1
|
Kalayanamitra P, Kalayanamitra K, Nontajak S, Taylor PWJ, Jonglaekha N, Bussaban B. Identification, Characterization, and Control of Black Spot on Chinese Kale Caused by Sphaerobolus cuprophilus sp. nov. PLANTS (BASEL, SWITZERLAND) 2023; 12:480. [PMID: 36771565 PMCID: PMC9920292 DOI: 10.3390/plants12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Chinese kale (Brassica alboglabra) is commonly grown and consumed throughout Asia and is often treated with chemicals to control pests and diseases. In Thailand, public standards, Good Agricultural Practice (GAP), and International Federation of Organic Agriculture Movement (IFOAM) programs were introduced for the cultivation of Chinese kale with minimum input of chemical treatments. Black spot caused by the fungus Sphaerobolus has been affecting the plants grown under IFOAM standards in Chiang Mai, Thailand, for several years. Strongly adhering glebal spore masses of the fungus on leaf and stem surfaces have adversely affected postharvest management, especially in the quality classification of the product. Both morphological and phylogenetic (combined ITS, mtSSU, and EF 1-α dataset) studies confirmed a novel species, S. cuprophilus. Pathogenicity tests involving inoculation of Chinese kale by non-wound and mulch inoculation bioassays resulted in the production of symptoms of black spot and the re-isolation of S. cuprophilus, indicating that the new fungal species is the causal agent of black spots. Inhibitory effects of antagonistic bacteria and chemical fungicides, both allowed for use in plant cultivation under either IFOAM or GAP standards, indicated that Bacillus amyloliquefaciens strains (PBT2 and YMB7), chlorothalonil (20 and 500 ppm) and thiophanate-methyl (500 and 1500 ppm) were the most effective in controlling the growth of the causal fungus by 83 to 93%. However, copper oxychloride (5 to 20 ppm), a recommended chemical in control of downy mildew of Chinese kale, showed hormetic effects on S. cuprophilus by promoting the growth and sporulation of the fungus. The findings of this study provide vital information regarding the association of S. cuprophilus and Chinese kale and will support decisions to manage fungal diseases of this vegetable.
Collapse
Affiliation(s)
- Pancheewa Kalayanamitra
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kal Kalayanamitra
- Program of Postharvest Technology, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | - Sutasinee Nontajak
- Royal Project Agricultural Research and Development Center, Chiang Mai 50100, Thailand
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nuchnart Jonglaekha
- Royal Project Agricultural Research and Development Center, Chiang Mai 50100, Thailand
| | - Boonsom Bussaban
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Song J, Han C, Zhang S, Wang Y, Liang Y, Dai Q, Huo Z, Xu K. Hormetic Effects of Carbendazim on Mycelial Growth and Aggressiveness of Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8101008. [PMID: 36294573 PMCID: PMC9604696 DOI: 10.3390/jof8101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive fungal diseases of rice worldwide. Stimulatory effects of low doses of fungicides on pathogens are closely relevant to disease management. In the present study, in potato dextrose agar (PDA) amended with carbendazim at a dose range from 0.003 to 0.3 μg/mL, stimulatory effects on the mycelial growth of three isolates sensitive to carbendazim were tested. Carbendazim at concentrations from 0.003 to 0.1 µg/mL showed stimulatory effects on mycelial growth of isolates Guy11 and H08-1a, while carbendazim at concentrations from 0.003 to 0.03 µg/mL stimulated the growth of isolate P131. The maximum stimulation magnitudes were 11.84% for the three isolates tested. Mycelial colonies grown on PDA amended with different concentrations of carbendazim were incubated at 28 °C in darkness for 7 days as the pretreatment. Pretreatment mycelia were inoculated on fresh fungicide-free PDA and subsequent mycelia growth stimulations were still observed, and the maximum stimulation magnitudes were 9.15% for the three isolates tested. Pretreatment mycelia did not significantly change the tolerance to H2O2 and NaCl, except that the tolerance to H2O2 was increased significantly (p < 0.05) when the carbendazim was at 0.3 µg/mL. After five generations of mycelial transference on fungicide-free PDA, the transgenerational hormesis of mycelial were exhibited when transferred onto PDA supplemented with carbendazim at 0.3 µg/mL, and the maximum percent stimulation was 51.28%. The time course of infection indicated that the visible initial necrotic symptoms could be detected at 2 DPI on leaves treated with carbendazim at 0.03 µg/mL, whereas no necrotic symptom could be discerned for the control. Statistical results of lesion area and lesion type at 7 DPI showed that there was a significant stimulation (p < 0.05) on aggressiveness of M. oryzae isolate Guy11 on detached rice leaves at 0.03 µg/mL carbendazim. These results will advance our understanding of hormetic effects of fungicides and provide valuable information for judicious application of fungicides.
Collapse
|
3
|
Hu S, Li J, Wang P, Zhu F. Hormetic Effects of Dimethachlone on Mycelial Growth and Virulence of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2021; 111:1166-1172. [PMID: 33107780 DOI: 10.1094/phyto-08-20-0364-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungicide hormesis has implications for the application of fungicides to control plant diseases. We investigated the hormetic effects of the dicarboximide fungicide dimethachlone on mycelial growth and virulence of the necrotrophic plant pathogen Sclerotinia sclerotiorum. Dimethachlone at sublethal doses in potato dextrose agar (PDA) increased the mycelial growth of S. sclerotiorum. After the growth-stimulated mycelia were subcultured on fresh PDA and inoculated on rapeseed leaves, increased mycelial growth and virulence were observed, indicating that hormetic traits were passed down to the next generation. Dimethachlone applied to leaves at 0.002 to 500 μg/ml stimulated virulence, with a maximum stimulation amplitude (MSA) of 31.4% for the isolate HLJ4, which occurred at 2 μg/ml. Dimethachlone-resistant isolates and transformants had a mean virulence MSA of 30.4%, which was significantly higher (P = 0.008) than the MSA for sensitive isolates (16.2%). Negative correlations were detected between MSA and virulence in the absence of any fungicide (r = -0.872, P < 0.001) and between MSA and mycelial growth on PDA (r = -0.794, P = 0.002). Studies on hormetic mechanisms indicated that dimethachlone had no significant effects on expression levels of three virulence-associated genes, that is, a cutinase-encoding gene SsCut, a polygalacturonase gene SsPG1, or an oxaloacetate acetylhydrolase gene SsOah1. The results will contribute to understanding hormesis and have implications for the judicious application of fungicides to control plant diseases.
Collapse
Affiliation(s)
- Simin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinli Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Pengju Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Hu S, Xu Q, Zhang Y, Zhu F. Stimulatory Effects of Boscalid on Virulence of Sclerotinia sclerotiorum Indicate Hormesis May Be Masked by Inhibitions. PLANT DISEASE 2020; 104:833-840. [PMID: 31940448 DOI: 10.1094/pdis-07-19-1421-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hormetic effects of fungicides on phytopathogens are of great importance for proper application of fungicides. The aim of the present study was to investigate the stimulatory effects of the fungicide boscalid on mycelial growth and virulence of the devastating plant pathogen Sclerotinia sclerotiorum. Boscalid in potato dextrose agar (PDA) at a dosage range from 0.0005 to 0.002 μg/ml exerted statistically significant (P ≤ 0.015) stimulations on mycelial growth of S. sclerotiorum, and the maximum stimulation magnitudes were 5.55 ± 0.73% (mean ± SD) for the four isolates tested. Boscalid in PDA at 0.02 μg/ml inhibited mycelial growth of isolates HLJ3H and HLJ4H by 15.0 and 8.9%, respectively. However, after the growth-inhibited mycelia were inoculated on rapeseed leaves, isolates HLJ3H and HLJ4H exhibited virulence stimulations of 8.7 and 17.8%, respectively, indicating that hormesis may be masked by inhibitions. Boscalid sprayed at 0.0001 to 0.1 μg/ml on detached rapeseed leaves had significant (P ≤ 0.041) stimulations on virulence of S. sclerotiorum, and the maximum stimulation magnitudes were 17.90 ± 5.94% (mean ± SD) for the four isolates tested. Experiments on 12 isolates with different levels of virulence showed there was a negative correlation (R = -0.663, P = 0.019) between the maximum virulence stimulation magnitude and virulence of S. sclerotiorum in the absence of fungicide. Boscalid at stimulatory concentrations had no significant effect on the expression levels of three virulence-associated genes that encode cutinase (SsCut), polygalacturonase (SsPG1), and oxaloacetate acetylhydrolase (SsOah1). The molecular mechanisms for hormetic effects of boscalid on S. sclerotiorum remain to be studied in the future.
Collapse
Affiliation(s)
- Simin Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianru Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuchao Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Cong M, Zhang B, Zhang K, Li G, Zhu F. Stimulatory Effects of Sublethal Doses of Carbendazim on the Virulence and Sclerotial Production of Botrytis cinerea. PLANT DISEASE 2019; 103:2385-2391. [PMID: 31313639 DOI: 10.1094/pdis-01-19-0153-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimulatory effects of low doses of fungicides on the virulence of phytopathogens have profound implications for applications of fungicides. The present study demonstrated that carbendazim sprayed at 0.001 to 0.03 μg/ml had stimulatory effects on the virulence of mycelia of Botrytis cinerea, and the maximum percent stimulations were 15.5 and 21.4% for isolates HB459 and HB536, respectively. Potato dextrose agar (PDA) amended with carbendazim at 0.01, 0.02, and 0.05 μg/ml inhibited mycelial growth of isolate HB536 by 0.8, 10.0, and 30.6%, respectively. However, after the inhibited mycelia were inoculated on cucumber leaves, virulence increased by 10.1, 12.9, and 10.8%, respectively. With respect to sclerotial production, carbendazim at 0.005 and 0.02 μg/ml in PDA significantly (P < 0.05) increased, while at 0.1 μg/ml significantly (P < 0.05) reduced the sclerotial number and weight of both isolates compared with nontreated controls. Conidia germination percentages slightly yet statistically significantly (P < 0.05) increased after being inoculated on PDA amended with carbendazim at 0.001 and 0.005 μg/ml. Carbendazim at 0.001∼0.02 μg/ml, either sprayed on cucumber leaves or cosuspended with conidia, exerted significantly (P < 0.05) stimulatory effects on the virulence of B. cinerea conidia. Mechanism studies showed that sublethal doses of carbendazim did not increase the expression levels of pathogenicity-related pectin methylesterase gene Bcpme1, endopolygalacturonase gene Bcpg2, cutinase gene CutA, xylanase gene Xyn11A, or NADPH oxidase gene BcnoxA.
Collapse
Affiliation(s)
- Menglong Cong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoqing Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|