1
|
Li P, Zhu JZ, Li XG, Zhong J. Identification and Characterization of Colletotrichum fructicola and Colletotrichum siamense Causing Anthracnose on Luffa Sponge Gourd in China. PLANTS (BASEL, SWITZERLAND) 2022; 11:1537. [PMID: 35736688 PMCID: PMC9228988 DOI: 10.3390/plants11121537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Luffa sponge gourd (Luffa cylindrica) is an important cucurbitaceous vegetable and is known as the source of loofah. From 2020 to 2021, a leaf disease occurred on luffa leaves in the Hunan Province of China. Symptoms were displayed as oval to irregular chlorotic lesions surrounded by yellow halos. The pathogens were isolated from the affected leaves. According to morphological characterization and molecular identification using multi-locus phylogenetic analysis of the internal transcribed spacer (ITS), actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-tubulin (TUB2), and partial mating type (Mat1-2) gene (ApMAT) regions, the pathogens were identified as two Colletotrichum species: Colletotrichum fructicola and C. siamense. Koch's postulates were identified by a pathogenicity test and re-confirmation. To the best of our knowledge, C. fructicola and C. siamense are two new species associated with luffa sponge gourd anthracnose.
Collapse
Affiliation(s)
- Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (P.L.); (J.-Z.Z.)
| | - Jun-Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (P.L.); (J.-Z.Z.)
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China
| | - Xiao-Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha 410128, China; (P.L.); (J.-Z.Z.)
| |
Collapse
|
2
|
Abstract
Basil downy mildew (BDM) caused by the oomycete Peronospora belbahrii is a destructive disease of sweet basil (Ocimum basilicum) worldwide. It originated in Uganda in the 1930s and recently spread to Europe, the Middle East, Americas, and the Far East. Seed transmission may be responsible for its quick global spread. The pathogen attacks leaf blades, producing chlorotic lesions with ample dark asexual spores on the lower leaf surface. Oospores may form in the mesophyll of infected leaves. The asexual spores germinate on a wet leaf surface within 2 h and penetrate into the epidermis within 4 h. Spore germination and infection occur at a wide range of temperatures from 5 to 28.5°C. Infection intensity depends on the length of dew period, leaf temperature, and inoculum dose. The duration of latent period (from infection to sporulation) extends from 5 to 10 days, depending on temperature and light regime. The shortest is 5 days at 25°C under continuous light. Sporulation requires high humidity but not free leaf wetness. Sporulation occurs at 10 to 26°C. At the optimum temperature of 18°C, the process of sporulation requires 7.5 h at relative humidity ≥ 85%, with 3 h for sporophores emergence from stomata and 4.5 h for spore formation. Sporophores can emerge under light or darkness, but spore formation occurs in the dark only. Limited data are available on spore dispersal. Spores dispersed from sporulating plants contaminate healthy plants within 2 h of exposure. Settled spores may survive on leaf surface of healthy plants for prolonged periods, depending on temperature. Seed transmission of the disease occurs in Europe, but not in Israel or the United States. P. belbahrii in Israel also attacks species belonging to Rosemarinus, Nepeta, Agastache, Micromeria, and Salvia but not Plectranthus (coleus). A Peronospora species that infects coleus does not infect sweet basil. Control of BDM includes chemical, physical, and genetic means. The fungicide mefenoxam was highly effective in controlling the disease but resistant populations were quickly selected for in Israel and Europe rendering it ineffective. A new compound oxathiapiprolin (OSBP inhibitor) is highly effective. Nocturnal illumination of basil crops controls the disease by preventing sporulation. Daytime solar heating suppressed the disease effectively by reducing spore and mycelium viability. The most effective physical means is fanning. Nocturnal fanning prevents or limits dew deposition on leaf surfaces, and as a result, infection and sporulation diminish and epidemics are prevented. Genetic resistance occurs in wild basil and its transfer to sweet basil is under way.
Collapse
Affiliation(s)
- Yigal Cohen
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Yariv Ben Naim
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Lidan Falach
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Avia E Rubin
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Cohen Y, Van den Langenberg KM, Wehner TC, Ojiambo PS, Hausbeck M, Quesada-Ocampo LM, Lebeda A, Sierotzki H, Gisi U. Resurgence of Pseudoperonospora cubensis: The Causal Agent of Cucurbit Downy Mildew. PHYTOPATHOLOGY 2015; 105:998-1012. [PMID: 25844827 DOI: 10.1094/phyto-11-14-0334-fi] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The downy mildew pathogen, Pseudoperonospora cubensis, which infects plant species in the family Cucurbitaceae, has undergone major changes during the last decade. Disease severity and epidemics are far more destructive than previously reported, and new genotypes, races, pathotypes, and mating types of the pathogen have been discovered in populations from around the globe as a result of the resurgence of the disease. Consequently, disease control through host plant resistance and fungicide applications has become more complex. This resurgence of P. cubensis offers challenges to scientists in many research areas including pathogen biology, epidemiology and dispersal, population structure and population genetics, host preference, host-pathogen interactions and gene expression, genetic host plant resistance, inheritance of host and fungicide resistance, and chemical disease control. This review serves to summarize the current status of this major pathogen and to guide future management and research efforts within this pathosystem.
Collapse
Affiliation(s)
- Yigal Cohen
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Kyle M Van den Langenberg
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Todd C Wehner
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Peter S Ojiambo
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Mary Hausbeck
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Lina M Quesada-Ocampo
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Aleš Lebeda
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Helge Sierotzki
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| | - Ulrich Gisi
- First author: Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52100, Israel; second and third authors: Department of Horticultural Science, North Carolina State University, Raleigh 27695; fourth and sixth authors: Department of Plant Pathology, North Carolina State University, Raleigh 27695; fifth author: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing 48824-1312; seventh author: Palacký University, Faculty of Science, Department of Botany, 78371 Olomouc, Czech Republic; eighth and ninth authors: Syngenta Crop Protection AG, CH-4432 Stein, Switzerland; and ninth author: Department of Environmental Sciences, Institute of Botany, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|