1
|
Ji X, Tian W, Jin K, Wen C, Zhang Y, Yu J, Zhang J. Cellulose-Based Photothermal Coating: A Sustainable Solution for Seed Protection and Long-Term Grain Storage. ACS NANO 2023; 17:13861-13871. [PMID: 37439510 DOI: 10.1021/acsnano.3c03660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
High-output modern agriculture based on synthetic chemicals (biocides, pesticides, and fertilizers) feeds the growing global population. To completely abandon the use of pesticides and fertilizers will undoubtedly cause a severe food crisis worldwide, and sustainable alternative solutions are urgently demanded to stop biocides and fertilizers overuse. Herein, a versatile and green strategy is proposed for seed protection and long-term storage of grains using a cellulose-based photothermal coating (PDA NPs@Cell-N+) that consists of photothermal polydopamine nanoparticles (PDA NPs) and a positive-charged cellulose derivative (Cell-N+) to eradicate seed-borne bacteria and fungi simply under infrared irradiation. In vitro and in vivo assays and the seedling-stage phenotypes of mung bean (Vigna radiata) suggest that pathogenic microbes, including the tough Aspergillus flavus (inhibition ratio >99%), can be efficiently eliminated by photothermal therapy. Thus, the seed-borne diseases of mung beans can finally be prevented. Owing to excellent solubility and biocompatibility, the PDA NPs@Cell-N+ coating can be washed off and recycled without food safety concerns. PDA NPs@Cell-N+ can be a nature-based solution for seed protection and long-term grain storage.
Collapse
Affiliation(s)
- Xin Ji
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Tian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Kunfeng Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojun Wen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jian Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Jun Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Dell’Olmo E, Tiberini A, Sigillo L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:2040. [PMID: 37653957 PMCID: PMC10221191 DOI: 10.3390/plants12102040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens. Important diagnostic techniques are also discussed as a part of a successful process of seed health certification. Additionally, strategies for sustainable control are provided. Altogether, the data collected are suggested as basic criteria to set up a conscious laboratory approach.
Collapse
Affiliation(s)
- Eliana Dell’Olmo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification (CREA-DC), Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Loredana Sigillo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
3
|
Xie Y, Li J, Ding Y, Shao X, Sun Y, Xie F, Liu S, Tang S, Deng X. An atlas of bacterial two-component systems reveals function and plasticity in signal transduction. Cell Rep 2022; 41:111502. [DOI: 10.1016/j.celrep.2022.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022] Open
|
4
|
Gerster T, Wröbel M, Hofstaedter CE, Schwudke D, Ernst RK, Ranf S, Gisch N. Remodeling of Lipid A in Pseudomonas syringae pv. phaseolicola In Vitro. Int J Mol Sci 2022; 23:1996. [PMID: 35216122 PMCID: PMC8876380 DOI: 10.3390/ijms23041996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas species infect a variety of organisms, including mammals and plants. Mammalian pathogens of the Pseudomonas family modify their lipid A during host entry to evade immune responses and to create an effective barrier against different environments, for example by removal of primary acyl chains, addition of phosphoethanolamine (P-EtN) to primary phosphates, and hydroxylation of secondary acyl chains. For Pseudomonas syringae pv. phaseolicola (Pph) 1448A, an economically important pathogen of beans, we observed similar lipid A modifications by mass spectrometric analysis. Therefore, we investigated predicted proteomes of various plant-associated Pseudomonas spp. for putative lipid A-modifying proteins using the well-studied mammalian pathogen Pseudomonas aeruginosa as a reference. We generated isogenic mutant strains of candidate genes and analyzed their lipid A. We show that the function of PagL, LpxO, and EptA is generally conserved in Pph 1448A. PagL-mediated de-acylation occurs at the distal glucosamine, whereas LpxO hydroxylates the secondary acyl chain on the distal glucosamine. The addition of P-EtN catalyzed by EptA occurs at both phosphates of lipid A. Our study characterizes lipid A modifications in vitro and provides a useful set of mutant strains relevant for further functional studies on lipid A modifications in Pph 1448A.
Collapse
Affiliation(s)
- Tim Gerster
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany;
| | - Michelle Wröbel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (C.E.H.); (R.K.E.)
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
- German Center for Infection Research (DZIF), Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Site Research Center Borstel, 23845 Borstel, Germany
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (C.E.H.); (R.K.E.)
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany;
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
| |
Collapse
|
5
|
Sun F, Sun S, Yang Y, Zhou B, Duan C, Shan W, Zhu Z. A Novel Disease of Mung Bean, Phytophthora Stem Rot Caused by a New Forma Specialis of Phytophthora vignae. PLANT DISEASE 2021; 105:2160-2168. [PMID: 33315483 DOI: 10.1094/pdis-07-20-1513-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An emerging soilborne disease resembling Phytophthora stem rot was observed on mung bean plants grown in Anhui, China. To identify the causal agent, diseased plants and soil samples from 13 fields were collected to isolate the pathogen. Twenty-two Phytophthora isolates were recovered from the samples and detailed identification was conducted. Based on morphological and molecular characterizations, all of the isolates were consistently identified as P. vignae. Phylogenetic analysis using eight nuclear loci sequences of the internal transcribed spacer region, rRNA gene large subunit, a partial sequence of the β-tubulin gene, translation elongation factor 1α, 60S ribosomal protein L10, the enolase gene, heat shock protein 90, and triose phosphate isomerase/glyceraldehyde-3-phosphate dehydrogenase and a mitochondrial locus cytochrome c oxidase subunit I revealed that the mung bean isolates grouped in the same clade as P. vignae and its two formae speciales, P. vignae f. sp. adzukicola and P. vignae f. sp. vignae. A host specificity test showed that the mung bean isolates of P. vignae were pathogenic toward mung bean with a much stronger virulence and toward adzuki bean with a relatively weak virulence, but they were nonpathogenic to the other tested legume crops, including soybean, cowpea, pea, common bean, faba bean, and chickpea. The host range of mung bean isolates significantly differs from those of P. vignae f. sp. adzukicola and P. vignae f. sp. vignae based on our results and on previous studies. Thus, the pathogen causing Phytophthora stem rot of mung bean is proposed as a new forma specialis of P. vignae, designated as P. vignae f. sp. mungcola.
Collapse
Affiliation(s)
- Feifei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, P. R. China
| | - Suli Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yong Yang
- Crop Institute of Anhui Academy of Agricultural Sciences, Hefei 230031, P. R. China
| | - Bin Zhou
- Crop Institute of Anhui Academy of Agricultural Sciences, Hefei 230031, P. R. China
| | - Canxing Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Weixing Shan
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, P. R. China
| | - Zhendong Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
6
|
Nair RM, Pandey AK, War AR, Hanumantharao B, Shwe T, Alam AKMM, Pratap A, Malik SR, Karimi R, Mbeyagala EK, Douglas CA, Rane J, Schafleitner R. Biotic and Abiotic Constraints in Mungbean Production-Progress in Genetic Improvement. FRONTIERS IN PLANT SCIENCE 2019; 10:1340. [PMID: 31736995 PMCID: PMC6829579 DOI: 10.3389/fpls.2019.01340] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/25/2019] [Indexed: 05/22/2023]
Abstract
Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important food and cash legume crop in Asia. Development of short duration varieties has paved the way for the expansion of mungbean into other regions such as Sub-Saharan Africa and South America. Mungbean productivity is constrained by biotic and abiotic factors. Bruchids, whitefly, thrips, stem fly, aphids, and pod borers are the major insect-pests. The major diseases of mungbean are yellow mosaic, anthracnose, powdery mildew, Cercospora leaf spot, halo blight, bacterial leaf spot, and tan spot. Key abiotic stresses affecting mungbean production are drought, waterlogging, salinity, and heat stress. Mungbean breeding has been critical in developing varieties with resistance to biotic and abiotic factors, but there are many constraints still to address that include the precise and accurate identification of resistance source(s) for some of the traits and the traits conferred by multi genes. Latest technologies in phenotyping, genomics, proteomics, and metabolomics could be of great help to understand insect/pathogen-plant, plant-environment interactions and the key components responsible for resistance to biotic and abiotic stresses. This review discusses current biotic and abiotic constraints in mungbean production and the challenges in genetic improvement.
Collapse
Affiliation(s)
- Ramakrishnan M. Nair
- World Vegetable Center, South Asia, Hyderabad, India
- *Correspondence: Ramakrishnan M. Nair,
| | | | - Abdul R. War
- World Vegetable Center, South Asia, Hyderabad, India
| | | | - Tun Shwe
- Myanmar Department of Agricultural Research, Nay Pyi Taw, Myanmar
| | - AKMM Alam
- Pulses Research Centre, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Aditya Pratap
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Rael Karimi
- Kenya Agricultural and Livestock Research Organization (KALRO), Katumani, Kenya
| | - Emmanuel K. Mbeyagala
- National Agricultural Research Organization-National Semi-Arid Resources Research Institute (NARO-NaSARRI), Soroti, Uganda
| | - Colin A. Douglas
- Agri-Science Queensland, Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati, India
| | | |
Collapse
|