1
|
Abstract
Plant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens. Hundreds of compounds exist that cover an extensive range of activities against viruses, bacteria and phytoplasmas, fungi and oomycetes, and nematodes. Natural sources, chemical synthesis, and biotechnological platforms may provide peptides at large scale for the industry and growers. The main challenges for their use in plant disease protection are (a) the requirement of stability in the plant environment and counteracting resistance in pathogen populations, (b) the need to develop suitable formulations to increase their shelf life and methods of application, (c) the selection of compounds with acceptable toxicological profiles, and (d) the high cost of production for agricultural purposes. In the near future, it is expected that several functional peptides will be commercially available for plant disease control, but more effort is needed to validate their efficacy at the field level and fulfill the requirements of the regulatory framework.
Collapse
Affiliation(s)
- Emilio Montesinos
- Institute of Food and Agricultural Technology, Plant Pathology-CIDSAV, University of Girona, Girona, Spain;
| |
Collapse
|
2
|
Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. FRONTIERS IN PLANT SCIENCE 2023; 14:1139539. [PMID: 37538059 PMCID: PMC10394246 DOI: 10.3389/fpls.2023.1139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023]
Abstract
Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.
Collapse
|
3
|
Moll L, Baró A, Montesinos L, Badosa E, Bonaterra A, Montesinos E. Induction of Defense Responses and Protection of Almond Plants Against Xylella fastidiosa by Endotherapy with a Bifunctional Peptide. PHYTOPATHOLOGY 2022; 112:1907-1916. [PMID: 35384723 DOI: 10.1094/phyto-12-21-0525-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), causing significant yield losses in economically important Mediterranean crops. Almond leaf scorch (ALS) is currently one of the most relevant diseases observed in Spain, and no cure has been found to be effective for this disease. In previous reports, the peptide BP178 has shown a strong bactericidal activity in vitro against X. fastidiosa and to other plant pathogens, and to trigger defense responses in tomato plants. In the present work, BP178 was applied by endotherapy to almond plants of cultivar Avijor using preventive and curative strategies. The capacity of BP178 to reduce the population levels of X. fastidiosa and to decrease disease symptoms and its persistence over time were demonstrated under greenhouse conditions. The most effective treatment consisted of a combination of preventive and curative applications, and the peptide was detected in the stem up to 60 days posttreatment. Priming plants with BP178 induced defense responses mainly through the salicylic acid pathway, but also overexpressed some genes of the jasmonic acid and ethylene pathways. It is concluded that the bifunctional peptide is a promising candidate to be further developed to manage ALS caused by X. fastidiosa.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Luís Moll
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Anna Bonaterra
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| |
Collapse
|
4
|
Hay F, Stricker S, Gossen BD, McDonald MR, Heck D, Hoepting C, Sharma S, Pethybridge S. Stemphylium Leaf Blight: A Re-Emerging Threat to Onion Production in Eastern North America. PLANT DISEASE 2021; 105:3780-3794. [PMID: 34546780 DOI: 10.1094/pdis-05-21-0903-fe] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stemphylium leaf blight (SLB), caused by Stemphylium vesicarium, is a foliar disease of onion worldwide, and has recently become an important disease in the northeastern United States and Ontario, Canada. The symptoms begin as small, tan to brown lesions on the leaves that can progress to defoliate plants. Crop loss occurs through reduced photosynthetic area, resulting in smaller, lower-quality bulbs. Leaf necrosis caused by SLB also can compromise bulb storage, as green leaves are required for the uptake of sprout inhibitors applied prior to harvest. The pathogen can overwinter on infested onion residue and infected volunteer plants. Asymptomatic weedy hosts near onion fields may also be a source of inoculum. Production of ascospores of the teleomorph (Pleospora allii) peaks in early spring in northeastern North America, often before the crop is planted, and declines rapidly as daily mean air temperatures rise. Conidia are usually present throughout the growing season. Application of fungicides is a standard practice for management of the complex of fungi that can cause foliar diseases of onion in this region. Recent assessments have shown that populations of S. vesicarium in New York and Ontario are resistant to at least three single-site mode-of-action fungicides. Three disease prediction systems have been developed and evaluated that may enable growers to reduce the frequency and/or number of fungicide applications, but the loss of efficacious fungicides due to resistance development within S. vesicarium populations threatens sustainability. The lack of commercially acceptable onion cultivars with sufficient resistance to reduce the number of fungicides for SLB also limits the ability to manage SLB effectively. Integrated disease management strategies for SLB are essential to maintain profitable, sustainable onion production across eastern North America.
Collapse
Affiliation(s)
- Frank Hay
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Sara Stricker
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bruce D Gossen
- Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel Heck
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Christy Hoepting
- Cornell Cooperative Extension, Cornell Vegetable Program, Albion, NY 14411, U.S.A
| | - Sandeep Sharma
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Sarah Pethybridge
- Cornell AgriTech, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| |
Collapse
|
5
|
Potential Application of Propolis Extracts to Control the Growth of Stemphylium vesicarium in “Rocha” Pear. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stemphylium vesicarium (Wallr.) E. G. Simmons is the pathogen responsible of brown spot disease in pear and has become one of the main concerns for European pear producers. In Portugal, S. vesicarium is responsible for significant yield reduction and economic losses in “Rocha” pear (Pyrus communis L. cv Rocha) production. Considering the antimicrobial potential of propolis, the high incidence of brown spot in pears and the emergence of fungicides resistance in S. vesicarium, this study aimed to evaluate the potential of Portuguese propolis as an alternative strategy to control brown spot disease in “Rocha” pear. In vitro assays showed that propolis extracts were able to inhibit up to 90% the S. vesicarium mycelial growth. In vivo assays in artificially wounded and inoculated “Rocha” pears showed that, compared to the control, the disease incidence decreased up to 25% and the lesions diameter up to 57%, in fruits treated with propolis. Moreover, propolis seems to be more efficient in reducing the disease incidence when applied after pathogen inoculation (curative assay) than when applied before pathogen inoculation (prophylactic assay). Thus, the results suggest that propolis extracts have potential to be applied as part of an integrated approach for the control of brown spot of pear.
Collapse
|
6
|
Xu Y, Cai D, Zhang H, Gao L, Yang Y, Gao J, Li Y, Yang C, Ji Z, Yu J, Chen S. Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Wang C, Yuan S, Zhang W, Ng T, Ye X. Buckwheat Antifungal Protein with Biocontrol Potential To Inhibit Fungal ( Botrytis cinerea) Infection of Cherry Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6748-6756. [PMID: 31136167 DOI: 10.1021/acs.jafc.9b01144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 11 kDa antifungal protein FEAP was purified from buckwheat ( Fagopyrum esculentum) seed extract with a procedure involving (NH4)2SO4 precipitation and chromatography on SP-Sepharose, Affi-gel blue gel, Mono S, and Superdex peptide. Its N-terminal sequence was AQXGAQGGGAT, resembling those of buckwheat peptides Fα-AMP1 and Fα-AMP2. FEAP exhibited thermostability (20-100 °C) and acid resistance (pH 1-5). Its antifungal activity was retained in the presence of 10-150 mmol/L of K+, Mn2+, or Fe3+ ions, 10-50 mmol/L of Ca2+ or Mg2+ ions, and 50% methanol, 50% ethanol, 50% isopropanol, or 50% chloroform. Its half-maximal inhibitory concentrations toward spore germination and mycelial growth in Botrytis cinerea were 79.9 and 236.7 μg/mL, respectively. Its antifungal activity was superior to the fungicide cymoxanil mancozeb (248.1 μg/mL). FEAP prevented B. cinerea from infecting excised leaves, intact leaves, and isolated fruits of cherry tomato. Its mechanism involved induction of an increase in cell membrane permeability and a decrease in mitochondrial membrane potential.
Collapse
Affiliation(s)
| | | | | | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong 999077 , China
| | | |
Collapse
|
8
|
Moragrega C, Puig M, Ruz L, Montesinos E, Llorente I. Epidemiological Features and Trends of Brown Spot of Pear Disease Based on the Diversity of Pathogen Populations and Climate Change Effects. PHYTOPATHOLOGY 2018; 108:223-233. [PMID: 28945144 DOI: 10.1094/phyto-03-17-0079-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brown spot of pear, caused by the fungus Stemphylium vesicarium, is an emerging disease of economic importance in several pear-growing areas in Europe. In recent years, new control strategies combining sanitation practices and fungicide applications according to developed forecasting models have been introduced to manage the disease. However, the pathogenic and saprophytic behavior of this pathogen makes it difficult to manage the disease. In addition, climate change can also result in variations in the severity and geographical distribution of the disease. In this study, ecological and epidemiological aspects of brown spot of pear disease related to inoculum characterization and climate change impact were elucidated. The pathogenic variation in S. vesicarium populations from pear orchards and its relationship to inoculum sources (air samples, leaf debris, and infected host and nonhost tissues) was determined using multivariate analysis. In total, six variables related to infection and disease development on cultivar Conference pear detached leaves of 110 S. vesicarium isolates were analyzed. A high proportion of isolates (42%) were nonpathogenic to pear; 85% of these nonpathogenic isolates were recovered from air samples. Most isolates recovered from lesions (93%) and pseudothecia (83%) were pathogenic to pear. A group of pathogenic isolates rapidly infected cultivar Conference pear leaves resulted in disease increase that followed a monomolecular model, whereas some S. vesicarium isolates required a period of time after inoculation to initiate infection and resulted in disease increase that followed a logistic model. The latter group was mainly composed of isolates recovered from pseudothecia on leaf debris, whereas the former group was mainly composed of isolates recovered from lesions on pear fruit and leaves. The relationship between the source of inoculum and pathogenic/aggressiveness profile was confirmed by principal component analysis. The effect of climate change on disease risk was analyzed in two pear-growing areas of Spain under two scenarios (A2 and B1) and for three periods (2005 to 2009, 2041 to 2060, and 2081 to 2100). Simulations showed that the level of risk predicted by BSPcast model increased to high or very high under the two scenarios and was differentially distributed in the two regions. This study is an example of how epidemiological models can be used to predict not only the onset of infections but also how climate change could affect brown spot of pear. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Concepció Moragrega
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Mireia Puig
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Lídia Ruz
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Emilio Montesinos
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| | - Isidre Llorente
- All authors: Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona Spain
| |
Collapse
|
9
|
Puig M, Moragrega C, Ruz L, Calderón CE, Cazorla FM, Montesinos E, Llorente I. Interaction of antifungal peptide BP15 with Stemphylium vesicarium , the causal agent of brown spot of pear. Fungal Biol 2016; 120:61-71. [DOI: 10.1016/j.funbio.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/13/2015] [Accepted: 10/23/2015] [Indexed: 02/08/2023]
|