1
|
Lakshminarayana Reddy CN, Venkataravanappa V, Chowdappa A, Shridhar H, Mantesh M, Vinaykumar HD, Krishna Reddy M. Complete genome characterization of chilli veinal mottle virus associated with mosaic and mottling disease of tomato and development of LAMP assay for quick detection. 3 Biotech 2024; 14:139. [PMID: 38682094 PMCID: PMC11052978 DOI: 10.1007/s13205-024-03984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Chilli veinal mottle virus (ChiVMV) is a potyvirus known to cause havoc in many solanaceous crops. Samples from tomato plants exhibiting typical mosaic and mottling symptoms in two locations from farmers' fields were collected and tested using DAC ELISA for the presence of ChiVMV and other viruses known to infect tomato. ChiVMV Gauribidanur isolate from infected tomato was mechanically inoculated to Datura metel, Nicotiana tabacum, Nicotiana benthamiana, Nicotiana glutinosa, chilli, and tomato plants which exhibited systemic mosaic and mottling symptoms 10 days post-inoculation. This results were further confirmed by RT-PCR and DAC ELISA using CP gene-specific primers and ChiVMV antisera, respectively. Transmission electron microscopy revealed the presence of long filamentous particles (800 × 11 nm) resembling viruses in the Potyviridae family. The complete genome of ChiVMV comprised 9716 nucleotides except for poly A tail, with a predicted open reading frame spanning 9270 nucleotides encoding polyproteins of 3089 amino acids. Comparative analysis revealed that ChiVMV-tomato isolates reported across the world shared maximum nucleotide identity (93-96.7%) with chilli isolates from India and Pakistan. These results were well supported by sequence demarcation analysis. Further, the Neibhor-Net network analysis of the complete genome of ChiVMV-tomato, along with other host isolates, formed a reticular network phylogenetic tree suggesting recombination events. Subsequently, RDP5 detected intra-specific recombination breakpoints at the positions 1656-5666 nucleotides with major parent ChiVMV (MN508960) Uravakonda and minor parent ChiVMV (MN508956) with a significant average p value of 1.905 × 10-22. The LAMP assay using ChiVMV-specific primers resulted in ladder-like amplified products on electrophoresed gel and a distinct red colour pattern with hydroxy naphthalene blue, indicating a positive reaction for the presence of ChiVMV in infected tomato samples. To validate LAMP-designed primers, RNA extracted from ChiVMV-infected tomato, chilli, datura, and tobacco samples were subjected to LAMP assay and it accurately detected the presence of ChiVMV in infected plant samples. Overall, this study provides holistic information of ChiVMV infecting tomato, spanning diagnosis, transmission, genetic characterization, and detection of recombination events, which collectively contribute to effective disease management, crop protection, and informed decision-making in agricultural practices.
Collapse
Affiliation(s)
- C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - V. Venkataravanappa
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - A. Chowdappa
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - H. Shridhar
- CSIR- North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - M. Mantesh
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - H. D. Vinaykumar
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - M. Krishna Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| |
Collapse
|
2
|
Riaz T, Ashfaq M, Khan Z. Evaluation of the Chilli veinal mottle virus CP gene expressing transgenic Nicotiana benthamiana plants for disease resistance against the virus. BRAZ J BIOL 2021; 82:e243692. [PMID: 34161429 DOI: 10.1590/1519-6984.243692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022] Open
Abstract
Vegetables are an important source of income and high-value crops for small farmers. Chilli (Capsicum spp.) is one of the most economically important vegetables of Pakistan and it is grown throughout the country. It is a rich source of nutrition especially vitamins A, B, C and E along with minerals as folic acid, manganese (Mn), potassium (K) and molybdenum (Mo). Chilli possesses seven times more amount of vitamin C than an orange. Vitamin A, C and beta-carotenoids are strong antioxidants to scavenge the free radicals. Chilli production is restricted due to various biotic factors. Among these viruses, Chilli veinal mottle virus (ChiVMV) is one of the most destructive and menacing agents that inflicts heavy and colossal losses that accounted for 50% yield loss both in quality and quantity. Pathogen-Derived Resistance (PDR) approach is considered one of the effective approaches to manage plant viruses. In this study, ChiVMV was characterized on a molecular level, the coat protein (CP) gene of the virus was stably transformed into Nicotiana benthamiana plants using Agrobacterium tumefaciens. The transgenic plants were challenged with the virus to evaluate the level of resistance of plants against the virus. It was observed that the plants expressing CP gene have partial resistance against the virus in terms of symptoms' development and virus accumulation. Translation of this technique into elite chilli varieties will be resulted to mitigate the ChiVMV in the crop as well as an economic benefit to the farmers.
Collapse
Affiliation(s)
- T Riaz
- PMAS-Arid Agriculture University, Department of Plant Pathology, Rawalpindi, Pakistan
| | - M Ashfaq
- MNS University of Agriculture, Institute of Plant Protection - IPP, Plant Pathology, Multan, Pakistan
| | - Z Khan
- MNS University of Agriculture, Institute of Plant Breeding and Biotechnology - IPBB, Multan, Pakistan
| |
Collapse
|
3
|
Rao S, Chen X, Qiu S, Peng J, Zheng H, Lu Y, Wu G, Chen J, Jiang W, Zhang Y, Yan F. Identification of Two New Isolates of Chilli veinal mottle virus From Different Regions in China: Molecular Diversity, Phylogenetic and Recombination Analysis. Front Microbiol 2020; 11:616171. [PMID: 33424819 PMCID: PMC7785935 DOI: 10.3389/fmicb.2020.616171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/01/2020] [Indexed: 12/01/2022] Open
Abstract
Chilli veinal mottle virus (ChiVMV) is an important plant pathogen with a wide host range, causing serious yield losses in pepper production all over the world. Recombination is a major evolutionary event for single-stranded RNA viruses, which helps isolates adapt to new environmental conditions and hosts. Recombination events have been identified in multiple potyviruses, but so far, there have been no reports of recombination events among the ChiVMV population. We here detected ChiVMV in pepper samples collected from Guangxi and Yunnan provinces for the first time and amplified the nearly full-length sequences. Phylogenetic and recombination analysis were performed using the new sequences and the 14 full-length and 23 capsid protein (CP) sequences available in GenBank. Isolates tend to cluster on a geographical basis, indicating that geographic-driven evolution may be an important determinant of ChiVMV genetic differences. A total of 10 recombination events were detected among the ChiVMV sequences using RDP4 with a strict algorithm, and both the Guangxi and Yunnan isolates were identified as recombinants. Recombination appears to be a significant factor affecting the diversity of ChiVMV isolates.
Collapse
Affiliation(s)
- Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiyou Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Wen Jiang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yachun Zhang
- Dali Bai Autonomous Prefecture Academy of Agricultural Science and Extension, Dali, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Jiao Y, Xu C, Li J, Gu Y, Xia C, Xie Q, Xie Y, An M, Xia Z, Wu Y. Characterization and a RT-RPA assay for rapid detection of Chilli Veinal mottle virus (ChiVMV) in tobacco. Virol J 2020; 17:33. [PMID: 32156292 PMCID: PMC7065361 DOI: 10.1186/s12985-020-01299-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chilli veinal mottle virus (ChiVMV), which belongs to the genus Potyvirus of the family Potyviridae, mainly infects solanaceous plants and has caused serious economic losses in Asia and Africa. Tobacco plants infected with ChiVMV suffered from punctate necrosis of leaves, leaf deformation, systemic necrosis of leaves and stems, and eventually plant death. However, ChiVMV infection could not usually be identified given the lack of rapid and efficient detection assays in tobacco plants. Therefore, an isolate of tobacco-infecting ChiVMV (ChiVMV-LZ) was obtained, and a novel isothermal amplification and detection technique, reverse transcription-recombinase polymerase amplification (RT-RPA), was established to detect ChiVMV in tobacco plants. METHODS In this study, the full-length genome of ChiVMV-LZ was obtained using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) assays. The genome sequence of ChiVMV-LZ was characterized by sequence alignment and phylogenetic analysis. Then, a RT-RPA assay was established for rapid and sensitive detection of ChiVMV-LZ in tobacco. Additionally, the established RT-RPA assay was compared to the RT-PCR assay in aspect of sensitivity and application in field-collected tobacco samples. RESULTS ChiVMV-LZ was isolated from diseased tobacco in Luzhou, Sichuan, China. The tobacco plants inoculated with ChiVMV-LZ showed typical symptoms of yellow and round spots on the leaves, and curled and folded leaf margin, similar to those observed on naturally ChiVMV-infected tobacco in the field. The full-length genomic sequence of ChiVMV-LZ was determined to be 9742 nucleotides. Sequence alignment and phylogenetic analysis showed that ChiVMV-LZ was most closely related to ChiVMV-Yp8 isolated from pepper plants in Sichuan province while distantly related to ChiVMV-YN from tobacco in Yunnan province, indicating a possibly geographical differentiation of ChiVMV isolates. Additionally, a RT-RPA assay was established for rapid detection of ChiVMV in tobacco. The RT-RPA has no cross-reaction with other related tobacco viruses and is about 10-fold more sensitive than conventional RT-PCR method. CONCLUSION The characterization of ChiVMV-LZ infecting tobacco was determined, and the established RT-RPA assay provides a reliable and effective method for rapid detection of ChiVMV in tobacco.
Collapse
Affiliation(s)
- Yubing Jiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chuantao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
- Luzhou City Company of Sichuan Tobacco Company, Luzhou, 646000, China
| | - Jialun Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yong Gu
- Luzhou City Company of Sichuan Tobacco Company, Luzhou, 646000, China
| | - Chun Xia
- Luzhou City Company of Sichuan Tobacco Company, Luzhou, 646000, China
| | - Qiang Xie
- Luzhou City Company of Sichuan Tobacco Company, Luzhou, 646000, China
| | - Yunbo Xie
- Sichuan Province Company of China Tobacco Corporation, Chengdu, 610041, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
5
|
Gong D, Wang JH, Lin ZS, Zhang SY, Zhang YL, Yu NT, Xiong Z, Liu ZX. Genomic sequencing and analysis of Chilli ringspot virus, a novel potyvirus. Virus Genes 2011; 43:439-44. [PMID: 21847573 DOI: 10.1007/s11262-011-0652-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/30/2011] [Indexed: 12/01/2022]
Abstract
Chilli ringspot virus (ChiRSV), a novel potyvirus, was recently found in Hainan, China with high prevalence. The genomic sequence of the ChiRSV-HN/14 isolate was determined by sequencing overlapping cDNA segments generated by reverse transcription polymerase chain reaction with degenerate and/or specific primers. ChiRSV genome (GenBank Acc. no. JN008909) comprised of 9,571 nucleotides (nt) excluding the 3'-terminal poly (A) tail and contained a large open reading frame of 9,240 nt encoding a large polyprotein of 3,079 amino acids with predicted Mr of 349.1 kDa. A small, overlapping PIPO coding region was also found to span from nt 2,913 to 3,095, with a capacity to encode a peptide of 60 amino acids. ChiRSV shares sequence identities of only 48.5-65.4 and 42.9-68.7% with closely related potyviruses at the nucleotide and the amino acid levels, respectively. Phylogenetic analysis of the genomic sequences provided further evidence that ChiRSV is a distinct species of the Potyvirus genus. ChiRSV-HN/14 is most closely related to Tobacco vein banding mosaic virus and two other pepper-infecting potyviruses.
Collapse
Affiliation(s)
- Dian Gong
- Chinese Academy of Tropical Agriculture Science, Haikou, Hainan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|