1
|
Bustamante MI, Todd C, Elfar K, Hamid MI, Garcia JF, Cantu D, Rolshausen PE, Eskalen A. Identification and Pathogenicity of Fusarium Species Associated with Young Vine Decline in California. PLANT DISEASE 2024; 108:1053-1061. [PMID: 38085973 DOI: 10.1094/pdis-07-23-1362-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Grapevine trunk diseases are caused by a broad diversity of fungal taxa that have serious impacts on the worldwide viticulture industry due to significant reductions in vineyards yield and lifespan. Field surveys carried out from 2018 to 2022 in California nurseries and young vineyards revealed a high incidence of Fusarium. Since Fusarium species are important pathogens of other perennial crops, the present study aimed to identify and determine the pathogenicity of the Fusarium species on grapevines. Morphology of the fungal colonies coupled with multilocus phylogenetic analyses using nucleotide sequences of the translation elongation factor 1-alpha (tef1) and the RNA polymerase II second largest subunit (rpb2) genes revealed the occurrence of 10 species clustering in six species complexes, namely F. fujikuroi (FFSC), F. oxysporum (FOSC), F. solani (FSSC), F. sambucinum (FSAMSC), F. incarnatum-equiseti (FIESC), and F. tricinctum (FTSC) species complexes. The species F. annulatum (FFSC) was the most prevalent in samples from both symptomatic young vineyards (73.5% incidence) and nursery propagation material (62.5% incidence). Pathogenicity of the 10 most frequent species was confirmed by fulfilling Koch's postulates on living woody tissue of 1103 Paulsen rootstocks. Our results suggest that Fusarium spp. are involved in the development of young vine decline, probably as opportunistic pathogens when grapevines are under stress conditions.
Collapse
Affiliation(s)
| | - Colin Todd
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Karina Elfar
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - M Imran Hamid
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, CA, 95616
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
2
|
Olszak-Przybyś H, Korbecka-Glinka G, Patkowska E. Identification and Pathogenicity of Fusarium Isolated from Soybean in Poland. Pathogens 2023; 12:1162. [PMID: 37764970 PMCID: PMC10537759 DOI: 10.3390/pathogens12091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Fungi belonging to the Fusarium genus are commonly isolated from soybean plants and seeds but not all of them are pathogenic. The aim of this study was to compare the pathogenicity among different Fusarium isolates obtained from soybean plants with disease symptoms originating from an experimental field located in the southeast of Poland. Nineteen fungal isolates were selected for the pathogenicity assay, including eight isolates of F. oxysporum, six isolates of F. graminearum, four isolates of F. culmorum and one isolate of F. redolens. Species identification of these isolates was carried out using microscopic methods and sequencing of two genes: translation elongation factor 1-alpha (TEF1) and RNA polymerase second largest subunit (RPB2). To our knowledge, this is the first report of F. redolens being isolated from soybean in Europe. The pathogenicity test was set up by fungal inoculation of healthy soybean seeds of three cultivars: Abelina, Atlanta and Mavka. Symptoms were assessed seven days after inoculation. Disease area percentage of Fusarium inoculated seeds was significantly higher compared to uninoculated control. Nineteen isolates differed in their aggressiveness as the median disease area percentage ranged between 5.0 and 88.0% depending on isolate. The obtained isolates of four Fusarium species may be used in the future screening of soybean cultivars for resistance to these pathogens.
Collapse
Affiliation(s)
- Hanna Olszak-Przybyś
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research, ul. Czartoryskich 8, 24-100 Puławy, Poland;
| | - Grażyna Korbecka-Glinka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research, ul. Czartoryskich 8, 24-100 Puławy, Poland;
| | - Elżbieta Patkowska
- Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
| |
Collapse
|
3
|
Yang X, Xu X, Wang S, Zhang L, Shen G, Teng H, Yang C, Song C, Xiang W, Wang X, Zhao J. Identification, Pathogenicity, and Genetic Diversity of Fusarium spp. Associated with Maize Sheath Rot in Heilongjiang Province, China. Int J Mol Sci 2022; 23:ijms231810821. [PMID: 36142733 PMCID: PMC9501324 DOI: 10.3390/ijms231810821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Maize sheath rot is a prevalent maize disease in China. From 2020 to 2021, symptomatic samples were collected from the main maize-growing regions of Heilongjiang province. To clarify the population and genetic diversity, as well as the virulence of pathogens responsible for maize sheath rot, a total of 132 Fusarium isolates were obtained and used for follow-up studies. Ten Fusarium species were identified based on morphological characteristics, and phylogenetic analysis was conducted using the TEF-1α gene sequences, including F. verticillioides (50.00%), F. subglutinans (18.94%), the Fusarium incarnatum-equiseti species complex (14.39%), F. temperatum (5.30%), F. acuminatum (3.03%), F. solani (2.27%), F. sporotrichioides (2.27%), F. tricinctum (1.52%), F. asiaticum (1.52%), and F. proliferatum (0.76%). All 10 Fusarium species could produce oval-to-annular lesions on maize sheath, and the lesions were grayish yellow to dark brown in the center and surrounded by a dark gray-to-dark brown halo. Of these, F. tricinctum and F. proliferatum showed significantly higher virulence than the other Fusarium species. In addition, haplotype analysis based on the concatenated sequences of the ITS and TEF-1a genes showed that 99 Fusarium isolates which belonged to the Fusarium fujikuroi species complex—consisting of F. verticillioides isolates, F. subglutinans isolates, F. temperatum isolates, and F. proliferatum isolates—could be grouped into 10 haplotypes, including 5 shared haplotypes (Haps 1, 2, 4, 5, and 6) and 5 private haplotypes (Haps 3, 7, 8, 9, and 10). Furthermore, the F. verticillioides clade in the haplotype network was radial with the center of Hap 2, suggesting that population expansion occurred. This research showed that Fusarium species associated with maize sheath rot in Heilongjiang province are more diverse than previously reported, and this is the first time that F. subglutinans, F. temperatum, F. solani, F. sporotrichioides, F. tricinctum, and F. acuminatum have been confirmed as the causal agents of maize sheath rot in Heilongjiang province.
Collapse
Affiliation(s)
- Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Shuo Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Li Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Guijin Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Haolin Teng
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Chunbo Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Chunru Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100097, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100097, China
- Correspondence: (X.W.); (J.Z.)
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, School of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
- Correspondence: (X.W.); (J.Z.)
| |
Collapse
|