1
|
Verma S, Dubey N, Singh KH, Parmar N, Singh L, Sharma D, Rana D, Thakur K, Vaidya D, Thakur AK. Utilization of crop wild relatives for biotic and abiotic stress management in Indian mustard [ Brassica juncea (L.) Czern. & Coss.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1277922. [PMID: 37954999 PMCID: PMC10634535 DOI: 10.3389/fpls.2023.1277922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Brassica juncea (L.) Czern. & Coss. (Indian mustard) is an economically important edible oil crop. Over the years, plant breeders have developed many elite varieties of B. juncea with better yield traits, but research work on the introgression of stress resilience traits has largely been lagging due to scarcity of resistant donors. Crop wild relatives (CWRs) are the weedy relatives of domesticated plant species which are left unutilized in their natural habitat due to the presence of certain undesirable alleles which hamper their yield potential, and thus, their further domestication. CWRs of B. juncea namely include Sinapis alba L. (White mustard), B. tournefortii Gouan. (African mustard), B. fruticulosa Cirillo (Twiggy turnip), Camelina sativa L. (Gold-of-pleasure), Diplotaxis tenuisiliqua Delile (Wall rocket), D. erucoides L. (White wall rocket), D. muralis L. (Annual wall rocket), Crambe abyssinica R.E.Fr. (Abyssinian mustard), Erucastrum gallicum Willd. (Common dogmustard), E. cardaminoides Webb ex Christ (Dogmustard), Capsella bursa-pastoris L. (Shepherds purse), Lepidium sativum L. (Garden Cress) etc. These CWRs have withstood several regimes of biotic and abiotic stresses over the past thousands of years which led them to accumulate many useful alleles contributing in resistance against various environmental stresses. Thus, CWRs could serve as resourceful gene pools for introgression of stress resilience traits into Indian mustard. This review summarizes research work on the introgression of resistance against Sclerotinia stem rot (caused by Sclerotinia sclerotiorum), Alternaria blight (caused by Alternaria brassicae), white rust (caused by Albugo candida), aphid attack, drought and high temperature from CWRs into B. juncea. However, various pre- and post-fertilization barriers due to different ploidy levels are major stumbling blocks in the success of such programmes, therefore, we also insightfully discuss how the advances made in -omics technology could be helpful in assisting various breeding programmes aiming at improvisation of stress resilience traits in B. juncea.
Collapse
Affiliation(s)
- Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Yashwant Singh Parmar University of Horticulture and Forestry Nauni, Solan, HP, India
| | - Namo Dubey
- School of Biochemistry, Devi Ahilya University, Indore, MP, India
| | - K. H. Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Nehanjali Parmar
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Lal Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Dipika Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Dipika Rana
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, India
| | - Kalpana Thakur
- College of Horticulture and Forestry Thunag, Dr. Yashwant Singh Parmar University of Horticulture and Forestry Nauni, Solan, HP, India
| | - Devina Vaidya
- Regional Horticultural Research and Training Station Bajaura, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, HP, India
| | - Ajay Kumar Thakur
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| |
Collapse
|
2
|
Singh KP, Kumari P, Rai PK. Current Status of the Disease-Resistant Gene(s)/QTLs, and Strategies for Improvement in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2021; 12:617405. [PMID: 33747001 PMCID: PMC7965955 DOI: 10.3389/fpls.2021.617405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/08/2021] [Indexed: 05/15/2023]
Abstract
Brassica juncea is a major oilseed crop in tropical and subtropical countries, especially in south-east Asia like India, China, Bangladesh, and Pakistan. The widespread cultivation of genetically similar varieties tends to attract fungal pathogens which cause heavy yield losses in the absence of resistant sources. The conventional disease management techniques are often expensive, have limited efficacy, and cause additional harm to the environment. A substantial approach is to identify and use of resistance sources within the Brassica hosts and other non-hosts to ensure sustainable oilseed crop production. In the present review, we discuss six major fungal pathogens of B. juncea: Sclerotinia stem rot (Sclerotinia sclerotiorum), Alternaria blight (Alternaria brassicae), White rust (Albugo candida), Downy mildew (Hyaloperonospora parasitica), Powdery mildew (Erysiphe cruciferarum), and Blackleg (Leptoshaeria maculans). From discussing studies on pathogen prevalence in B. juncea, the review then focuses on highlighting the resistance sources and quantitative trait loci/gene identified so far from Brassicaceae and non-filial sources against these fungal pathogens. The problems in the identification of resistance sources for B. juncea concerning genome complexity in host subpopulation and pathotypes were addressed. Emphasis has been laid on more elaborate and coordinated research to identify and deploy R genes, robust techniques, and research materials. Examples of fully characterized genes conferring resistance have been discussed that can be transformed into B. juncea using advanced genomics tools. Lastly, effective strategies for B. juncea improvement through introgression of novel R genes, development of pre-breeding resistant lines, characterization of pathotypes, and defense-related secondary metabolites have been provided suggesting the plan for the development of resistant B. juncea.
Collapse
Affiliation(s)
- Kaushal Pratap Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India
- *Correspondence: Kaushal Pratap Singh,
| | - Preetesh Kumari
- Genetics Division, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
3
|
Frontiers in Dissecting and Managing Brassica Diseases: From Reference-Based RGA Candidate Identification to Building Pan-RGAomes. Int J Mol Sci 2020; 21:ijms21238964. [PMID: 33255840 PMCID: PMC7728316 DOI: 10.3390/ijms21238964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The Brassica genus contains abundant economically important vegetable and oilseed crops, which are under threat of diseases caused by fungal, bacterial and viral pathogens. Resistance gene analogues (RGAs) are associated with quantitative and qualitative disease resistance and the identification of candidate RGAs associated with disease resistance is crucial for understanding the mechanism and management of diseases through breeding. The availability of Brassica genome assemblies has greatly facilitated reference-based quantitative trait loci (QTL) mapping for disease resistance. In addition, pangenomes, which characterise both core and variable genes, have been constructed for B. rapa, B. oleracea and B. napus. Genome-wide characterisation of RGAs using conserved domains and motifs in reference genomes and pangenomes reveals their clustered arrangements and presence of structural variations. Here, we comprehensively review RGA identification in important Brassica genome and pangenome assemblies. Comparison of the RGAs in QTL between resistant and susceptible individuals allows for efficient identification of candidate disease resistance genes. However, the reference-based QTL mapping and RGA candidate identification approach is restricted by the under-represented RGA diversity characterised in the limited number of Brassica assemblies. The species-wide repertoire of RGAs make up the pan-resistance gene analogue genome (pan-RGAome). Building a pan-RGAome, through either whole genome resequencing or resistance gene enrichment sequencing, would effectively capture RGA diversity, greatly expanding breeding resources that can be utilised for crop improvement.
Collapse
|
4
|
Serdyuk O, Trubina V, Gorlova L. The causative agent of downy mildew Peronospora brassicae Gaeum. f. brassicae (Gaeum.) on winter false flax ( Camelina sativa (L.) Crantz.): the search for a source of disease resistance in the conditions of the Krasnodar region. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, in the conditions of the central zone of the Krasnodar region, downy mildew has become the most dangerous disease of winter false flax that affects the crop yield. Either the infected plants do not develop reproductive organs or these organs are undeveloped. The development of varieties resistant to infection by the disease causative agent allows efficient reducing the seed yield loss of winter false flax due to downy mildew without the use of chemical products. In 2015-2019, we conducted an assessment of the breeding material (528 cultivar samples) of winter false flax for resistance to downy mildew affection on a natural infection background. We determined that the causative agent of the disease is Peronospora brassicae Gaeum. f. brassicae (Gaeum.) Dzhan. We divided all cultivar samples into groups according to their resistance to the disease: immune, resistant, weakly resistant, weakly susceptible, susceptible. As a result of research, we selected 5 breeding samples (## 724, 726, 728, 730, 738) that were immune to downy mildew in the course of several years, with yield exceeding the standard variety Karat by 0.22-0.38 t/ha, and with oil content exceeding the standard by 0.2-0.5 %. We proposed to use the selected cultivar samples in the breeding process with the aim of developing new false flax varieties resistant to downy mildew.
Collapse
|