1
|
Osdaghi E, Robertson AE, Jackson-Ziems TA, Abachi H, Li X, Harveson RM. Clavibacter nebraskensis causing Goss's wilt of maize: Five decades of detaining the enemy in the New World. MOLECULAR PLANT PATHOLOGY 2023; 24:675-692. [PMID: 36116105 DOI: 10.1111/mpp.13268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/11/2023]
Abstract
Goss's bacterial wilt and leaf blight of maize (Zea mays) caused by the gram-positive coryneform bacterium Clavibacter nebraskensis is an economically important disease in North America. C. nebraskensis is included within the high-risk list of quarantine pathogens by several plant protection organizations (EPPO code: CORBMI), hence it is under strict quarantine control around the world. The causal agent was reported for the first time on maize in Nebraska (USA) in 1969. After an outbreak during the 1970s, prevalence of the disease decreased in the 1980s to the early 2000s, before the disease resurged causing a serious threat to maize production in North America. The re-emergence of Goss's wilt in the corn belt of the United States led to several novel achievements in understanding the pathogen biology and disease control. In this review, we provide an updated overview of the pathogen taxonomy, biology, and epidemiology as well as management strategies of Goss's wilt disease. First, a taxonomic history of the pathogen is provided followed by symptomology and host range, genetic diversity, and pathogenicity mechanisms of the bacterium. Then, utility of high-throughput molecular approaches in the precise detection and identification of the pathogen and the management strategies of the disease are explained. Finally, we highlight the role of integrated pest management strategies to combat the risk of Goss's wilt in the 21st century maize industry. DISEASE SYMPTOMS Large (2-15 cm) tan to grey elongated oval lesions with wavy, irregular water-soaked margins on the leaves. The lesions often start at the leaf tip or are associated with wounding caused by hail or wind damage. Small (1 mm in diameter), dark, discontinuous water-soaked spots, known as "freckles", can be observed in the periphery of lesions. When backlit, the freckles appear translucent. Early infection (prior to growth stage V6) may become systemic and cause seedlings to wilt, wither, and die. Coalescence of lesions results in leaf blighting. HOST RANGE Maize (Zea mays) is the only economic host of the pathogen. A number of Poaceae species are reported to act as secondary hosts for C. nebraskensis. TAXONOMIC STATUS OF THE PATHOGEN Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter nebraskensis. SYNONYMS Corynebacterium nebraskense (Schuster, 1970) Vidaver & Mandel 1974; Corynebacterium michiganense pv. nebraskense (Vidaver & Mandel 1974) Dye & Kemp 1977; Corynebacterium michiganense subsp. nebraskense (Vidaver & Mandel 1974) Carlson & Vidaver 1982; Clavibacter michiganense subsp. nebraskense (Vidaver & Mandel 1974) Davis et al. 1984; Clavibacter michiganensis subsp. nebraskensis (Vidaver & Mandel 1974) Davis et al. 1984. TYPE MATERIALS ATCC 27794T ; CFBP 2405T ; ICMP 3298T ; LMG 3700T ; NCPPB 2581T . MICROBIOLOGICAL PROPERTIES Cells are gram-positive, orange-pigmented, pleomorphic club- or rod-shaped, nonspore-forming, nonmotile, and without flagella, approximately 0.5 × 1-2.0 μm. DISTRIBUTION The pathogen is restricted to Canada and the United States. PHYTOSANITARY CATEGORIZATION EPPO code CORBNE.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Alison E Robertson
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tamra A Jackson-Ziems
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Xiang Li
- Canadian Food Inspection Agency, Charlottetown Laboratory, Charlottetown, Prince Edward Island, Canada
| | - Robert M Harveson
- Panhandle Research & Extension Center, University of Nebraska, Scottsbluff, Nebraska, USA
| |
Collapse
|
2
|
Shumilak A, El-Shetehy M, Soliman A, Tambong JT, Daayf F. Goss's Wilt Resistance in Corn Is Mediated via Salicylic Acid and Programmed Cell Death but Not Jasmonic Acid Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:1475. [PMID: 37050101 PMCID: PMC10097360 DOI: 10.3390/plants12071475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A highly aggressive strain (CMN14-5-1) of Clavibacter nebraskensis bacteria, which causes Goss's wilt in corn, induced severe symptoms in a susceptible corn line (CO447), resulting in water-soaked lesions followed by necrosis within a few days. A tolerant line (CO450) inoculated with the same strain exhibited only mild symptoms such as chlorosis, freckling, and necrosis that did not progress after the first six days following infection. Both lesion length and disease severity were measured using the area under the disease progression curve (AUDPC), and significant differences were found between treatments. We analyzed the expression of key genes related to plant defense in both corn lines challenged with the CMN14-5-1 strain. Allene oxide synthase (ZmAOS), a gene responsible for the production of jasmonic acid (JA), was induced in the CO447 line in response to CMN14-5-1. Following inoculation with CMN14-5-1, the CO450 line demonstrated a higher expression of salicylic acid (SA)-related genes, ZmPAL and ZmPR-1, compared to the CO447 line. In the CO450 line, four genes related to programmed cell death (PCD) were upregulated: respiratory burst oxidase homolog protein D (ZmrbohD), polyphenol oxidase (ZmPPO1), ras-related protein 7 (ZmRab7), and peptidyl-prolyl cis-trans isomerase (ZmPPI). The differential gene expression in response to CMN14-5-1 between the two corn lines provided an indication that SA and PCD are involved in the regulation of corn defense responses against Goss's wilt disease, whereas JA may be contributing to disease susceptibility.
Collapse
Affiliation(s)
- Alexander Shumilak
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Genetics, Faculty of Agriculture, University of Tanta, Tanta 31527, Egypt
| | - James T Tambong
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
4
|
Mullens A, Jamann TM. Colonization and Movement of Green Fluorescent Protein-Labeled Clavibacter nebraskensis in Maize. PLANT DISEASE 2021; 105:1422-1431. [PMID: 33190611 DOI: 10.1094/pdis-08-20-1823-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clavibacter nebraskensis causes Goss's bacterial wilt and leaf blight, a major disease of maize. Infected crop residue is the primary inoculum source and infection can occur via wounds or natural openings, such as stomata or hydathodes. The use of resistant hybrids is the primary control method for Goss's wilt. In this study, colonization and movement patterns of C. nebraskensis during infection were examined using green fluorescent protein (GFP)-labeled bacterial strains. We successfully introduced a plasmid to C. nebraskensis via electroporation, which resulted in GFP accumulation. Fluorescence microscopy revealed that in the absence of wounding, bacteria colonize leaf tissue via entry through the hydathodes when guttation droplets are present. Stomatal penetration was not observed under natural conditions. Bacteria initially colonize the xylem and subsequently the mesophyll, which creates the freckles that are characteristic of the disease. Bacteria infiltrated into the mesophyll did not cause disease symptoms, could not enter the vasculature, and did not spread from the initial inoculation point. Bacteria were observed exuding through stomata onto the leaf surface, resulting in the characteristic sheen of diseased leaves. Resistant maize lines exhibited decreased bacterial spread in the vasculature and the mesophyll. These tools to examine C. nebraskensis movement offer opportunities and new insights into the pathogenesis process and can form the basis for improved Goss's wilt management through host resistance.
Collapse
Affiliation(s)
- Alexander Mullens
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Tiffany M Jamann
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
5
|
Soliman A, Rampitsch C, Tambong JT, Daayf F. Secretome Analysis of Clavibacter nebraskensis Strains Treated with Natural Xylem Sap In Vitro Predicts Involvement of Glycosyl Hydrolases and Proteases in Bacterial Aggressiveness. Proteomes 2021; 9:1. [PMID: 33435483 PMCID: PMC7839047 DOI: 10.3390/proteomes9010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Gram-positive bacterium Clavibacter nebraskensis (Cn) causes Goss's wilt and leaf blight on corn in the North American Central Plains with yield losses as high as 30%. Cn strains vary in aggressiveness on corn, with highly aggressive strains causing much more serious symptoms and damage to crops. Since Cn inhabits the host xylem, we investigated differences in the secreted proteomes of Cn strains to determine whether these could account for phenotypic differences in aggressiveness. Highly and a weakly aggressive Cn strains (Cn14-15-1 and DOAB232, respectively) were cultured, in vitro, in the xylem sap of corn (CXS; host) and tomato (TXS; non-host). The secretome of the Cn strains were extracted and processed, and a comparative bottom-up proteomics approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine their identities and concentration. Relative quantitation of peptides was based on precursor ion intensities to measure protein abundances. In total, 745 proteins were identified in xylem sap media. In CXS, a total of 658 and 396 proteins were identified in strains Cn14-5-1 and DOAB232, respectively. The unique and the differentially abundant proteins in the secretome of strain Cn14-5-1 were higher in either sap medium compared to DOAB232. These proteins were sorted using BLAST2GO and assigned to 12 cellular functional processes. Virulence factors, e.g., cellulase, β-glucosidase, β-galactosidase, chitinase, β-1,4-xylanase, and proteases were generally higher in abundance in the aggressive Cn isolate. This was corroborated by enzymatic activity assays of cellulase and protease in CXS. These proteins were either not detected or detected at significantly lower abundance levels in Cn strains grown in non-host xylem sap (tomato), suggesting potential factors involved in Cn-host (corn) interactions.
Collapse
Affiliation(s)
- Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Genetics, Faculty of Agriculture, University of Tanta, Tanta, Gharbiya 31111, Egypt
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Christof Rampitsch
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | | | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
6
|
Identification of Loci That Confer Resistance to Bacterial and Fungal Diseases of Maize. G3-GENES GENOMES GENETICS 2020; 10:2819-2828. [PMID: 32571803 PMCID: PMC7407448 DOI: 10.1534/g3.120.401104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Crops are hosts to numerous plant pathogenic microorganisms. Maize has several major disease issues; thus, breeding multiple disease resistant (MDR) varieties is critical. While the genetic basis of resistance to multiple fungal pathogens has been studied in maize, less is known about the relationship between fungal and bacterial resistance. In this study, we evaluated a disease resistance introgression line (DRIL) population for the foliar disease Goss’s bacterial wilt and blight (GW) and conducted quantitative trait locus (QTL) mapping. We identified a total of ten QTL across multiple environments. We then combined our GW data with data on four additional foliar diseases (northern corn leaf blight, southern corn leaf blight, gray leaf spot, and bacterial leaf streak) and conducted multivariate analysis to identify regions conferring resistance to multiple diseases. We identified 20 chromosomal bins with putative multiple disease effects. We examined the five chromosomal regions (bins 1.05, 3.04, 4.06, 8.03, and 9.02) with the strongest statistical support. By examining how each haplotype effected each disease, we identified several regions associated with increased resistance to multiple diseases and three regions associated with opposite effects for bacterial and fungal diseases. In summary, we identified several promising candidate regions for multiple disease resistance in maize and specific DRILs to expedite interrogation.
Collapse
|
7
|
Owusu V, Mira M, Soliman A, Adam LR, Daayf F, Hill RD, Stasolla C. Suppression of the maize phytoglobin ZmPgb1.1 promotes plant tolerance against Clavibacter nebraskensis. PLANTA 2019; 250:1803-1818. [PMID: 31456046 DOI: 10.1007/s00425-019-03263-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Suppression of the maize phytoglobin ZmPgb1.1 enhances tolerance against Clavibacter nebraskensis by promoting hypersensitive response mechanisms mediated by ethylene and reactive oxygen species. Suppression of the maize phytoglobin, ZmPgb1.1, reduced lesion size and disease severity in leaves following inoculation with Clavibacter nebraskensis, the causal agent of Goss's bacterial wilt disease of corn. These effects were associated with an increase of the transcriptional levels of ethylene biosynthetic and responsive genes, which resulted in the accumulation of reactive oxygen species (ROS) and TUNEL-positive nuclei in the proximity of the inoculation site. An in vitro system, in which maize cells were treated with induced xylem sap, was employed to define the cause-effect relationship of these events. Phytoglobins (Pgbs) are hemoglobins able to scavenge nitric oxide (NO). Suppression of ZmPgb1.1 elevated the level of NO in cells exposed to the induced xylem sap causing a rise in the transcript levels of ethylene biosynthesis and response genes, as well as ethylene. Accumulation of ethylene in the same cells was sufficient to elevate the amount of reactive oxygen species (ROS), through the activation of the respiratory burst oxidase homologs (Rboh) genes, and trigger programmed cell death (PCD). The sequence of these events was demonstrated by manipulating the content of NO and ethylene in culture through pharmacological treatments. Collectively, our results illustrated that suppression of ZmPgb1.1 evokes tolerance against C. nebraskensis culminating in the execution of PCD, a key step of the hypersensitive response.
Collapse
Affiliation(s)
- V Owusu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - M Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - A Soliman
- Department of Genetics, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - L R Adam
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - F Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - R D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - C Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Caldwell D, Iyer-Pascuzzi AS. A Scanning Electron Microscopy Technique for Viewing Plant-Microbe Interactions at Tissue and Cell-Type Resolution. PHYTOPATHOLOGY 2019; 109:1302-1311. [PMID: 30694115 DOI: 10.1094/phyto-07-18-0216-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Observing pathogen colonization and localization within specific plant tissues is a critical component of plant pathology research. High-resolution imaging, in which the researcher can clearly view the plant pathogen interacting with a specific plant cell, is needed to enhance our understanding of pathogen lifestyle and virulence mechanisms. However, it can be challenging to find the pathogen along the plant surface or in a specific cell type. Because of the time-consuming and expensive nature of high-resolution microscopy, techniques that allow a researcher to find a region of pathogen colonization more quickly at low resolution and subsequently move to a high-resolution microscope for detailed observation are needed. Here we present paraffin scanning electron microscopy (PSEM), a technique in which paraffin-embedded samples are first sectioned to identify a region of interest. Subsequently the same block is recut, deparaffinized, and used in scanning electron microscopy (SEM) to generate high-resolution images of plant-pathogen interactions in specific plant cell types. This method has several additional advantages over traditional SEM techniques, including reduced noise and better image quality. Here we use this technique to show that Fusarium oxysporum f. sp. lycopersici colonization is restricted in resistant Solanum pimpinellifolium and that PSEM works well in additional pathosystems, including maize leaves and Clavibacter michiganensis subsp. nebraskensis and Arabidopsis leaves and Pseudomonas syringae.
Collapse
Affiliation(s)
- Denise Caldwell
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN 47907
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
9
|
Langemeier CB, Robertson AE, Wang D, Jackson-Ziems TA, Kruger GR. Factors Affecting the Development and Severity of Goss's Bacterial Wilt and Leaf Blight of Corn, Caused by Clavibacter michiganensis subsp. nebraskensis. PLANT DISEASE 2017; 101:54-61. [PMID: 30682309 DOI: 10.1094/pdis-01-15-0038-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Goss's bacterial wilt and leaf blight, which is caused by Clavibacter michiganensis subsp. nebraskensis, is a disease of corn (Zea mays) that has been increasingly reported across the Midwest since its reemergence in western Nebraska, northeastern Colorado, and southeastern Wyoming during the 2006 growing season. The objective of this study was to identify environmental and agronomic factors contributing to the incidence of the disease across the Corn Belt through a multistate survey conducted during the 2011 growing season. Of the 2,400 surveys distributed throughout nine states, 486 were returned with corn leaf samples, of which 70% tested positive for C. michiganensis subsp. nebraskensis using an enzyme-linked immunosorbent assay. The agronomic data associated with each field were analyzed using classification and regression tree and random forest analyses to identify the factors that contributed most to Goss's bacterial wilt and leaf blight development. A χ2 test of independence was also done to determine relationships between certain variables and disease incidence. The two best predictors of Goss's bacterial wilt and leaf blight were hybrid resistance to Goss's bacterial wilt and leaf blight, as indicated by the seed companies' score and a planting population density >67,500 plants ha-1. Other important predictors included longitude, planting date, crop rotation, percent residue, yield history, tillage, and growth stage. Relationships between glyphosate applications, foliar fungicide applications, and corn rootworm beetle with samples testing positive for C. michiganensis subsp. nebraskensis were also detected. These data contribute to our understanding of factors that increase the risk of Goss's bacterial wilt and leaf blight, and should enable more effective management practices to be adopted or developed.
Collapse
Affiliation(s)
| | | | - Dong Wang
- Statistics and Mathematics Group, Dow AgroSciences, formerly Department of Statistics, University of Nebraska-Lincoln
| | | | - Greg R Kruger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| |
Collapse
|