1
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
2
|
Vélez-Pereira AM, De Linares C, Belmonte J. Aerobiological modelling II: A review of long-range transport models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157351. [PMID: 35842165 DOI: 10.1016/j.scitotenv.2022.157351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The long-range atmospheric transport models of pollen and fungal spores require four modules for their development: (i) Meteorological module: which contain the meteorological model, and it can be coupled to transport model with the same output configuration (spatio-temporal resolution), or uncoupled does not necessarily have the same output parameters. (ii) Emission module: settles the mass fluxes of bioaerosol, it can be done with a complex parameterization integrating phenological models and meteorological factors or by a simple emission factor. (iii) Sources of emission module, specifically refers to forestry/agronomy maps or, in the case of herbs and fungi, to potential geographical areas of emission. Obtaining the highest possible resolution in these maps allows establishing greater reliability in the modelling. (iv) Atmospheric transport module, with its respective established output parameters. The review and subsequent analysis presented in this article, were performed on published electronic scientific articles from 1998 to 2016. Of a total of 101 models applied found in 64 articles, 33 % performed forward modelling (using 15 different models) and 67 % made backward modelling (with three different models). The 88 % of the cases were applied to pollen (13 taxa) and 12 % to fungal spores (3 taxa). Regarding the emission module, 22 % used parametrization (four different parameters) and 10 % emission factors. The most used transport model was HYSPLIT (59 %: 56 % backward and 3 % forward) following by SILAM 10 % (all forward). Main conclusions were that the models of long-range transport of pollen and fungal spores had high technical-scientific requirements to development and that the major limitations were the establishment of the flow and the source of the emission.
Collapse
Affiliation(s)
- Andrés M Vélez-Pereira
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile; Laboratorio de Investigaciones Medioambientales de Zonas Áridas, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile.
| | | | - Jordina Belmonte
- Institute of Environmental Science and Technology, (ICTA-UAB), Universitat Autònoma de Barcelona, Spain; Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
3
|
Abstract
Fungi move between habitats by dispersing small spores through the atmosphere. We ask what causes some species to release spores at a specific time every day versus irregularly. We find that timing of spore release dictates how long spores remain in the atmosphere before returning to the ground: Spores released at night are likely to travel for hours while spores released during the day may linger for days. Drivers are stronger in lower, warmer latitudes. Because spores in the open atmosphere are likely to die from prolonged exposure to light and air, the timing of spore release will impact survival. We have discovered a constraint likely to shape observed patterns of spore liberation. Fungi disperse spores to move across landscapes and spore liberation takes different patterns. Many species release spores intermittently; others release spores at specific times of day. Despite intriguing evidence of periodicity, why (and if) the timing of spore release would matter to a fungus remains an open question. Here we use state-of-the-art numerical simulations of atmospheric transport and meteorological data to follow the trajectory of many spores in the atmosphere at different times of day, seasons, and locations across North America. While individual spores follow unpredictable trajectories due to turbulence, in the aggregate patterns emerge: Statistically, spores released during the day fly for several days, whereas spores released at night return to ground within a few hours. Differences are caused by intense turbulence during the day and weak turbulence at night. The pattern is widespread but its reliability varies; for example, day/night patterns are stronger in southern regions. Results provide testable hypotheses explaining both intermittent and regular patterns of spore release as strategies to maximize spore survival in the air. Species with short-lived spores reproducing where there is strong turbulence during the day, for example in Mexico, maximize survival by releasing spores at night. Where cycles are weak, for example in Canada during fall, there is no benefit to releasing spores at the same time every day. Our data challenge the perception of fungal dispersal as risky, wasteful, and beyond control of individuals; our data suggest the timing of spore liberation may be finely tuned to maximize fitness during atmospheric transport.
Collapse
|
4
|
Meyer M, Cox JA, Hitchings MDT, Burgin L, Hort MC, Hodson DP, Gilligan CA. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. NATURE PLANTS 2017; 3:780-786. [PMID: 28947769 DOI: 10.1038/s41477-017-0017-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/16/2017] [Indexed: 05/24/2023]
Abstract
Infectious crop diseases spreading over large agricultural areas pose a threat to food security. Aggressive strains of the obligate pathogenic fungus Puccinia graminis f.sp. tritici (Pgt), causing the crop disease wheat stem rust, have been detected in East Africa and the Middle East, where they lead to substantial economic losses and threaten livelihoods of farmers. The majority of commercially grown wheat cultivars worldwide are susceptible to these emerging strains, which pose a risk to global wheat production, because the fungal spores transmitting the disease can be wind-dispersed over regions and even continents 1-11 . Targeted surveillance and control requires knowledge about airborne dispersal of pathogens, but the complex nature of long-distance dispersal poses significant challenges for quantitative research 12-14 . We combine international field surveys, global meteorological data, a Lagrangian dispersion model and high-performance computational resources to simulate a set of disease outbreak scenarios, tracing billions of stochastic trajectories of fungal spores over dynamically changing host and environmental landscapes for more than a decade. This provides the first quantitative assessment of spore transmission frequencies and amounts amongst all wheat producing countries in Southern/East Africa, the Middle East and Central/South Asia. We identify zones of high air-borne connectivity that geographically correspond with previously postulated wheat rust epidemiological zones (characterized by endemic disease and free movement of inoculum) 10,15 , and regions with genetic similarities in related pathogen populations 16,17 . We quantify the circumstances (routes, timing, outbreak sizes) under which virulent pathogen strains such as 'Ug99' 5,6 pose a threat from long-distance dispersal out of East Africa to the large wheat producing areas in Pakistan and India. Long-term mean spore dispersal trends (predominant direction, frequencies, amounts) are summarized for all countries in the domain (Supplementary Data). Our mechanistic modelling framework can be applied to other geographic areas, adapted for other pathogens and used to provide risk assessments in real-time 3 .
Collapse
Affiliation(s)
- M Meyer
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| | - J A Cox
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - M D T Hitchings
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - L Burgin
- Atmospheric Dispersion and Air Quality (ADAQ), Met Office, Exeter, EX1 3PB, UK
| | - M C Hort
- Atmospheric Dispersion and Air Quality (ADAQ), Met Office, Exeter, EX1 3PB, UK
| | - D P Hodson
- International Maize and Wheat Improvement Center (CIMMYT), PO Box 5689, Addis Ababa, Ethiopia
| | - C A Gilligan
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
5
|
Laurent B, Moinard M, Spataro C, Ponts N, Barreau C, Foulongne-Oriol M. Landscape of genomic diversity and host adaptation in Fusarium graminearum. BMC Genomics 2017; 18:203. [PMID: 28231761 PMCID: PMC5324198 DOI: 10.1186/s12864-017-3524-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fusarium graminearum is one of the main causal agents of the Fusarium Head Blight, a worldwide disease affecting cereal cultures, whose presence can lead to contaminated grains with chemically stable and harmful mycotoxins. Resistant cultivars and fungicides are frequently used to control this pathogen, and several observations suggest an adaptation of F. graminearum that raises concerns regarding the future of current plant disease management strategies. To understand the genetic basis as well as the extent of its adaptive potential, we investigated the landscape of genomic diversity among six French isolates of F. graminearum, at single-nucleotide resolution using whole-genome re-sequencing. RESULTS A total of 242,756 high-confidence genetic variants were detected when compared to the reference genome, among which 96% are single nucleotides polymorphisms. One third of these variants were observed in all isolates. Seventy-seven percent of the total polymorphism is located in 32% of the total length of the genome, comprising telomeric/subtelomeric regions as well as discrete interstitial sections, delineating clear variant enriched genomic regions- 7.5 times in average. About 80% of all the F. graminearum protein-coding genes were found polymorphic. Biological functions are not equally affected: genes potentially involved in host adaptation are preferentially located within polymorphic islands and show greater diversification rate than genes fulfilling basal functions. We further identified 29 putative effector genes enriched with non-synonymous effect mutation. CONCLUSIONS Our results highlight a remarkable level of polymorphism in the genome of F. graminearum distributed in a specific pattern. Indeed, the landscape of genomic diversity follows a bi-partite organization of the genome according to polymorphism and biological functions. We measured, for the first time, the level of sequence diversity for the entire gene repertoire of F. graminearum and revealed that the majority are polymorphic. Those assumed to play a role in host-pathogen interaction are discussed, in the light of the subsequent consequences for host adaptation. The annotated genetic variants discovered for this major pathogen are valuable resources for further genetic and genomic studies.
Collapse
Affiliation(s)
- Benoit Laurent
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Magalie Moinard
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Cathy Spataro
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Nadia Ponts
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Christian Barreau
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France
| | - Marie Foulongne-Oriol
- INRA, UR1264 Mycologie et Sécurité des Aliments, bâtiment Qualis, 71 avenue Edouard Bourlaux, CS 20032, F-33882, Villenave d'Ornon cedex, France.
| |
Collapse
|
6
|
David RF, Reinisch M, Trail F, Marr LC, Schmale DG. Compression tests of Fusarium graminearum ascocarps provide insights into the strength of the perithecial wall and the quantity of ascospores. Fungal Genet Biol 2016; 96:25-32. [PMID: 27686515 DOI: 10.1016/j.fgb.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 11/15/2022]
Abstract
The plant pathogenic ascomycete Fusarium graminearum produces perithecia on corn and small grain residues. These perithecia forcibly discharge ascospores into the atmosphere. Little is known about the relationship among the strength of the perithecial wall, the age of the perithecium, and the quantity of ascospores produced. We used a mechanical compression testing instrument to examine the structural failure rate of perithecial walls from three different strains of F. graminearum (two wild type strains, and a mutant strain unable to produce asci). The force required to compress a perithecium by one micrometer (the mean perithecium compression constant, MPCC) was used to determine the strength of the perithecial wall. Over the course of perithecial maturation (5-12days after the initiation of perithecial development), the MPCC was compared to the number of ascospores contained inside the perithecia. The MPCC increased as perithecia matured, from 0.06Nμm-1 at 5d to 0.12Nμm-1 at 12d. The highest number of ascospores was found in older perithecia (12d). The results indicated that for every additional day of perithecial aging, the perithecia become more resilient to compression forces. Every additional day of perithecial aging resulted in ∼900 more ascospores. Knowledge of how perithecia respond to external forces may provide insight into the development of ascospores and the accumulation of turgor pressure. In the future, compression testing may provide a unique method of determining perithecial age in the field, which could extend to management practices that are informed by knowledge of ascospore release and dispersal.
Collapse
Affiliation(s)
- Ray F David
- Department of Civil and Environmental Engineering, 411 Durham Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael Reinisch
- Department of Civil and Environmental Engineering, 411 Durham Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frances Trail
- Departments of Plant Biology, and Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, 411 Durham Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | - David G Schmale
- Department of Plant Pathology, Physiology, and Weed Science, 413 Latham Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
7
|
Manstretta V, Morcia C, Terzi V, Rossi V. Germination of Fusarium graminearum Ascospores and Wheat Infection are Affected by Dry Periods and by Temperature and Humidity During Dry Periods. PHYTOPATHOLOGY 2016; 106:262-269. [PMID: 26623994 DOI: 10.1094/phyto-05-15-0118-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of temperature and relative humidity (RH) on germination of Fusarium graminearum ascospores, and of dry periods (DP) of different lengths and of temperature and RH during DP on ascospore survival were studied both in vitro and in planta. Optimal temperatures for ascospore germination at 100% RH were 20 and 25°C; germination was ≤5% when ascospores were incubated at 20°C and RH ≤ 93.5%. Viable ascospores were found at all tested combinations of DP duration (0 to 48 h) × temperature (5 to 40°C) or RH (32.5 to 100% RH). Germination declined as DP duration and temperature increased. Germination was lower for ascospores kept at 65.5% RH during the DP than at 76.0, 32.5, or 93.5% RH. Equations were developed describing the relationships between ascospore germination, DP duration and temperature or RH during DP. Durum wheat spikes were inoculated with ascospores and kept dry for 0 to 48 h at approximately 15°C and 65% RH; plants were then kept in saturated atmosphere for 48 h to favor infection. Fungal biomass, measured as F. graminearum DNA by quantitative polymerase chain reaction, declined as DP increased to 24 and 48 h at 3 and 9 days postinfection but not in spikes at maturity.
Collapse
Affiliation(s)
- V Manstretta
- First, second, and fourth authors: DI.PRO.VE.S. Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy; and second and third authors: CRA-GPG, Council for Agricultural Research and Economics, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - C Morcia
- First, second, and fourth authors: DI.PRO.VE.S. Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy; and second and third authors: CRA-GPG, Council for Agricultural Research and Economics, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - V Terzi
- First, second, and fourth authors: DI.PRO.VE.S. Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy; and second and third authors: CRA-GPG, Council for Agricultural Research and Economics, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - V Rossi
- First, second, and fourth authors: DI.PRO.VE.S. Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy; and second and third authors: CRA-GPG, Council for Agricultural Research and Economics, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| |
Collapse
|
8
|
Manstretta V, Rossi V. Effects of Temperature and Moisture on Development of Fusarium graminearum Perithecia in Maize Stalk Residues. Appl Environ Microbiol 2016; 82:184-91. [PMID: 26475114 PMCID: PMC4702647 DOI: 10.1128/aem.02436-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
Fusarium graminearum is the predominant component of the Fusarium head blight complex of wheat. F. graminearum ascospores, which initiate head infection, mature in perithecia on crop residues and become airborne. The effects of temperature (T) and moisture on perithecium production and maturation and on ascospore production on maize stalk residues were determined. In the laboratory, perithecia were produced at temperatures between 5 and 30°C (the optimum was 21.7°C) but matured only at 20 and 25°C. Perithecia were produced when relative humidity (RH) was ≥75% but matured only when RH was ≥85%; perithecium production and maturation increased with RH. Equations describing perithecium production and maturation over time as a function of T and RH (R(2) > 0.96) were developed. Maize stalks were also placed outdoors on three substrates: a grass lawn exposed to rain; a constantly wet, spongelike foam exposed to rain; and a grass lawn protected from rain. No perithecia were produced on stalks protected from rain. Perithecium production and maturation were significantly higher on the constantly wet foam than on the intermittently wet lawn (both exposed to rain). Ascospore numbers but not their dispersal patterns were also affected by the substrate.
Collapse
Affiliation(s)
- Valentina Manstretta
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
9
|
Manstretta V, Rossi V. Effects of Weather Variables on Ascospore Discharge from Fusarium graminearum Perithecia. PLoS One 2015; 10:e0138860. [PMID: 26402063 PMCID: PMC4581667 DOI: 10.1371/journal.pone.0138860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/06/2015] [Indexed: 12/26/2022] Open
Abstract
Fusarium graminearum is a predominant component of the Fusarium head blight (FHB) complex of small grain cereals. Ascosporic infection plays a relevant role in the spread of the disease. A 3-year study was conducted on ascospore discharge. To separate the effect of weather on discharge from the effect of weather on the production and maturation of ascospores in perithecia, discharge was quantified with a volumetric spore sampler placed near maize stalk residues bearing perithecia with mature ascospores; the residues therefore served as a continuous source of ascospores. Ascospores were discharged from perithecia on 70% of 154 days. Rain (R) and vapor pressure deficit (VPD) were the variables that most affected ascospore discharge, with 84% of total discharges occurring on days with R≥0.2 mm or VPD≤11 hPa, and with 70% of total ascospore discharge peaks (≥ 30 ascospores/m3 air per day) occurring on days with R≥0.2 mm and VPD≤6.35 hPa. An ROC analysis using these criteria for R and VPD provided True Positive Proportion (TPP) = 0.84 and True Negative Proportion (TNP) = 0.63 for occurrence of ascospore discharge, and TPP = 0.70 and TNP = 0.89 for occurrence of peaks. Globally, 68 ascospores (2.5% of the total ascospores sampled) were trapped on the 17 days when no ascospores were erroneously predicted. When a discharge occurred, the numbers of F. graminearum ascospores sampled were predicted by a multiple regression model with R2 = 0.68. This model, which includes average and maximum temperature and VPD as predicting variables, slightly underestimated the real data and especially ascospore peaks. Numbers of ascospores in peaks were best predicted by wetness duration of the previous day, minimum temperature, and VPD, with R2 = 0.71. These results will help refine the epidemiological models used as decision aids in FHB management programs.
Collapse
Affiliation(s)
- Valentina Manstretta
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
10
|
Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T. The population biology of fungal invasions. Mol Ecol 2015; 24:1969-86. [DOI: 10.1111/mec.13028] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022]
Affiliation(s)
- P. Gladieux
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - A. Feurtey
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - M. E. Hood
- Department of Biology; Amherst College; Amherst Massachusetts 01002 USA
| | - A. Snirc
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - J. Clavel
- Conservation des Espèces; Restauration et Suivi des Populations - CRBPO; Muséum National d'Histoire Naturelle-CNRS-Université Pierre et Marie Curie; 55 rue Buffon 75005 Paris France
| | - C. Dutech
- Biodiversité Gènes et Communautés; INRA-Université Bordeaux 1; Site de Pierroton 33610 Cestas France
| | - M. Roy
- Evolution et Diversité Biologique; Université Toulouse Paul Sabatier-Ecole Nationale de Formation Agronomique-CNRS; 118 route de Narbonne 31062 Toulouse France
| | - T. Giraud
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| |
Collapse
|
11
|
Schmale DG, Ross SD. Highways in the sky: scales of atmospheric transport of plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:591-611. [PMID: 26047561 DOI: 10.1146/annurev-phyto-080614-115942] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many high-risk plant pathogens are transported over long distances (hundreds of meters to thousands of kilometers) in the atmosphere. The ability to track the movement of these pathogens in the atmosphere is essential for forecasting disease spread and establishing effective quarantine measures. Here, we discuss the scales of atmospheric dispersal of plant pathogens along a transport continuum (pathogen scale, farm scale, regional scale, and continental scale). Growers can use risk information at each of these dispersal scales to assist in making plant disease management decisions, such as the timely application of appropriate pesticides. Regional- and continental-scale atmospheric features known as Lagrangian coherent structures (LCSs) may shuffle plant pathogens along highways in the sky. A promising new method relying on overlapping turbulent back-trajectories of pathogen-laden parcels of air may assist in localizing potential inoculum sources, informing local and/or regional management efforts such as conservation tillage. The emergence of unmanned aircraft systems (UASs, or drones) to sample plant pathogens in the lower atmosphere, coupled with source localization efforts, could aid in mitigating the spread of high-risk plant pathogens.
Collapse
Affiliation(s)
- David G Schmale
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia 24061;
| | | |
Collapse
|