1
|
Ruiz C, von Känel G, Burkard S, Küenzi P. Fusarium spp. in Metalworking Fluid Systems: Companions Forever. Pathogens 2024; 13:990. [PMID: 39599543 PMCID: PMC11597266 DOI: 10.3390/pathogens13110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Water-miscible metalworking fluids (MWFs) are utilized in a variety of metal removal and forming operations. For end-use, formulation concentrates are diluted in water, creating conditions conducive to microbial growth and metabolism, possibly compromising the fluid's integrity and mechanically obstructing filters or piping systems. Metalworking machines offer additional habitats on surfaces that are in permanent or temporary contact with MWFs. For that reason, biocides have been incorporated into concentrates for years, but legal constraints will restrain their use in the future. While bacterial contamination of MWFs is well documented, fungal contamination is often overseen and infrequently reported in the literature. In this study, we report fungal prevalence in in-use MWFs sampled worldwide over 10 years, and we are convinced that the presence of fungi is the norm rather than the exception. In addition, we evaluated the inhibitory effect of fungicides on fungal growth, sporulation and spore viability using traditional culture-dependent methods and flow cytometry. In essence, we show that the effectiveness of these fungicides is limited and dependent on the chemical construction of the fluid. We think that the ecology created by water-diluted MWFs is of higher importance than the anti-fungal activity of single components.
Collapse
Affiliation(s)
| | | | | | - Peter Küenzi
- Department of Microbiology, Blaser Swisslube AG, 3415 Hasle-Rüegsau, Switzerland; (C.R.)
| |
Collapse
|
2
|
Zhang X, Zheng S, Yu M, Xu C, Li Y, Sun L, Hu G, Yang J, Qiu X. Evaluation of Resistance Resources and Analysis of Resistance Mechanisms of Maize to Stalk Rot Caused by Fusarium graminearum. PLANT DISEASE 2024; 108:348-358. [PMID: 37443398 DOI: 10.1094/pdis-04-23-0825-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Stalk rot is one of the most destructive and widely distributed diseases in maize plants worldwide. Research on the performance and resistance mechanisms of maize against stem rot is constantly improving. In this study, among 120 inbred maize lines infected by Fusarium graminearum using the injection method, 4 lines (3.33%) were highly resistant to stalk rot, 28 lines (23.33%) were resistant, 57 lines (47.50%) were susceptible, and 31 lines (25.84%) were highly susceptible. The inbred lines 18N10118 and 18N10370 were the most resistant and susceptible with disease indices of 7.5 and 75.6, respectively. Treatment of resistant and susceptible maize inbred seedlings with F. graminearum showed that root hair growth of the susceptible inbred lines was significantly inhibited, and a large number of hyphae attached and adsorbed multiple conidia near the root system. However, the resistant inbred lines were delayed and inconspicuous, with only a few hyphae and spores appearing near the root system. Compared with susceptible inbred lines, resistant maize inbred line seedlings treated with F. graminearum exhibited elevated activities of catalase, phenylalanine ammonia-lyase, polyphenol oxidase, and superoxide dismutase. We identified 153 genes related to disease resistance by transcriptome analysis. The mitogen-activated protein kinase signaling and peroxisome pathways mainly regulated the resistance mechanism of maize inbred lines to F. graminearum infection. These two pathways might play an important role in the disease resistance mechanism, and the function of genes in the two pathways must be further studied, which might provide a theoretical basis for further understanding the molecular resistance mechanism of stalk rot and resistance gene mining.
Collapse
Affiliation(s)
- Xue Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Suli Zheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Miao Yu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Chuzhen Xu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yonggang Li
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Lei Sun
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China
| | - Guanghi Hu
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianfei Yang
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaojing Qiu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| |
Collapse
|
3
|
Latham RL, Boyle JT, Barbano A, Loveman WG, Brown NA. Diverse mycotoxin threats to safe food and feed cereals. Essays Biochem 2023; 67:797-809. [PMID: 37313591 PMCID: PMC10500202 DOI: 10.1042/ebc20220221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Toxigenic fungi, including Aspergillus and Fusarium species, contaminate our major cereal crops with an array of harmful mycotoxins, which threaten the health of humans and farmed animals. Despite our best efforts to prevent crop diseases, or postharvest spoilage, our cereals are consistently contaminated with aflatoxins and deoxynivalenol, and while established monitoring systems effectively prevent acute exposure, Aspergillus and Fusarium mycotoxins still threaten our food security. This is through the understudied impacts of: (i) our chronic exposure to these mycotoxins, (ii) the underestimated dietary intake of masked mycotoxins, and (iii) the synergistic threat of cocontaminations by multiple mycotoxins. Mycotoxins also have profound economic consequences for cereal and farmed-animal producers, plus their associated food and feed industries, which results in higher food prices for consumers. Climate change and altering agronomic practices are predicted to exacerbate the extent and intensity of mycotoxin contaminations of cereals. Collectively, this review of the diverse threats from Aspergillus and Fusarium mycotoxins highlights the need for renewed and concerted efforts to understand, and mitigate, the increased risks they pose to our food and feed cereals.
Collapse
Affiliation(s)
- Rosie L Latham
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, U.K
- Department of Life Sciences, University of Bath, Bath, U.K
| | - Jeremy T Boyle
- Department of Life Sciences, University of Bath, Bath, U.K
| | - Anna Barbano
- Department of Life Sciences, University of Bath, Bath, U.K
| | | | - Neil A Brown
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, U.K
- Department of Life Sciences, University of Bath, Bath, U.K
| |
Collapse
|
4
|
Luan S, Chen Y, Wang X, Yan D, Xu J, Cui H, Huang Q. Synergy of cystamine and pyraclostrobin against Fusarium graminearum involves membrane permeability mitigation and autophagy enhancement. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105287. [PMID: 36464340 DOI: 10.1016/j.pestbp.2022.105287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
The application of fungicide mixture is one of the most important measures to extend the service life of highly selective fungicides. Pyraclostrobin (PYR), which has been extensively used to control plant diseases by inhibiting mitochondrial respiration of pathogenic fungi, is at a high risk of resistance development. In this study, the potential of PYR alone or in combination with cystamine, an inhibitor of microbial transglutaminase, to suppress Fusarium graminearum was tested in vitro and in vivo. A synergistic effect of PYR/CYS mixture was observed both in vitro and when applied to etiolated wheat coleoptile. The control effect of PYR/CYS mixture on F. graminearum was better than that of PYR alone, which was reflected by the increased protection effect. The discrepancies of membrane permeability and the redox-physiological state were observed between PYR and PYR/CYS treatments, suggesting that an increased PYR availability in F. graminearum mycelia could be related with the observed synergistic action. Moreover, a synergistic profile was observed between PYR and CYS in regard of massive autophagosomes in mycelia, indicating that enhanced autophagy could be involved in the mode of action of PYR/CYS mixture. The differential content of mitochondrial metabolites between PYR and PYR/CYS treatments also provided evidence for CYS contribution to the fungicidal action of PYR/CYS mixture. The results provide insight into the synergistic mechanism of action of PYR/CYS mixture and an effective way to enhance the efficiency of PYR to combat F. graminearum.
Collapse
Affiliation(s)
- Shaorong Luan
- College of Life Science, Wuchang University of Technology, Wuhan, 430223,PR China; Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan, 430223,PR China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaohua Wang
- College of Life Science, Wuchang University of Technology, Wuhan, 430223,PR China; Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan, 430223,PR China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hairong Cui
- College of Life Science, Wuchang University of Technology, Wuhan, 430223,PR China; Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, College of Life Science, Wuchang University of Technology, Wuhan, 430223,PR China.
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|