1
|
Huang W, Dong J, Zhao X, Zhao Z, Li C, Li J, Song B. QTL analysis of tuber shape in a diploid potato population. FRONTIERS IN PLANT SCIENCE 2022; 13:1046287. [PMID: 36438140 PMCID: PMC9685338 DOI: 10.3389/fpls.2022.1046287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Tuber shape is one of the most important traits for potato breeding. Since poor or irregular shape increases the difficulty of handling and processing, researching the inheritance of potato tuber shape for potato breeding is highly important. To efficiently identify QTL for tuber shape, a diploid potato population (PM7) was generated by self-pollinated M6 (S. chacoense). A QTL TScha6 for tuber shape was identified by the QTL-seq approach at 50.91-59.93 Mb on chromosome 6 in the potato DM reference genome. To confirm TScha6, four SSR and twenty CAPS markers around the QTL were developed and the TScha6 was narrowed down to an interval of ~ 1.85 Mb. The CAPS marker C6-58.27_665 linked to TScha6 was then used to screen 86 potato cultivars and advanced breeding lines. The tuber length/width (LW) ratio was significantly correlated with the presence/absence of C6-58.27_665, and the correlation coefficient was r = 0.55 (p < 0.01). These results showed that C6-58.27_665 could be applied in marker-assisted selection (MAS) for tuber shape breeding in the future. Our research sets the important stage for the future cloning of the tuber shape gene and utilities of the marker in the breeding program.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
- Forestry and Fruit Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jianke Dong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xijuan Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiyuan Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunyan Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingcai Li
- College of Biology and Agricultural Resources, Huanggang Normal University/Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, Hubei, China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Li K, Chen R, Tu Z, Nie X, Song B, He C, Xie C, Nie B. Global Screening and Functional Identification of Major HSPs Involved in PVY Infection in Potato. Genes (Basel) 2022; 13:566. [PMID: 35456372 PMCID: PMC9031240 DOI: 10.3390/genes13040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
HSP40 (also known as DnaJ), HSP70, and HSP90 are major heat shock protein (HSP) families that play critical roles in plant growth and development and stress adaption. Recently, several members of the three HSP families were reported to be widely involved in the plant host-virus interactions. However, their global expression profiles and core members recruited by viruses are largely unknown. In this study, a total of 89 StDnaJs were identified from a genome-wide survey, and their classification, phylogenetic relationships, chromosomal locations, and gene duplication events were further analyzed. Together with 20 StHSP70s and 7 StHSP90s previously identified in the potato genome, the global expression patterns of the members in 3 HSP families were investigated in 2 potato cultivars during Potato virus Y (PVY) infection using RNA-seq data. Of them, 16 genes (including 8 StDnaJs, 6 StHSP70s, and 2 StHSP90s) were significantly up- or downregulated. Further analysis using qRT-PCR demonstrated that 7 of the 16 genes (StDnaJ06, StDnaJ17, StDnaJ21, StDnaJ63, StHSP70-6, StHSP70-19, and StHSP90.5) were remarkably upregulated in the potato cultivar 'Eshu 3' after PVY infection, implying their potential roles in the potato-PVY compatible interaction. Subsequent virus-induced gene silencing (VIGS) assays showed that silencing of the homologous genes of StDnaJ17, StDnaJ21, StHSP70-6, and StHSP90.5 in Nicotiana. benthamiana plants dramatically reduced the accumulation of PVY, which indicated the four genes may function as susceptibility factors in PVY infection. This study provides candidate genes for exploring the mechanism of potato-PVY compatible interaction and benefits breeding work aiming to produce new cultivars with the ability to grow healthily under PVY infection.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruhao Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Provincial Engineering Research Center for Potatoes, Hunan Agricultural University, Changsha 410128, China;
| | - Zheng Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, NB E3B 4Z7, Canada;
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changzheng He
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Provincial Engineering Research Center for Potatoes, Hunan Agricultural University, Changsha 410128, China;
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bihua Nie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (R.C.); (Z.T.); (B.S.); (C.X.)
- Key Laboratory of Horticulture Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Chen R, Tu Z, He C, Nie X, Li K, Fei S, Song B, Nie B, Xie C. Susceptibility factor StEXA1 interacts with StnCBP to facilitate potato virus Y accumulation through the stress granule-dependent RNA regulatory pathway in potato. HORTICULTURE RESEARCH 2022; 9:uhac159. [PMID: 36204208 PMCID: PMC9531334 DOI: 10.1093/hr/uhac159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/22/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses recruit multiple host factors for translation, replication, and movement in the infection process. The loss-of-function mutation of the susceptibility genes will lead to the loss of susceptibility to viruses, which is referred to as 'recessive resistance'. Essential for potexvirus Accumulation 1 (EXA1) has been identified as a susceptibility gene required for potexvirus, lolavirus, and bacterial and oomycete pathogens. In this study, EXA1 knockdown in potato (StEXA1) was found to confer novel resistance to potato virus Y (PVY, potyvirus) in a strain-specific manner. It significantly compromised PVYO accumulation but not PVYN:O and PVYNTN. Further analysis revealed that StEXA1 is associated with the HC-Pro of PVY through a member of eIF4Es (StnCBP). HC-ProO and HC-ProN, two HC-Pro proteins from PVYO and PVYN, exhibited strong and weak interactions with StnCBP, respectively, due to their different spatial conformation. Moreover, the accumulation of PVYO was mainly dependent on the stress granules (SGs) induced by StEXA1 and StnCBP, whereas PVYN:O and PVYNTN could induce SGs by HC-ProN independently through an unknown mechanism. These results could explain why StEXA1 or StnCBP knockdown conferred resistance to PVYO but not to PVYN:O and PVYNTN. In summary, our results for the first time demonstrate that EXA1 can act as a susceptibility gene for PVY infection. Finally, a hypothetical model was proposed for understanding the mechanism by which StEXA1 interacts with StnCBP to facilitate PVY accumulation in potato through the SG-dependent RNA regulatory pathway.
Collapse
Affiliation(s)
- Ruhao Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, E3B 4Z7,
Canada
| | - Kun Li
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sitian Fei
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|