1
|
Pripdeevech P, Janta R, Sripahco T, Meesang W, Aiyathiti C, Prabamroong T, Mahatheeranont S, Poshyachinda S, Pongpiachan S, Khruengsai S. Seasonal volatile organic compound dynamics in urban and forest environments in Thailand: Implications for air quality and secondary pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125565. [PMID: 39709057 DOI: 10.1016/j.envpol.2024.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Volatile organic compounds (VOCs) notably influence air quality, climate and secondary pollutant formation, particularly regions in where urban emissions interact with natural biogenic sources at the interface of urban and natural ecosystems. This study examined the VOC profiles in the Sakaerat dry evergreen forest and the urban area of Nakhon Ratchasima, Thailand, throughout 2023, focusing on seasonal and spatial variations in biogenic and anthropogenic VOCs (BVOCs and AVOCs, respectively). Hydrocarbons, mainly alkanes, dominated VOC compositions, contributing 43.74-47.44% of the total detected VOCs in the forest and 44.89-66.35% in urban areas. Aromatic hydrocarbons accounted for 7.63-10.36% in the forest but increased to 11.80-34.56% in urban areas, peaking in winter. BVOCs, such as isoprene and D-limonene, were more prevalent in the forest (4.41-12.67%) than in urban areas (0.75-4.65%). Meanwhile, oxygenated VOCs (OVOCs) displayed considerable seasonal contributions, ranging from 30.24 to 42.62% in the forest to 9.14-16.78% in urban areas. Seasonal trends exhibited elevated BVOC emissions in the forest during the rainy season and higher AVOC levels in urban areas during summer. Negative and positive correlations with relative humidity were observed in the forest and in urban areas, respectively. Diurnal variations revealed that isoprene emissions in the forest increased with rising daytime temperatures, while VOC concentrations in urban areas showed little to no fluctuation throughout the day. Temperature, humidity and atmospheric transport were key drivers shaping VOC dynamics, highlighting distinct patterns of biogenic and anthropogenic emissions. This study highlights the importance of long-term VOC monitoring to evaluate the environmental impacts of urbanisation on natural ecosystems. These findings provide valuable insights to support air quality management and the mitigation of pollution at the interface of urban and natural environments.
Collapse
Affiliation(s)
- Patcharee Pripdeevech
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand; Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, Thailand; National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand
| | - Radshadaporn Janta
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Teerapong Sripahco
- National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand
| | - Winai Meesang
- Green Space and Exercise Research Group, Department of Environmental Health, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, Thailand
| | - Chatchaval Aiyathiti
- Department of Environmental Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Thayukorn Prabamroong
- Climate Change, Mitigation and Adaptation Research Unit, Faculty of Environment and Resource Studies, Mahasarakham University, Mahasarakham, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Saran Poshyachinda
- National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand
| | - Siwatt Pongpiachan
- National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand; Graduate School of Social Development and Management Strategy National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Sarunpron Khruengsai
- National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand.
| |
Collapse
|
2
|
Macagnano A, Molinari FN, Papa P, Mancini T, Lupi S, D’Arco A, Taddei AR, Serrecchia S, De Cesare F. Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1123. [PMID: 38998727 PMCID: PMC11243275 DOI: 10.3390/nano14131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(-)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(-)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
Collapse
Affiliation(s)
- Antonella Macagnano
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Fabricio Nicolas Molinari
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
- National Institute of Industrial Technology (INTI), Buenos Aires B1650WAB, Argentina
| | - Paolo Papa
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Tiziana Mancini
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Stefano Lupi
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Annalisa D’Arco
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Anna Rita Taddei
- High Equipment Centre, Electron Microscopy Section, University of Tuscia, University Square, Building D, 01100 Viterbo, Italy;
| | - Simone Serrecchia
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Fabrizio De Cesare
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Sandulovici RC, Gălăţanu ML, Cima LM, Panus E, Truţă E, Mihăilescu CM, Sârbu I, Cord D, Rîmbu MC, Anghelache ŞA, Panţuroiu M. Phytochemical Characterization, Antioxidant, and Antimicrobial Activity of the Vegetative Buds from Romanian Spruce, Picea abies (L.) H. Karst. Molecules 2024; 29:2128. [PMID: 38731619 PMCID: PMC11085860 DOI: 10.3390/molecules29092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 μg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.
Collapse
Affiliation(s)
- Roxana Colette Sandulovici
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| | - Mona Luciana Gălăţanu
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| | - Luiza Mădălina Cima
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| | - Emilia Panus
- Microbiology and Molecular Biology Laboratory, Public Health Constanta, 900587 Constanta, Romania;
| | - Elena Truţă
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| | - Carmen Marinela Mihăilescu
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
- National Institute for Research and Development in Microtechnologies, 126A. Erou Iancu Nicolae Street, 72996 Bucharest, Romania
| | - Iulian Sârbu
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| | - Daniel Cord
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
- National Agency for Medicines and Medical Devices of Romania, Stefan Sanatescu Street 48, 011478 Bucharest, Romania
| | - Mirela Claudia Rîmbu
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| | - Ştefan Alexandru Anghelache
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| | - Mariana Panţuroiu
- Faculty of Pharmacy, Titu Maiorescu University, 16 Sincai, Boulevard, 040314 Bucharest, Romania or (R.C.S.); (L.M.C.); (E.T.); (C.M.M.); (I.S.); (D.C.); (M.C.R.); (Ş.A.A.); (M.P.)
| |
Collapse
|
4
|
Furtado EL, da Silva AC, Silva ÉAR, Rodella RA, Soares MA, Serrão JE, de Pieri C, Zanuncio JC. Morphoanatomical Changes in Eucalyptus grandis Leaves Associated with Resistance to Austropuccinia psidii in Plants of Two Ages. PLANTS (BASEL, SWITZERLAND) 2023; 12:353. [PMID: 36679066 PMCID: PMC9867522 DOI: 10.3390/plants12020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The fungus Austropuccinia psidii infects young tissues of Eucalyptus plants until they are two years old in the nursery and field, causing Myrtaceae rust. The characteristics making older eucalypt leaves resistant to A. psidii and the reason for the low levels of this pathogen in older plants need evaluations. The aim of this study was to evaluate the morphological differences between Eucalyptus grandis leaves of different growth stages and two plant ages to propose a visual phenological scale to classify E. grandis leaves according to their maturation stages and to evaluate the time of leaf maturation for young and adult plants. A scale, based on a morphological differentiation for E. grandis leaves, was made. The color, shape and size distinguished the leaves of the first five leaf pairs. Anatomical analysis showed a higher percentage of reinforced tissue, such as sclerenchyma-like tissue and collenchyma, greater leaf blade thickness, absence of lower palisade parenchyma in the mature leaves and a higher number of cavities with essential oils than in younger ones. Changes in anatomical characteristics that could reduce the susceptibility of older E. grandis leaves to A. psidii coincide with the time of developing leaf resistance. Reduced infection of this pathogen in older plants appears to be associated with a more rapid maturation of their leaf tissues.
Collapse
Affiliation(s)
- Edson Luiz Furtado
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, São Paulo, Brazil
| | - André Costa da Silva
- Departamento de Fitossanidade, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | | | - Roberto Antônio Rodella
- Departamento de Botânica, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu 18618-000, São Paulo, Brazil
| | - Marcus Alvarenga Soares
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Cristiane de Pieri
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, São Paulo, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
5
|
Cheng YJ, Wu YJ, Lee FW, Ou LY, Chen CN, Chu YY, Kuan YC. Impact of Storage Condition on Chemical Composition and Antifungal Activity of Pomelo Extract against Colletotrichum gloeosporioides and Anthracnose in Post-harvest Mango. PLANTS (BASEL, SWITZERLAND) 2022; 11:2064. [PMID: 35956542 PMCID: PMC9370353 DOI: 10.3390/plants11152064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Anthracnose caused by Colletotrichum leads to a tremendous post-harvest mango loss. While chemical fungicides are applied to control anthracnose, natural alternatives are preferred due to food safety and environmental concerns. Pomelo extract (PE) exhibits a broad spectrum of antimicrobial activities; however, its effect against anthracnose is unknown. Here we investigated the chemical profile of PE using GC-MS and the anti-anthracnose activity of PE using in vitro and in vivo assays. We also evaluated the impact of storage temperature (0°, 5°, 10°, 20°, -20°, and -80 °C) and light conditions on the composition and antifungal activity of PE. We found that PE inhibited C. gloeosporioides in vitro with an IC50 of 3.2 mL L-1. Applying chitosan-based coating incorporated with 20 mL L-1 PE significantly suppressed anthracnose in post-harvest 'Keitt' mango. A storage temperature below 5 °C substantially preserved major compounds and the antifungal activity of PE after 6 m of storage. Finally, we showed that applying d-limonene, the key constituent of PE, inhibited C. gloeosporioides in vitro (IC50: 10.9 mM) and suppressed anthracnose in vivo. In conclusion, we demonstrated that the application of PE and d-limonene are sustainable methods for anthracnose control in post-harvest crops and established the preservation protocol for PE.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Jou Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Fang-Wei Lee
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Ling-Yi Ou
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Nan Chen
- Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Chiayi 60044, Taiwan
| | - Yu-Ying Chu
- Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Chiayi 60044, Taiwan
| | - Yen-Chou Kuan
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
- Highland Experimental Farm, National Taiwan University, Nantou 54641, Taiwan
| |
Collapse
|
6
|
Moffitt MC, Wong-Bajracharya J, Shuey LS, Park RF, Pegg GS, Plett JM. Both Constitutive and Infection-Responsive Secondary Metabolites Linked to Resistance against Austropuccinia psidii (Myrtle Rust) in Melaleuca quinquenervia. Microorganisms 2022; 10:383. [PMID: 35208838 PMCID: PMC8879604 DOI: 10.3390/microorganisms10020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
Austropuccinia psidii is a fungal plant pathogen that infects species within the Myrtaceae, causing the disease myrtle rust. Myrtle rust is causing declines in populations within natural and managed ecosystems and is expected to result in species extinctions. Despite this, variation in response to A. psidii exist within some species, from complete susceptibility to resistance that prevents or limits infection by the pathogen. Untargeted metabolomics using Ultra Performance Liquid Chromatography with Ion Mobility followed by analysis using MetaboAnalyst 3.0, was used to explore the chemical defence profiles of resistant, hypersensitive and susceptible phenotypes within Melaleuca quinquenervia during the early stages of A. psidii infection. We were able to identify three separate pools of secondary metabolites: (i) metabolites classified structurally as flavonoids that were naturally higher in the leaves of resistant individuals prior to infection, (ii) organoheterocyclic and carbohydrate-related metabolites that varied with the level of host resistance post-infection, and (iii) metabolites from the terpenoid pathways that were responsive to disease progression regardless of resistance phenotype suggesting that these play a minimal role in disease resistance during the early stages of colonization of this species. Based on the classes of these secondary metabolites, our results provide an improved understanding of key pathways that could be linked more generally to rust resistance with particular application within Melaleuca.
Collapse
Affiliation(s)
- Michelle C. Moffitt
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia; (J.W.-B.); (J.M.P.)
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Louise S. Shuey
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD 4102, Australia; (L.S.S.); (G.S.P.)
| | - Robert F. Park
- The Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Geoff S. Pegg
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD 4102, Australia; (L.S.S.); (G.S.P.)
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia; (J.W.-B.); (J.M.P.)
| |
Collapse
|
7
|
Constantino N, Oh Y, Şennik E, Andersen B, Warden M, Oralkan Ö, Dean RA. Soybean Cyst Nematodes Influence Aboveground Plant Volatile Signals Prior to Symptom Development. FRONTIERS IN PLANT SCIENCE 2021; 12:749014. [PMID: 34659318 PMCID: PMC8513716 DOI: 10.3389/fpls.2021.749014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive soybean pests worldwide. Unlike many diseases, SCN doesn't show above ground evidence of disease until several weeks after infestation. Knowledge of Volatile Organic Compounds (VOCs) related to pests and pathogens of foliar tissue is extensive, however, information related to above ground VOCs in response to root damage is lacking. In temporal studies, gas chromatography-mass spectrometry analysis of VOCs from the foliar tissues of SCN infested plants yielded 107 VOCs, referred to as Common Plant Volatiles (CPVs), 33 with confirmed identities. Plants showed no significant stunting until 10 days after infestation. Total CPVs increased over time and were significantly higher from SCN infested plants compared to mock infested plants post 7 days after infestation (DAI). Hierarchical clustering analysis of expression ratios (SCN: Mock) across all time points revealed 5 groups, with the largest group containing VOCs elevated in response to SCN infestation. Linear projection of Principal Component Analysis clearly separated SCN infested from mock infested plants at time points 5, 7, 10 and 14 DAI. Elevated Styrene (CPV11), D-Limonene (CPV32), Tetradecane (CPV65), 2,6-Di-T-butyl-4-methylene-2,5-cyclohexadiene-1-one (CPV74), Butylated Hydroxytoluene (CPV76) and suppressed Ethylhexyl benzoate (CPV87) levels, were associated with SCN infestation prior to stunting. Our findings demonstrate that SCN infestation elevates the release of certain VOCs from foliage and that some are evident prior to symptom development. VOCs associated with SCN infestations prior to symptom development may be valuable for innovative diagnostic approaches.
Collapse
Affiliation(s)
- Nasie Constantino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Erdem Şennik
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Brian Andersen
- Department of Nuclear Engineering, North Carolina State University, Raleigh, NC, United States
| | - Michael Warden
- BASF Plant Science, Research Triangle, NC, United States
| | - Ömer Oralkan
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Ralph A. Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Sekiya A, Marques FG, Leite TF, Cataldi TR, de Moraes FE, Pinheiro ALM, Labate MTV, Labate CA. Network Analysis Combining Proteomics and Metabolomics Reveals New Insights Into Early Responses of Eucalyptus grandis During Rust Infection. FRONTIERS IN PLANT SCIENCE 2021; 11:604849. [PMID: 33488655 PMCID: PMC7817549 DOI: 10.3389/fpls.2020.604849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
Eucalyptus rust is caused by the biotrophic fungus, Austropuccinia psidii, which affects commercial plantations of Eucalyptus, a major raw material for the pulp and paper industry in Brazil. In this manuscript we aimed to uncover the molecular mechanisms involved in rust resistance and susceptibility in Eucalyptus grandis. Epifluorescence microscopy was used to follow the fungus development inside the leaves of two contrasting half-sibling genotypes (rust-resistance and rust-susceptible), and also determine the comparative time-course of changes in metabolites and proteins in plants inoculated with rust. Within 24 h of complete fungal invasion, the analysis of 709 metabolomic features showed the suppression of many metabolites 6 h after inoculation (hai) in the rust-resistant genotype, with responses being induced after 12 hai. In contrast, the rust-susceptible genotype displayed more induced metabolites from 0 to 18 hai time-points, but a strong suppression occurred at 24 hai. Multivariate analyses of genotypes and time points were used to select 16 differential metabolites mostly classified as phenylpropanoid-related compounds. Applying the Weighted Gene Co-Expression Network Analysis (WGCNA), rust-resistant and rust-susceptible genotypes had, respectively, 871 and 852 proteins grouped into 5 and 6 modules, of which 5 and 4 of them were significantly correlated to the selected metabolites. Functional analyses revealed roles for photosynthesis and oxidative-dependent responses leading to temporal activity of metabolites and related enzymes after 12 hai in rust-resistance; while the initial over-accumulation of those molecules and suppression of supporting mechanisms at 12 hai caused a lack of progressive metabolite-enzyme responses after 12 hai in rust-susceptible genotype. This study provides some insights on how E. grandis plants are functionally modulated to integrate secondary metabolites and related enzymes from phenylpropanoid pathway and lead to temporal divergences of resistance and susceptibility responses to rust.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|