1
|
Chen M, Deng Y, Zheng M, Xiao R, Wang X, Liu B, He J, Wang J. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum. J Appl Microbiol 2024; 135:lxae048. [PMID: 38389225 DOI: 10.1093/jambio/lxae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
AIMS Stem rot caused by Fusarium concentricum is a new disease of Paris polyphylla reported by our research group. The present study investigates the growth inhibitory and apoptotic effects of Bacillus velezensis FJAT-54560 lipopeptide against F. concentricum. METHODS AND RESULTS HPLC preparation and LC-MS analysis results show that the crude lipopeptides secreted by Bacillus velezensis FJAT-54560 isolated from Jasminum sambac consist of C14-17 iturin A, C14 fengycin B, C16 fengycin A/A2, C18 fengycin A, C20 fengycin B2, C21 fengycin A2, C22-23 fengycin A, C12-16 surfactin A, and C15 surfactin A derivatives. The mass ratios (g/g) of iturin, fengycin, and surfactin in lipopeptides are 2.40, 67.51, and 30.08%, respectively. Through inhibition zone and inhibition rate experiments, we found that crude lipopeptides and purified fengycin exhibit strong antifungal activity against F. concentricum, including accumulation of reactive oxygen species, loss of mitochondrial membrane potential, DNA fragmentation, Ca2+ accumulation, chromatin condensation, and phosphatidylserine externalization. Transcriptomic analysis indicates that crude lipopeptide-induced apoptosis in F. concentricum cells may be mediated by apoptosis-inducing factors and apoptosis mediators and can serve as a metacaspase-independent model. CONCLUSION Lipopeptides from Bacillus velezensis FJAT-54560 can control the pathogenic fungus F. concentricum by inducing apoptosis.
Collapse
Affiliation(s)
- Meichun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yingjie Deng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Meixia Zheng
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Rongfeng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Jieping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
2
|
Qiu HL, Fox EGP, Qin CS, Yang H, Tian LY, Wang DS, Xu JZ. First record of Fusarium concentricum (Hypocreales: Hypocreaceae) isolated from the moth Polychrosis cunninhamiacola (Lepidoptera: Tortricidae) as an entomopathogenic fungus. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:2. [PMID: 36916278 PMCID: PMC10011878 DOI: 10.1093/jisesa/iead008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fusarium concentricum Nirenberg & O' Donnell (Ascomycota: Hypocreales) is a fungal species known to infect plants, but never reported as entomopathogenic. Polychrosis cunninhamiacola Liu et Pei (Lepidoptera: Tortricidae: Olethreutinae) is a major and widespread insect pest causing economic losses to cultivated Chinese fir Cunninghamia lanceolata (Lamb.) Hook. It is routinely controlled by extensive use of chemical insecticides, which is perceived as environmentally unsustainable. During March and April of 2019-2020, muscardine cadavers of larvae and pupae of P. cunninhamiacola infected with growing fungus were collected in a fir forest in northern Guangdong Province, China. Conidia were isolated and cultured on PDA medium, from which the fungal strain was identified as F. concentricum FCPC-L01 by morphology and by sequence alignment match with Tef-1α gene. Pathogenicity bioassays at the conidial concentration 1 × 107 revealed P. cunninhamiacola adults and Danaus chrysippus (L.) (Lepidoptera: Nymphalidae) larvae are sensitive to the fungal infection, but not the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). We believe results indicate this fungal strain might be applicable against specific target insect pests. As this is the first record of a natural infection caused by F. concentricum in insects, we propose host specificity tests should be done to evaluate its potential as a biocontrol agent.
Collapse
Affiliation(s)
- Hua-Long Qiu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Eduardo G P Fox
- Programa de Pós-Graduação em Ambiente e Sociedade (PPGAS), Universidade Estadual de Goiás (UEG), Quirinópolis, Goiás 75860-000, Brazil
| | - Chang-Sheng Qin
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Hua Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Long-Yan Tian
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou 510520, China
| | - De-Sen Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
3
|
Lv S, Mo Y, Wang H, Xie Z, Guo K, Wang Z, Zhang C, Xiao L. First report of Fusarium concentricum as a causal agent of Fusarium leaf blotch on pecan (Carya illinoinensis) in Southeast China. PLANT DISEASE 2023; 107:2549. [PMID: 36774585 DOI: 10.1094/pdis-12-22-2810-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The economically important nut crop pecan (Carya illinoinensis (Wangenh.) K. Koch) is seriously affected by increasing incidence of fungal disease worldwide (Xiao et al 2021). The top leaves of the pecan variety 'Pawnee' in the orchard of Zhejiang A&F University, Zhejiang, China were damaged by massive dark brown plaques in summer to autumn 2021. The causal agent was isolated from leaves with target plaques following the steps: sterilized with 70% alcohol (30 s × 2), rinsed with sterilized water (3 ×) before and after 5% sodium hypochlorite (30 s), excised the plaques, and placed on PDA medium at 28℃ in a dark incubator for 3-d. The mycelium on the edge of each colony was transferred to fresh SNA medium in dark for 2 weeks to induce conidia formation. A few conidia-germinated mycelia were transferredand inoculated on new plates containing fresh PDA medium to obtain the purified cultures. Koch's postulates were applied to validate the pathogenicity of the purified isolates. Non-woundedly healthy leaves (disinfected with 5% sodium hypochlorite) of 'Pawnee' seedlings were inoculated with 5 mm 7-d old purified cultures. Dark-brown spots appeared on the leaves 2 days post inoculation at 25℃. The spots became larger accompanied by partially cracking and slight deformation of inoculated leaves from day 2 to day 4, while the control leaves remained asymptomatic. A re-isolated strain ZJ-6 from these infected leaves was identified as the pathogenic isolate with the same symptom as the previous one. Morphologically, aerial mycelia of the pathogenic isolate ZJ-6 cashmere and white. The reverse of colony orange. The edge of the colony appeared gradually thinner, the aerial mycelia loose and flocky, and the matrix mycelium whitened. Hyphae were septate, translucent with smooth wall and 1.47-7.14 µm in width. Microconidia (n = 20) obovoid to fusoid, mainly with 0-septate, 4.45-7.78×4.79-16.25 µm. Macroconidia (n = 20) sickle, mainly with 3-5 septa, 5.56-10.28×56.67-114.54 µm. Simultaneous of monophialidic and polyphialidic conidiophores. Conidiophore width 1.47-3.68 µm, slightly smaller than vegetative hyphae. The morphological characteristics matched with previous descriptions of Fusarium species (Nirenberg and O'Donnell 1998; Wang et al 2013). The identity of ZJ-6 was confirmed by phylogenetic reconstruction using the concatenated sequences of the ATP citrate lyase (ACL1), Calmodulin (CaM), the internal transcribed spacer (ITS) rDNA region, ribosomal RNA gene (LSU), the largest subunit of DNA-dependent RNA polymerase II (RPB1), partial translation elongation factor-1 alpha (TEF) and β-Tubulin (TUB). To this end, the genomic DNA of ZJ-6 was extracted by the M5 hipermix-MF859 (Mei5 Biotechnology) and submitted to GenBank under the accession numbers OP933646, OP933647, OP925890, OP925889, OP933396, OP933648, and OP933397, respectively. The obtained sequences of ZJ-6 were used for nucleotide BLAST against thetandard databases, respectively, and the strains with sequence identification values above 98% were selected to construct multiple alignment for building a phylogenetic tree. This analyses allowed the identification of ZJ-6 as Fusarium concentricum Nirenberg & O'Donnell, a species with few reports that can cause serious damage to the fruits and branches of other hosts (Hasan et al 2020; Huda-Shakirah et al 2020; Wang et al 2013). This is the first report of pathogenic F. concentricum on pecan in Southeast China that caused no harvest of infected plants.
Collapse
Affiliation(s)
| | | | | | | | - Kai Guo
- Zhejiang A and F University, 12627, School of Forestry and Biotechnology, Hangzhou, Zhejiang, China;
| | | | | | - Lihong Xiao
- No. 666, Wusu St.Hangzhou, Zhejiang, China, 311300;
| |
Collapse
|
4
|
Xiao L, Luo Z, Fu Y, Zeng J, Xiang M, Chen J, Chen M. First Report of Postharvest Fruit Rot on Citrus reticulata Blanco Caused by Fusarium concentricum in China. PLANT DISEASE 2022; 107:962. [PMID: 35984392 DOI: 10.1094/pdis-06-22-1437-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanfeng tangerine (Citrus reticulata Blanco) is highly regarded for its nutritional and economic value. In January 2022, an unknown fruit rot was observed on Nanfeng tangerine fruits harvested from Nanfeng County (27.22 °N, 116.53 °E), Fuzhou City, Jiangxi Province after 70 days in storage (25 °C, 90% relative humidity). The disease mostly started from the pedicel or a wound. Symptoms initiated with dark brown lesions that rapidly expanded between the fruit center and pulp capsule causing total fruit rot. The surface of symptomatic fruit was sterilized with 75% ethanol for 30 s and 2% NaClO for 30 s. Small diseased tissue pieces (2 mm2) between diseased and healthy tissues were placed on potato dextrose agar (PDA) and put in an incubator (25 ± 1 °C) for 3 days. The representative isolate NFMJ-1 was subcultured onto PDA using single-spore purification. Colonies on PDA were light yellow to white, with abundant flocculent aerial hyphae. Microconidia were oval, obovoid to allantoid, 0 septate, occasionally 1 septate, 4.07 to 17.53 × 1.69 to 3.56 μm (average=7.40 μm × 2.55 μm, n=50). Macroconidia were slender, with a beaked apical cell and a foot-shaped basal cell, 3 to 5 septate, 22.99 to 81.12 × 2.34 to 3.81 μm (average=45.04 μm × 3.12 μm, n=50). According to morphological characteristics, the isolate was tentatively identified as Fusarium sp. (Leslie and Summerell 2006). To confirm the identification, the internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF), RNA polymerase II second largest subunit (RPB2), beta-tubulin gene (TUB2), and calmodulin gene (CaM) sequences were amplified with primers ITS1/ITS4 (Gardes et al. 1993), TEF1/TEF2 (O'Donnell et al. 2010), RPB2-5f2/RPB2-7cr (Liu et al. 1999), Bt2a/Bt2b (Glass and Donaldson 1995), and CL1C/CL2C (Weir et al. 2012), respectively. The obtained sequences (ON184033, ON212051, ON212052, ON212053, ON212054) showed homology with F. concentricum ITS (MW016417.1; 514/514 bp), TEF (MK609902.1; 667/667 bp), RPB2 (LC631461.1; 941/972 bp), TUB2 (MT942588.1; 331/337 bp), and CaM (MK609916.1; 558/597 bp). A phylogenetic analysis of concatenated ITS-RPB2-TEF sequences was performed by MEGA7.0 with the maximum likelihood and Kimura 2-parameter model, revealing that the isolate was placed in the F. concentricum clade. To confirm pathogenicity, 36 healthy tangerine fruits were surface sterilized with 75% alcohol, then 18 disinfected fruits were wounded with sterile needles and 18 remained unwounded. Half of the wounded and un-wounded fruits were inoculated with 10 μL of a conidial suspension (1.0 × 106 conidia/ml) of isolate NFMJ-1 cultured for 7 days on PDA. Half of the wounded and un-wounded fruits were mock-inoculated with sterile water as controls. After incubation in an incubator (25 ± 1°C, 90% relative humidity) for 7 days, the wounded fruits inoculated with F. concentricum showed similar symptoms to the original diseased fruits, while the mock-inoculated fruits were asymptomatic. The pathogenicity test was repeated three times. The pathogen was re-isolated from the wound-inoculated fruits and identified as F. concentricum by morphological and molecular analysis, completing Koch's postulates. F. concentricum has been reported as a pathogen of Podocarpus macrophyllus (Dong et al. 2022), Capsicum annuum (Wang et al. 2013) and Zea mays (Du et al. 2020) in China. This is the first report of fruit rot caused by F. concentricum on Citrus reticulata in China. Appropriate prevention and control measure of the pathogen need to be developed to preserve marketability of this economically important citrus fruit.
Collapse
Affiliation(s)
- Liuhua Xiao
- Jiangxi Agricultural University, College of Agronomy, Nanchang, Jiangxi, China;
| | - Zhenyu Luo
- Jiangxi Agricultural University, College of Agronomy, Nanchang, Jiangxi, China;
| | - Yongqi Fu
- Jiangxi Agricultural University, College of Agronomy, Nanchang, Jiangxi, China;
| | - Jiaoke Zeng
- Jiangxi Agricultural University, College of Agronomy, Nanchang, Jiangxi, China;
| | - Miaolian Xiang
- Jiangxi Agricultural University, College of Agronomy, Nanchang, Jiangxi, China;
| | - Jinyin Chen
- Jiangxi Agricultural University, College of Agronomy, Nanchang, Jiangxi, China
- Pingxiang University, Pingxiang, Jiangxi, China;
| | - Ming Chen
- Jiangxi Agricultural University, College of Agronomy, Nanchang, Jiangxi, China;
| |
Collapse
|
5
|
Shang G, Li S, Yu H, Yang J, Li S, Yu Y, Wang J, Wang Y, Zeng Z, Zhang J, Hu Z. An Efficient Strategy Combining Immunoassays and Molecular Identification for the Investigation of Fusarium Infections in Ear Rot of Maize in Guizhou Province, China. Front Microbiol 2022; 13:849698. [PMID: 35369506 PMCID: PMC8964309 DOI: 10.3389/fmicb.2022.849698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium is one of the most important phytopathogenic and mycotoxigenic fungi that caused huge losses worldwide due to the decline of crop yield and quality. To systematically investigate the infections of Fusarium species in ear rot of maize in the Guizhou Province of China and analyze its population structure, 175 samples of rotted maize ears from 76 counties were tested by combining immunoassays and molecular identification. Immunoassay based on single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein was first employed to analyze these samples. Fusarium pathogens were isolated and purified from Fusarium-infected samples. Molecular identification was performed using the partial internal transcribed spacer (ITS) and translation elongation factor 1α (TEF-1α) sequences. Specific primers were used to detect toxigenic chemotypes, and verification was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). One-hundred and sixty three samples were characterized to be positive, and the infection rate was 93.14%. Sixteen species of Fusarium belonging to six species complexes were detected and Fusarium meridionale belonging to the Fusarium graminearum species complex (FGSC) was the dominant species. Polymerase chain reaction (PCR) identification illustrated that 69 isolates (56.10%) were potential mycotoxin-producing Fusarium pathogens. The key synthetic genes of NIV, NIV + ZEN, DON + ZEN, and FBs were detected in 3, 35, 7, and 24 isolates, respectively. A total of 86.11% of F. meridionale isolates carried both NIV- and ZEN-specific segments, while Fusarium verticillioides isolates mainly represented FBs chemotype. All the isolates carrying DON-producing fragments were FGSC. These results showed that there are different degrees of Fusarium infections in Guizhou Province and their species and toxigenic genotypes display regional distribution patterns. Therefore, scFv-AP fusion-based immunoassays could be conducted to efficiently investigate Fusarium infections and more attention and measures should be taken for mycotoxin contamination in this region.
Collapse
Affiliation(s)
- Guofu Shang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shuqin Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Huan Yu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jie Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shimei Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yanqin Yu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jianman Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jingbo Zhang
- Wheat Anti-toxin Breeding Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Immune Cells and Antibody Engineering Research Center of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Li J, Zhang C, Qu X, Luo Z, Lu S, Kuzyakov Y, Alharbi HA, Yuan J, Niu G. Microbial Communities and Functions in the Rhizosphere of Disease-Resistant and Susceptible Camellia spp. Front Microbiol 2021; 12:732905. [PMID: 34733251 PMCID: PMC8558623 DOI: 10.3389/fmicb.2021.732905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Oil tea (Camellia spp.) is endemic to the hilly regions in the subtropics. Camellia yuhsienensis is resistant to diseases such as anthracnose and root rot, while Camellia oleifera is a high-yield species but susceptible to these diseases. We hypothesize that differences in the rhizosphere microbial communities and functions will elucidate the resistance mechanisms of these species. We used high-throughput sequencing over four seasons to characterize the rhizosphere microbiome of C. oleifera (Rhizo-Sus) and C. yuhsienensis (Rhizo-Res) and of the bulk soil control (BulkS). In Rhizo-Res, bacterial richness and diversity (Shannon index) in autumn and winter were both higher than that in Rhizo-Sus. In Rhizo-Res, fungal richness in autumn and winter and diversity in summer, autumn, and winter were higher than that in Rhizo-Sus. The seasonal variations in bacterial community structure were different, while that of fungal community structure were similar between Rhizo-Res and Rhizo-Sus. Gram-positive, facultatively anaerobic, and stress-tolerant bacteria were the dominant groups in Rhizo-Sus, while Gram-negative bacteria were the dominant group in Rhizo-Res. The significant differences in bacterial and fungal functions between Rhizo-Sus and Rhizo-Res were as follows: (1) in Rhizo-Sus, there were three bacterial and four fungal groups with plant growth promoting potentials, such as Brevibacterium epidermidis and Oidiodendron maius, and one bacterium and three fungi with pathogenic potentials, such as Gryllotalpicola sp. and Cyphellophora sessilis; (2) in Rhizo-Res, there were also three bacteria and four fungal groups with plant-growth-promoting potentials (e.g., Acinetobacter lwoffii and Cenococcum geophilum) but only one phytopathogen (Schizophyllum commune). In summary, the rhizosphere microbiome of disease-resistant C. yuhsienensis is characterized by a higher richness and diversity of microbial communities, more symbiotic fungal communities, and fewer pathogens compared to the rhizosphere of high-yield but disease-susceptible C. oleifera.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Chenhui Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xinjing Qu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Ziqiong Luo
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Sheng Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, Department of Soil Science of Temperate Ecosystems, Georg-August-Universität Göttingen, Göttingen, Germany.,Agro-Technological Institute, RUDN University, Moscow, Russia.,Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Hattan A Alharbi
- College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jun Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Genhua Niu
- Texas A&M AgriLife Research and Extension Center at Dallas, Texas A&M University, Dallas, TX, United States
| |
Collapse
|
7
|
Fusarium species associated with leaf spots of mango in China. Microb Pathog 2021; 150:104736. [PMID: 33453315 DOI: 10.1016/j.micpath.2021.104736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Mango is one of the important commercially cultivated fruit crops in southern China. In continuing research on foliar diseases of mango in south of China during 2016-2017, leaf spot disease was common at all mango orchards investigated. The purpose of this study was to investigate Fusarium species associated with leaf spots of mango in the main production areas of China, and to identify them to species. Twenty-two Fusarium isolates were obtained from diseased leaves from seven provinces (Fujian, Guangdong, Guangxi, Guizhou, Hainan, Sichuan and Yunnan), and then identified using morphological characteristics and phylogenetic analysis. These isolates were from seven species: F. concentricum, F. hainanense, F. mangiferae, F. pernambucanum, F. proliferatum, F. sulawesiense, and F. verticillioides. We found all 22 isolates to be capable of causing leaf spot symptoms on artificially wounded leaves. To our knowledge, this is the first report of F. concentricum, F. hainanense, F. mangiferae, F. pernambucanum, F. sulawesiense and F. verticillioides associated with leaf spots on mango in China, and the first for F. concentricum, F. hainanense, F. pernambucanum, F. sulawesiense from mango worldwide. This is one of the few reports on Fusarium species as potential causal agents of mango leaf spots.
Collapse
|
8
|
Huda-Shakirah AR, Nur-Salsabila K, Mohd MH. First report of Fusarium concentricum causing fruit blotch on roselle (Hibiscus sabdariffa). AUSTRALASIAN PLANT DISEASE NOTES 2020; 15:15. [DOI: 10.1007/s13314-020-00385-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 09/02/2023]
|
9
|
Araya JP, González M, Cardinale M, Schnell S, Stoll A. Microbiome Dynamics Associated With the Atacama Flowering Desert. Front Microbiol 2020; 10:3160. [PMID: 32038589 PMCID: PMC6990129 DOI: 10.3389/fmicb.2019.03160] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2022] Open
Abstract
In a desert, plants as holobionts quickly respond to resource pulses like precipitation. However, little is known on how environment and plants modulate the rhizosphere-associated microbiome. As a model species to represent the Atacama Desert bloom, Cistanthe longiscapa (Montiaceae family) was selected to study the influence of abiotic and biotic environment on the diversity and structure of the microbiota associated to its rhizosphere. We analyzed the rhizosphere and soil microbiome along a North-South precipitation gradient and between a dry and rainy year by using Illumina high−throughput sequencing of 16S rRNA gene fragments and ITS2 regions for prokaryotes and fungi, respectively. In the rhizosphere of C. longiscapa the microbiota clearly differs in composition and structure from the surrounding bulk soil. The fungal and bacterial communities respond differently to environmental conditions. The diversity and richness of fungal OTUs were negatively correlated with aridity, as predicted. The community structure was predominantly influenced by other soil characteristics (pH, organic matter content) but not by aridity. In contrast, diversity, composition, and structure of the bacterial community were not influenced by aridity or any other evaluated soil parameter. These findings coincide with the identification of mainly site-specific microbial communities, not shared along the sites. These local communities contain a group of OTUs, which are exclusive to the rhizosphere of each site and presumably vertically inherited as seed endophytes. Their ecological functions and dispersal mechanisms remain unclear. The analysis of co-occurrence patterns highlights the strong effect of the desert habitat over the soil- and rhizosphere-microbiome. The site-independent enrichment of only a small bacterial cluster consistently associated with the rhizosphere of C. longiscapa further supports this conclusion. In a rainy year, the rhizosphere microbiota significantly differed from bulk and bare soil, whereas in a dry year, the community structure of the former rhizosphere approximates to the one found in the bulk. In the context of plant–microbe interactions in desert environments, our study contributes new insights into the importance of aridity in microbial community structure and composition, discovering the influence of other soil parameters in this complex dynamic network, which needs further to be investigated.
Collapse
Affiliation(s)
| | - Máximo González
- Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.,Institute of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile.,Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
10
|
Wang J, Wang S, Zhao Z, Lin S, Van Hove F, Wu A. Species Composition and Toxigenic Potential of Fusarium Isolates Causing Fruit Rot of Sweet Pepper in China. Toxins (Basel) 2019; 11:toxins11120690. [PMID: 31771308 PMCID: PMC6950595 DOI: 10.3390/toxins11120690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Apart from causing serious yield losses, various kinds of mycotoxins may be accumulated in plant tissues infected by Fusarium strains. Fusarium mycotoxin contamination is one of the most important concerns in the food safety field nowadays. However, limited information on the causal agents, etiology, and mycotoxin production of this disease is available on pepper in China. This research was conducted to identify the Fusarium species causing pepper fruit rot and analyze their toxigenic potential in China. Forty-two Fusarium strains obtained from diseased pepper from six provinces were identified as F. equiseti (27 strains), F. solani (10 strains), F. fujikuroi (five strains). This is the first report of F. equiseti, F. solani and F. fujikuroi associated with pepper fruit rot in China, which revealed that the population structure of Fusarium species in this study was quite different from those surveyed in other countries, such as Canada and Belgium. The mycotoxin production capabilities were assessed using a well-established liquid chromatography mass spectrometry method. Out of the thirty-six target mycotoxins, fumonisins B1 and B2, fusaric acid, beauvericin, moniliformin, and nivalenol were detected in pepper tissues. Furthermore, some mycotoxins were found in non-colonized parts of sweet pepper fruit, implying migration from colonized to non-colonized parts of pepper tissues, which implied the risk of mycotoxin contamination in non-infected parts of food products.
Collapse
Affiliation(s)
- Jianhua Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.W.); (Z.Z.); (S.L.)
| | - Shuangxia Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200000, China;
| | - Zhiyong Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.W.); (Z.Z.); (S.L.)
| | - Shanhai Lin
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.W.); (Z.Z.); (S.L.)
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - François Van Hove
- Mycothèque de l’UCL catholique de Louvain (BCCMTM/MUCL), Applied Microbiology (ELIM), Earth and Life Institute (ELI), Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium;
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200000, China;
- Correspondence: ; Tel.: +86-21-5492-0926
| |
Collapse
|
11
|
Zhao Z, Yang X, Zhao X, Chen L, Bai B, Zhou C, Wang J. Method Development and Validation for the Analysis of Emerging and Traditional Fusarium Mycotoxins in Pepper, Potato, Tomato, and Cucumber by UPLC-MS/MS. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1180-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|