1
|
Surma A, Książkiewicz M, Bielski W, Kozak B, Galek R, Rychel-Bielska S. Development and validation of PCR marker array for molecular selection towards spring, vernalization-independent and winter, vernalization-responsive ecotypes of white lupin (Lupinus albus L.). Sci Rep 2025; 15:2659. [PMID: 39838084 PMCID: PMC11751487 DOI: 10.1038/s41598-025-86482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci. The present study aimed to develop and validate a versatile PCR marker array enabling molecular selection of spring- and winter-type white lupin ecotypes. Candidate DArT-seq and silicoDArT loci were transformed into cleaved amplified polymorphic sequence (CAPS) or derived CAPS markers. Developed markers, together with those previously published for LalbFTc1 INDELs and quantitative trait loci from linkage maps, were implemented for screening of white lupin germplasm panel subjected to 2-year phenotyping of phenology traits. Three DArT-seq, two silicoDArT and seven LalbFTc1 INDEL markers were positively validated, constituting a convenient PCR-based marker assay for rapid and accurate reselection of white lupin germplasm towards early flowering and thermoneutrality or late flowering and vernalization-responsiveness, as well as for tracking high genetic and phenotypic diversity within white lupin landraces, revealed in the present study.
Collapse
Affiliation(s)
- Anna Surma
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Książkiewicz
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Wojciech Bielski
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-631, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland
| |
Collapse
|
2
|
Schwertfirm G, Schneider M, Haase F, Riedel C, Lazzaro M, Ruge-Wehling B, Schweizer G. Genome-wide association study revealed significant SNPs for anthracnose resistance, seed alkaloids and protein content in white lupin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:155. [PMID: 38858311 PMCID: PMC11164739 DOI: 10.1007/s00122-024-04665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
White lupin (Lupinus albus L.) is a high-protein grain legume alternative to soybean in Central Europe, but its cultivation is risky due to the fungal disease anthracnose that can cause severe yield damage. In addition, management of seed alkaloids is critical for human nutrition and animal feed. We report on a white lupin collection of genebank accessions, advanced breeding lines and cultivars that was genotyped and phenotypically characterized for anthracnose resistance and seed alkaloids and protein levels. Using genotyping by sequencing (GBS), SeqSNP-targeted GBS, BiomarkX genotyping and Sanger sequencing, a genetic resource of genome-wide SNPs for white lupin was established. We determined anthracnose resistance in two years field trials at four locations with infection rows and measured seed alkaloids and protein levels by near-infrared spectroscopy (NIRS). Few white lupin breeding lines showed anthracnose resistance comparable or better than Celina and Frieda, currently the best commercial cultivars in Germany. NIRS estimates for seed alkaloids and protein levels revealed variation in the white lupin collection. Using genome-wide association studies (GWAS), we identified SNPs significantly associated with anthracnose resistance in the field representing known and new genomic regions. We confirmed the pauper locus and detected new SNP markers significantly associated with seed alkaloids. For the first time, we present loci associated with total grain protein content. Finally, we tested the potential of genomic prediction (GP) in predicting the phenotype of these three quantitative traits. Application of results and resources are discussed in the context of fostering breeding programs for white lupin.
Collapse
Affiliation(s)
- Grit Schwertfirm
- Bavarian State Research Center for Agriculture (LfL), Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany.
| | - Michael Schneider
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Box 219, 5070, Frick, Switzerland
| | - Florian Haase
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research On Agricultural Crops, Julius Kuehn-Institute (JKI), Rudolf Schick Platz 3a, 18190, Groß Lüsewitz, Germany
| | - Christine Riedel
- Bavarian State Research Center for Agriculture (LfL), Institute for Crop Science and Plant Breeding, Kleeberg 14, 94099, Ruhstorf a. d. Rott, Germany
| | - Mariateresa Lazzaro
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Box 219, 5070, Frick, Switzerland
| | - Brigitte Ruge-Wehling
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research On Agricultural Crops, Julius Kuehn-Institute (JKI), Rudolf Schick Platz 3a, 18190, Groß Lüsewitz, Germany
| | - Guenther Schweizer
- Bavarian State Research Center for Agriculture (LfL), Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| |
Collapse
|
3
|
Alkemade JA, Baroncelli R, Messmer MM, Hohmann P. Attack of the clones: Population genetics reveals clonality of Colletotrichum lupini, the causal agent of lupin anthracnose. MOLECULAR PLANT PATHOLOGY 2023; 24:616-627. [PMID: 37078402 PMCID: PMC10189766 DOI: 10.1111/mpp.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Colletotrichum lupini, the causative agent of lupin anthracnose, affects lupin cultivation worldwide. Understanding its population structure and evolutionary potential is crucial to design successful disease management strategies. The objective of this study was to employ population genetics to investigate the diversity, evolutionary dynamics, and molecular basis of the interaction of this notorious lupin pathogen with its host. A collection of globally representative C. lupini isolates was genotyped through triple digest restriction site-associated DNA sequencing, resulting in a data set of unparalleled resolution. Phylogenetic and structural analysis could distinguish four independent lineages (I-IV). The strong population structure and high overall standardized index of association (r̅d ) indicates that C. lupini reproduces clonally. Different morphologies and virulence patterns on white lupin (Lupinus albus) and Andean lupin (Lupinus mutabilis) were observed between and within clonal lineages. Isolates belonging to lineage II were shown to have a minichromosome that was also partly present in lineage III and IV, but not in lineage I isolates. Variation in the presence of this minichromosome could imply a role in host-pathogen interaction. All four lineages were present in the South American Andes region, which is suggested to be the centre of origin of this species. Only members of lineage II have been found outside South America since the 1990s, indicating it as the current pandemic population. As a seedborne pathogen, C. lupini has mainly spread through infected but symptomless seeds, stressing the importance of phytosanitary measures to prevent future outbreaks of strains that are yet confined to South America.
Collapse
Affiliation(s)
- Joris A. Alkemade
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
- Department of Agricultural and Food Sciences (DISTAL)University of BolognaBolognaItaly
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL)University of BolognaBolognaItaly
- Centre for Studies on Bioinspired Agro‐Enviromental Technology, Università di Napoli Federico IIPortici80055Italy
| | - Monika M. Messmer
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Pierre Hohmann
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
- Bonaplanta, BioCrops Innovations SLManresaSpain
| |
Collapse
|
4
|
Robas Mora M, Fernández Pastrana VM, Oliva LLG, Lobo AP, Jiménez Gómez PA. Plant growth promotion of the forage plant Lupinus albus Var. Orden Dorado using Pseudomonas agronomica sp. nov. and Bacillus pretiosus sp. nov. added over a valorized agricultural biowaste. Front Microbiol 2023; 13:1046201. [PMID: 36777023 PMCID: PMC9910085 DOI: 10.3389/fmicb.2022.1046201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction The overexploitation of natural ecosystems and the evolution of climate change currently force us to design new strategies for more sustainable agronomic uses. The recovery of plant residues, as an alternative to agrochemicals, can help alleviate these problems, for example, through its use for the synthesis of biofertilizers. In this work, the effect of the organic fertilizer matrix ORGAON® from the valorization of horticultural waste is tested, to which two strains of bacteria (and their consortium) are added (SAICEU11T identified as Bacillus pretiosus and SAICEU22T identified as Pseudomonas agronomica), selected for their demonstrated ability to promote plant growth (PGPB), on the lupine forage plant (Lupinus albus). Methods For the synthesis of the biofertilizer, both strains were added to the ORGAON® organic matrix separately, until reaching a final optical density (OD) of 0.5 McFarland in each case in the irrigation matrix. As a control, sterile ORGAON® (ORGAON®st) was used, also supplemented with the PGPB strains and a chemical fertilizer widely used in agronomy (Chem-F). With these treatments, a 6-week experiment was started under controlled laboratory conditions and on agricultural substrate, to recreate field conditions as accurately as possible. All the tests were carried out with 9 repetitions and 3 replicates of each treatment. After harvest, the improvements on the following biometric variables were studied for each treatment: total weight (Weight_T, g), shoot weight (Weight_S, g), root weight (Weight_R, g), number of leaves (Leaves, No.), shoot length (Length_S), root length (Length_R) and number of secondary roots (Roots, No.). Likewise, the identification of the tested strains and their description as new species was carried out. For this, they were studied from the phenotypic point of view (Transmission electron microscopy (TEM), metabolic profile, PGP activities, fatty acid profile and Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)) and genotypic (sequencing of the main housekeeping genes and sequencing of the whole genome, genomic characteristics (dDDH and ANI) and phylogenetic analysis). Results and discussion After the statistical analysis of the results, it is shown that the individual addition of both strains on the ORGAON® and ORGAON®st organic matrix improve certain biometric variables. In the case of the SAICEU11T (Bacillus pretiosus) strain, the variables root weight (Weight_R, g), total weight (Weight_T, g) and length of the plant, and number of secondary roots (Roots, No.) significantly improve, while in the case of the strain SAICEU22T (Pseudmonas agronomica), a significant improvement of root length (Length_R) and number of secondary roots (Roots, No.) is demonstrated. On the other hand, the genotaxonomic analysis showed that both species have not been described to date. The identification based on the main housekeeping genes, show that for the Bacillus strain (SAICEU11T) the sequence similarity of the 16S rRNA was 100%, gyrB 92.69%, rpoB 97.70% and rpoD 94.67%. For the Pseudomonas strain (SAICEU22T) the results were 100% for 16S rRNA, 98.43% for rpoD and 96.94% for gyrB. However, in both cases, the dDDH and ANI values, as well as the phylogenetic analysis, show that both species are below the species threshold, which would support the hypothesis that both are new species, in line with the chemotaxonomic results obtained by MALDI-TOF spectrometry and fatty acid profile. To verify the biosafety in their handling and release into the natural environment, we have ruled out the presence of genes that encode virulence factors or resistance to antibiotics, concluding that they are suitable for use in the field to improve the yield of crop plants. Type strains are SAICEU11T (= DSM 114702T = CECT30674T) for Bacillus pretiosus and SAICEU22T (= DSM 114959T = CECT30673T) for Pseudomonas agronomicae.
Collapse
Affiliation(s)
- Marina Robas Mora
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain,*Correspondence: Marina Robas Mora, ✉
| | - Vanesa M. Fernández Pastrana
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain,Vanesa M. Fernández Pastrana, ✉
| | | | - Agustín Probanza Lobo
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain
| | - Pedro A. Jiménez Gómez
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain,Pedro A. Jiménez Gómez, ✉
| |
Collapse
|
5
|
Alkemade JA, Nazzicari N, Messmer MM, Annicchiarico P, Ferrari B, Voegele RT, Finckh MR, Arncken C, Hohmann P. Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1011-1024. [PMID: 34988630 PMCID: PMC8942938 DOI: 10.1007/s00122-021-04014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 05/11/2023]
Abstract
GWAS identifies candidate gene controlling resistance to anthracnose disease in white lupin. White lupin (Lupinus albus L.) is a promising grain legume to meet the growing demand for plant-based protein. Its cultivation, however, is severely threatened by anthracnose disease caused by the fungal pathogen Colletotrichum lupini. To dissect the genetic architecture for anthracnose resistance, genotyping by sequencing was performed on white lupin accessions collected from the center of domestication and traditional cultivation regions. GBS resulted in 4611 high-quality single-nucleotide polymorphisms (SNPs) for 181 accessions, which were combined with resistance data observed under controlled conditions to perform a genome-wide association study (GWAS). Obtained disease phenotypes were shown to highly correlate with overall three-year disease assessments under Swiss field conditions (r > 0.8). GWAS results identified two significant SNPs associated with anthracnose resistance on gene Lalb_Chr05_g0216161 encoding a RING zinc-finger E3 ubiquitin ligase which is potentially involved in plant immunity. Population analysis showed a remarkably fast linkage disequilibrium decay, weak population structure and grouping of commercial varieties with landraces, corresponding to the slow domestication history and scarcity of modern breeding efforts in white lupin. Together with 15 highly resistant accessions identified in the resistance assay, our findings show promise for further crop improvement. This study provides the basis for marker-assisted selection, genomic prediction and studies aimed at understanding anthracnose resistance mechanisms in white lupin and contributes to improving breeding programs worldwide.
Collapse
Affiliation(s)
- Joris A Alkemade
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Nelson Nazzicari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Monika M Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland.
| | | | - Barbara Ferrari
- Research Centre for Animal Production and Aquaculture, CREA, Lodi, Italy
| | - Ralf T Voegele
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Christine Arncken
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
6
|
Zafeiriou I, Polidoros AN, Baira E, Kasiotis KM, Machera K, Mylona PV. Mediterranean White Lupin Landraces as a Valuable Genetic Reserve for Breeding. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112403. [PMID: 34834766 PMCID: PMC8619254 DOI: 10.3390/plants10112403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 05/21/2023]
Abstract
Legumes crops are important for sustainable agriculture and global food security. Among them white lupin (Lupinus albus L.), is characterized by exceptional protein content of high nutritional value, competitive to that of soybean (Glycine max) and is well adapted to rainfed agriculture. However, its high seed-quinolizidine alkaloid (QA) content impedes its direct integration to human diet and animal feed. Additionally, its cultivation is not yet intensive, remains confined to local communities and marginal lands in Mediterranean agriculture, while adaptation to local microclimates restrains its cultivation from expanding globally. Hence, modern white lupin breeding aims to exploit genetic resources for the development of "sweet" elite cultivars, resilient to biotic adversities and well adapted for cultivation on a global level. Towards this aim, we evaluated white lupin local landrace germplasm from Greece, since the country is considered a center of white lupin diversity, along with cultivars and breeding lines for comparison. Seed morphological diversity and molecular genetic relationships were investigated. Most of the landraces were distinct from cultivars, indicating the uniqueness of their genetic make-up. The presence of pauper "sweet" marker allele linked to low seed QA content in some varieties was detected in one landrace, two breeding lines, and the cultivars. However, QA content in the examined genotypes did not relate with the marker profile, indicating that the marker's predictive power is limited in this material. Marker alleles for vernalization unresponsiveness were detected in eight landraces and alleles for anthracnose resistance were found in two landraces, pointing to the presence of promising germplasm for utilization in white lupin breeding. The rich lupin local germplasm genetic diversity and the distinct genotypic composition compared to elite cultivars, highlights its potential use as a source of important agronomic traits to support current breeding efforts and assist its integration to modern sustainable agriculture.
Collapse
Affiliation(s)
- Ioannis Zafeiriou
- Institute of Plant Breeding & Genetic Resources, HAO-DEMETER, 57001 Thermi, Greece;
| | - Alexios N. Polidoros
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eirini Baira
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece; (E.B.); (K.M.K.); (K.M.)
| | - Konstantinos M. Kasiotis
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece; (E.B.); (K.M.K.); (K.M.)
| | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens, Greece; (E.B.); (K.M.K.); (K.M.)
| | - Photini V. Mylona
- Institute of Plant Breeding & Genetic Resources, HAO-DEMETER, 57001 Thermi, Greece;
- Correspondence: ; Tel.: +30-2310-478-904
| |
Collapse
|
7
|
A qPCR Assay for the Fast Detection and Quantification of Colletotrichum lupini. PLANTS 2021; 10:plants10081548. [PMID: 34451593 PMCID: PMC8401954 DOI: 10.3390/plants10081548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
White lupin (Lupinus albus) represents an important legume crop in Europe and other parts of the world due to its high protein content and potential for low-input agriculture. However, most cultivars are susceptible to anthracnose caused by Colletotrichum lupini, a seed- and air-borne fungal pathogen that causes severe yield losses. The aim of this work was to develop a C. lupini-specific quantitative real-time TaqMan PCR assay that allows for quick and reliable detection and quantification of the pathogen in infected seed and plant material. Quantification of C. lupini DNA in dry seeds allowed us to distinguish infected and certified (non-infected) seed batches with DNA loads corresponding to the disease score index and yield of the mother plants. Additionally, C. lupini DNA could be detected in infected lupin shoots and close to the infection site, thereby allowing us to study the disease cycle of this hemibiotrophic pathogen. This qPCR assay provides a useful diagnostic tool to determine anthracnose infection levels of white lupin seeds and will facilitate the use of seed health assessments as a strategy to reduce the primary infection source and spread of this disease.
Collapse
|
8
|
Genetic diversity of Colletotrichum lupini and its virulence on white and Andean lupin. Sci Rep 2021; 11:13547. [PMID: 34188142 PMCID: PMC8242092 DOI: 10.1038/s41598-021-92953-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Lupin cultivation worldwide is threatened by anthracnose, a destructive disease caused by the seed- and air-borne fungal pathogen Colletotrichum lupini. In this study we explored the intraspecific diversity of 39 C. lupini isolates collected from different lupin cultivating regions around the world, and representative isolates were screened for their pathogenicity and virulence on white and Andean lupin. Multi-locus phylogeny and morphological characterizations showed intraspecific diversity to be greater than previously shown, distinguishing a total of six genetic groups and ten distinct morphotypes. Highest diversity was found across South America, indicating it as the center of origin of C. lupini. The isolates that correspond to the current pandemic belong to a genetic and morphological uniform group, were globally widespread, and showed high virulence on tested white and Andean lupin accessions. Isolates belonging to the other five genetic groups were mostly found locally and showed distinct virulence patterns. Two highly virulent strains were shown to overcome resistance of advanced white lupin breeding material. This stresses the need to be careful with international seed transports in order to prevent spread of currently confined but potentially highly virulent strains. This study improves our understanding of the diversity, phylogeography and pathogenicity of a member of one of the world's top 10 plant pathogen genera, providing valuable information for breeding programs and future disease management.
Collapse
|
9
|
Quantitative Control of Early Flowering in White Lupin ( Lupinus albus L.). Int J Mol Sci 2021; 22:ijms22083856. [PMID: 33917799 PMCID: PMC8068107 DOI: 10.3390/ijms22083856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/03/2022] Open
Abstract
White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.
Collapse
|