1
|
Adeyemo A, Schmidt-Heydt M. Expansion of the multi-locus gene alignment approach to improve identification of the fungal species Alternaria alternata. Int J Food Microbiol 2024; 421:110746. [PMID: 38917488 DOI: 10.1016/j.ijfoodmicro.2024.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
Alternaria alternata is part of a genus comprised of over 600 different species that occur all over the world and cause damage to humans, plants and thereby to the economy. Yet, even though some species are causing tremendous issues, the past years have shown that assigning newly found isolates to known species was rather inconsistent. Most identifications are usually done on the basis of spore morphology, chemotype and molecular markers. In this work we used strains isolated from the wild as well as commercial strains of the DSMZ (German collection of microorganisms and cell cultures) as a reference, to show, that the variation within the Alternaria alternata species is comparable to the variation between different species of the genus Alternaria in regards to spore morphology and chemotype. We compared the different methods of identification and discerned the concatenation of multiple molecular markers as the deciding factor for better identification. Up until this point, usually a concatenation of two or three traditional molecular markers was used. Some of those markers being stronger some weaker. We show that the concatenation of five molecular markers improves the likeliness of a correct assignment, thus a better distinction between the different Alternaria species.
Collapse
Affiliation(s)
- Adetoye Adeyemo
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany.
| | - Markus Schmidt-Heydt
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany.
| |
Collapse
|
2
|
Lan Y, Yan Z, Duan T. Luobuma Leaf Spot Disease Caused by Alternaria tenuissima in China. J Fungi (Basel) 2023; 9:1062. [PMID: 37998868 PMCID: PMC10671953 DOI: 10.3390/jof9111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Luobuma (Apocynum venetum and Poacynum hendersonni) is widely cultivated for environmental conservation, medicinal purposes and the textile industry. In 2018, a severe leaf spot disease that attacked the leaves of Luobuma was observed in plants cultivated in Yuzhong County, Gansu Province, China. Symptoms of the disease appeared as white or off-white spots surrounded by brown margins on the leaves of A. venetum. The spots expanded and covered a large area of the leaf, presenting as "cankers" with progression of the disease, leading to leaf death. The initial symptoms of the disease on P. hendersonni were similar to the symptoms of A. venetum, with a larger disease spot than A. venetum, and the spot was black and thicker. The aim of this study was to identify the fungal species and evaluate the effectiveness of fungicides (hymexazol and zhongshengmycin) against the pathogen in vitro. The fungi species that caused the new disease was identified as Alternaria tenuissima based on the morphological characteristics, pathogenicity tests, and phylogenetic analysis of the internal transcribed spacer (ITS) region, glyceraldehyde 3-phosphate dehydrogenase (gpd), translation elongation factor 1-alpha (TEF) and the histone 3 (H3) gene sequences. The findings showed that hymexazol fungicide can be used to control leaf spot disease. This is the first report on Luobuma leaf spot disease caused by A. tenuissima in China.
Collapse
Affiliation(s)
- Yanru Lan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhichen Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
3
|
Einspanier S, Susanto T, Metz N, Wolters PJ, Vleeshouwers V, Lankinen Å, Liljeroth E, Landschoot S, Ivanović Ž, Hückelhoven R, Hausladen H, Stam R. Whole-genome sequencing elucidates the species-wide diversity and evolution of fungicide resistance in the early blight pathogen Alternaria solani. Evol Appl 2022; 15:1605-1620. [PMID: 36330303 PMCID: PMC9624079 DOI: 10.1111/eva.13350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Early blight of potato is caused by the fungal pathogen Alternaria solani and is an increasing problem worldwide. The primary strategy to control the disease is applying fungicides such as succinate dehydrogenase inhibitors (SDHI). SDHI-resistant strains, showing reduced sensitivity to treatments, appeared in Germany in 2013, shortly after the introduction of SDHIs. Two primary mutations in the SDH complex (SdhB-H278Y and SdhC-H134R) have been frequently found throughout Europe. How these resistances arose and spread, and whether they are linked to other genomic features, remains unknown. For this project, we performed whole-genome sequencing for 48 A. solani isolates from potato fields across Europe to better characterize the pathogen's genetic diversity in general and understand the development and spread of the genetic mutations that lead to SDHI resistance. The isolates can be grouped into seven genotypes. These genotypes do not show a geographical pattern but appear spread throughout Europe. We found clear evidence for recombination on the genome, and the observed admixtures might indicate a higher adaptive potential of the fungus than previously thought. Yet, we cannot link the observed recombination events to different Sdh mutations. The same Sdh mutations appear in different, non-admixed genetic backgrounds; therefore, we conclude they arose independently. Our research gives insights into the genetic diversity of A. solani on a genome level. The mixed occurrence of different genotypes, apparent admixture in the populations, and evidence for recombination indicate higher genomic complexity than anticipated. The conclusion that SDHI tolerance arose multiple times independently has important implications for future fungicide resistance management strategies. These should not solely focus on preventing the spread of isolates between locations but also on limiting population size and the selective pressure posed by fungicides in a given field to avoid the rise of new mutations in other genetic backgrounds.
Collapse
Affiliation(s)
| | - Tamara Susanto
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| | - Nicole Metz
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| | - Pieter J. Wolters
- Plant BreedingWageningen University and ResearchWageningenThe Netherlands
| | | | - Åsa Lankinen
- Department of Plant ProtectionSwedish University of Agricultural SciencesLommaSweden
| | - Erland Liljeroth
- Department of Plant ProtectionSwedish University of Agricultural SciencesLommaSweden
| | | | - Žarko Ivanović
- Institute for Plant Protection and EnvironmentBelgradeSerbia
| | - Ralph Hückelhoven
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| | - Hans Hausladen
- Plant Technology CentreTechnical University of MunichFreisingGermany
| | - Remco Stam
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| |
Collapse
|
4
|
Liu J, Sun Z, Zou Y, Li W, He F, Huang X, Lin C, Cai Q, Wisniewski M, Wu X. Pre- and postharvest measures used to control decay and mycotoxigenic fungi in potato ( Solanum tuberosum L.) during storage. Crit Rev Food Sci Nutr 2020; 62:415-428. [PMID: 32924541 DOI: 10.1080/10408398.2020.1818688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Potato (Solanum tuberosum L.), a worldwide, staple food crop, is susceptible to postharvest rots caused by a variety of fungal pathogens, including Fusarium spp., Alternaria spp., Phytophthora infestans, Helminthosporium solani, Rhizoctonia solani, and Colletotrichum coccodes. Rots resulting from infections by these pathogens cause a significant reduction in potato quality and marketable yield. Importantly, some of these decay fungi also produce mycotoxins that represent a potential risk to human health. In the present review, an overview and discussion are provided on the epidemiology and pathogenesis of decay fungi, especially Fusarium spp., that include recent data derived from genomic and phylogenetic analyses. The biosynthesis and functional role of fungitoxic metabolites such as trichothecene mycotoxins and fusaric acid, produced in rotted potatoes are also reviewed. Advances in pre- and postharvest measures for rot management, especially eco-friendly methods including physical control, biological control, the use of natural compounds, and other agricultural management practices are also reviewed. Lastly, novel approaches to control potato dry rot such as the use of mycoviruses and CRISPR technology are highlighted.
Collapse
Affiliation(s)
- Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Zhiqiang Sun
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Yuping Zou
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Wenhua Li
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Fangyun He
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Xiaoya Huang
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Chenglin Lin
- Yantai Lvyun Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Liu J, Zhang X, Kennedy JF, Jiang M, Cai Q, Wu X. Chitosan induces resistance to tuber rot in stored potato caused by Alternaria tenuissima. Int J Biol Macromol 2019; 140:851-857. [PMID: 31470051 DOI: 10.1016/j.ijbiomac.2019.08.227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/16/2023]
Abstract
Alternaria tenuissima infects stored potatoes, and causes tuber rot, resulting in significant economic losses. As a naturally-occurring polysaccharide (poly-β-(1 → 4) N-acetyl-D-glucosamine), chitosan has been reported to be an eco-friendly alternative to synthetic fungicides for the control of postharvest diseases on agricultural commodities. In this study, application of 0.25-1.25 g/L chitosan significantly inhibited spore germination and mycelial growth of A. tenuissima in vitro, with the greatest inhibitory effect observed at the highest concentration. Cytological and biochemical analysis of A. tenuissima spores indicated that exposure to 1.25 g/L chitosan significantly damaged the plasma membrane and increased the level of lipid oxidation. Gene expression analysis in potato tuber revealed that an application of 1.25 g/L chitosan induced the expression of defense-related genes, including catalase, peroxidase, polyphenol oxidase, chitinase and β-1,3-glucanase, and the level of flavonoids and lignin. Chitosan effectively controlled tuber rot caused by A. tenuissima. Collectively, results of the current study indicate that the ability of chitosan to reduce Alternaria rot in stored potato tubers is due to its direct antifungal activity and its ability to induce defense responses in potato tuber tissues. Chitosan may have the potential as a substitute for synthetic fungicides to reduce postharvest losses in potato.
Collapse
Affiliation(s)
- Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Xiaofang Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House Tenbury Wells, Worcestershire WR15 8SG, UK
| | - Mingguo Jiang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Identification of A. arborescens, A. grandis, and A. protenta as new members of the European Alternaria population on potato. Fungal Biol 2017; 121:172-188. [DOI: 10.1016/j.funbio.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 11/24/2022]
|