, Wang L, Liu D, Liang S, Li H, Li H, Ding S. Genomics Analysis Reveals the Potential Biocontrol Mechanism of Pseudomonas aeruginosa QY43 against Fusarium pseudograminearum. J Fungi (Basel) 2024; 10:298. [PMID: 38667969 PMCID: PMC11050789 DOI: 10.3390/jof10040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Fusarium crown rot (FCR) in wheat is a prevalent soil-borne disease worldwide and poses a significant threat to the production of wheat (Triticum aestivum) in China, with F. pseudograminearum being the dominant pathogen. Currently, there is a shortage of biocontrol resources to control FCR induced by F. pseudograminearum, along with biocontrol mechanisms. In this study, we have identified 37 strains of biocontrol bacteria displaying antagonistic effects against F. pseudograminearum from over 8000 single colonies isolated from soil samples with a high incidence of FCR. Among them, QY43 exhibited remarkable efficacy in controlling FCR. Further analysis identified the isolate QY43 as Pseudomonas aeruginosa, based on its colony morphology and molecular biology. In vitro, QY43 significantly inhibited the growth, conidial germination, and the pathogenicity of F. pseudograminearum. In addition, QY43 exhibited a broad spectrum of antagonistic activities against several plant pathogens. The genomics analysis revealed that there are genes encoding potential biocontrol factors in the genome of QY43. The experimental results confirmed that QY43 secretes biocontrol factor siderophores and pyocyanin. In summary, QY43 exhibits a broad spectrum of antagonistic activities and the capacity to produce diverse biocontrol factors, thereby showing substantial potential for biocontrol applications to plant disease.
Collapse
Affiliation(s)
- Jiaxing Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Feifei Zan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Zheran Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Yuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Cancan Qin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Lingjun Hao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Zhifang Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Limin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Dongmei Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Haiyang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (F.Z.); (Z.L.); (Y.Z.); (C.Q.); (L.H.); (Z.W.); (L.W.); (H.L.)
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| |
Collapse
|
3
|
Li Y, Dai T, Tang Y, Wang Y, Wang X, Huang Z, Li F, Lu L, Miao J, Liu X. Inhibitory activity to Fusarium spp. and control potential for wheat Fusarium crown rot of a novel succinate dehydrogenase inhibitor cyclobutrifluram. PEST MANAGEMENT SCIENCE 2024; 80:2001-2010. [PMID: 38096203 DOI: 10.1002/ps.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Wheat Fusarium crown rot (FCR) is a serious problem primarily caused by Fusarium pseudograminearum, a pathogenic agent known to produce mycotoxins, including deoxynivalenol (DON). Cyclobutrifluram, a novel succinate dehydrogenase inhibitor devised by Syngenta, has immense potential to control both nematodes and Fusarium diseases. However, its efficacy in combating Fusarium species, its ability to prevent and reverse the detrimental effects of FCR, and its impact on the production of DON by F. pseudograminearum are yet to be fully ascertained. RESULTS Cyclobutrifluram exhibited substantial inhibitory activity against Fusarium species, with half-maximal effective concentration values ranging from 0.0021-0.0647 μg mL-1 . It demonstrated significant inhibitory activity toward three developmental stages of F. pseudograminearum, F. graminearum and F. asiaticum. Furthermore, cyclobutrifluram showed both protective and curative activities against FCR and was rapidly absorbed by roots and transported to wheat stems and leaves. Cyclobutrifluram could also decrease DON production by F. pseudograminearum. CONCLUSION This investigation has revealed the potential of cyclobutrifluram as a formidable candidate fungicide, particularly in its ability to effectively combat FCR and other Fusarium-related ailments. This novel compound has exceptional pathogen-fighting capabilities, coupled with remarkable systemic translocation properties and a notable ability to reduce the production of DON. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiwen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yidong Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xixi Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhongqiao Huang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Feng Li
- Syngenta (China) Investment Co., Ltd, Shanghai, China
| | - Liang Lu
- Syngenta (China) Investment Co., Ltd, Shanghai, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|