1
|
Miedaner T, Eckhoff W, Flath K, Schmitt AK, Schulz P, Schacht J, Boeven P, Akel W, Kempf H, Gruner P. Mapping rust resistance in European winter wheat: many QTLs for yellow rust resistance, but only a few well characterized genes for stem rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:215. [PMID: 39235622 PMCID: PMC11377555 DOI: 10.1007/s00122-024-04731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
KEY MESSAGE Stem rust resistance was mainly based on a few, already known resistance genes; for yellow rust resistance there was a combination of designated genes and minor QTLs. Yellow rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) and stem rust (SR) caused by Puccinia graminis f. sp. tritici (Pgt) are among the most damaging wheat diseases. Although, yellow rust has occurred regularly in Europe since the advent of the Warrior race in 2011, damaging stem rust epidemics are still unusual. We analyzed the resistance of seven segregating populations at the adult growth stage with the parents being selected for YR and SR resistances across three to six environments (location-year combinations) following inoculation with defined Pst and Pgt races. In total, 600 progenies were phenotyped and 563 were genotyped with a 25k SNP array. For SR resistance, three major resistance genes (Sr24, Sr31, Sr38/Yr17) were detected in different combinations. Additional QTLs provided much smaller effects except for a gene on chromosome 4B that explained much of the genetic variance. For YR resistance, ten loci with highly varying percentages of explained genetic variance (pG, 6-99%) were mapped. Our results imply that introgression of new SR resistances will be necessary for breeding future rust resistant cultivars, whereas YR resistance can be achieved by genomic selection of many of the detected QTLs.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Wera Eckhoff
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Kerstin Flath
- Institut für Pflanzenschutz in Ackerbau und Grünland, Julius Kühn-Institut (JKI), Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - Anne-Kristin Schmitt
- Institut für Pflanzenschutz in Ackerbau und Grünland, Julius Kühn-Institut (JKI), Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - Philipp Schulz
- Institut für Pflanzenschutz in Ackerbau und Grünland, Julius Kühn-Institut (JKI), Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | | | | | - Wessam Akel
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Hubert Kempf
- SECOBRA Saatzucht GmbH, Feldkirchen 3, 85368, Moosburg an der Isar, Germany
| | - Paul Gruner
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
- Sativa Rheinau, Chorbstr. 43, 8462, Rheinau, Switzerland
| |
Collapse
|
2
|
Gao Z, Wang X, Li Y, Hou W, Zhang X. Evaluation of stripe rust resistance and genome-wide association study in wheat varieties derived from the International Center for Agricultural Research in the Dry Areas. FRONTIERS IN PLANT SCIENCE 2024; 15:1377253. [PMID: 38654905 PMCID: PMC11035757 DOI: 10.3389/fpls.2024.1377253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
159 wheat varieties obtained from ICARDA, CYR32, CYR33 and CYR34 were used to evaluate the stripe rust resistance in this study. Seedling resistance was carried out in the green house at the two-leaf stage. Adult-plant resistance was carried out between 2022 and 2023 in Xining and Guide, respectively. A total of 24,151 high-quality SNP loci were obtained from a 55K SNP chip data. Genome-wide association study was carried out between SNP loci and stripe rust resistance. Seedling resistance screening revealed that 91.8% (146) of wheat varieties were resistant to CYR32 and CYR33, while only 49.7% (79) of wheat varieties were resistant to CYR34. Adult-plant resistance showed 153 (96.2%) germplasms represented resistance in 2022, while only 85 (53.4%) showed resistance in 2023. An association study using the 55K SNP chip data results combined with disease ratings of 159 materials at both the seedling and adult stages discovered 593 loci related to stripe rust resistance (P ≤ 0.0001). These loci exhibited contribution rates ranging from 11.1% to 18.7%. Among them, 71 were significantly related to resistance against CYR32 at the seedling stage, with a contribution rate of 12.7%-17.2%. Constituting the vast majority, 518 loci distributed across 21 chromosomes were significantly related to CYR33 at the seedling stage, with a contribution rate of 12.6%-18.7%. Fewer loci were found to be associated with disease resistance in adult plants. In E1 environment, a sole locus was detected on chromosome 2B with a contribution rate of 14.4%. In E2 environment, however, exhibited three loci across chromosomes 2B, 4A, and 7B with contribution rates ranging from 11.1% to 16.9%. A total of 68 multi-effect loci were significantly related to resistance against both CYR32 and CYR33 at the seedling stage, and one stable locus was significantly associated with stripe rust resistance at the adult plant stage.
Collapse
Affiliation(s)
- Zhonghao Gao
- School of Ecological and Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Xin Wang
- School of Ecological and Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Yunxiang Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Wanwei Hou
- Qinghai Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai, China
- National Crop Germplasm Resources Duplicate, Xining, Qinghai, China
| | - Xiaojuan Zhang
- School of Ecological and Environmental Engineering, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
3
|
Zhang M, Saimi A, Liu Q, Ma Z, Chen J. The Detection of Yr Genes in Xinjiang Wheat Cultivars Using Different Molecular Markers. Int J Mol Sci 2023; 24:13372. [PMID: 37686178 PMCID: PMC10487826 DOI: 10.3390/ijms241713372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. Tritici (Pst). It significantly impacts wheat yields in Xinjiang, China. Breeding and promoting disease-resistant cultivars carrying disease-resistance genes remains the most cost-effective strategy with which to control the disease. In this study, 17 molecular markers were used to identify Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, Yr26, Yr41, Yr44, and Yr50 in 82 wheat cultivars from Xinjiang. According to the differences in SNP loci, the KASP markers for Yr30, Yr52, Yr78, Yr80, and Yr81 were designed and detected in the same set of 82 wheat cultivars. The results showed that there was a diverse distribution of Yr genes across all wheat cultivars in Xinjiang, and the detection rates of Yr5, Yr15, Yr17, Yr26, Yr41, and Yr50 were the highest, ranging from 74.39% to 98.78%. In addition, Yr5 and Yr15 were prevalent in spring wheat cultivars, with detection rates of 100% and 97.56%, respectively. A substantial 85.37% of wheat cultivars carried at least six or more different combinations of Yr genes. The cultivar Xindong No.15 exhibited the remarkable presence of 11 targeted Yr genes. The pedigree analysis results showed that 33.33% of Xinjiang wheat cultivars shared similar parentage, potentially leading to a loss of resistance against Pst. The results clarified the Yr gene distribution of the Xinjiang wheat cultivars and screened out varieties with a high resistance against Pst.
Collapse
Affiliation(s)
- Minghao Zhang
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (A.S.); (Z.M.); (J.C.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Ainisai Saimi
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (A.S.); (Z.M.); (J.C.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Qi Liu
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (A.S.); (Z.M.); (J.C.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Zeyu Ma
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (A.S.); (Z.M.); (J.C.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Jing Chen
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (A.S.); (Z.M.); (J.C.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| |
Collapse
|
4
|
Jin H, Zhang H, Zhao X, Long L, Guan F, Wang Y, Huang L, Zhang X, Wang Y, Li H, Li W, Pu Z, Zhang Y, Xu Q, Jiang Q, Wei Y, Ma J, Qi P, Deng M, Kang H, Zheng Y, Chen G, Jiang Y. Identification of a suppressor for the wheat stripe rust resistance gene Yr81 in Chinese wheat landrace Dahongpao. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:67. [PMID: 36952028 DOI: 10.1007/s00122-023-04347-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Combined with BSE-Seq analysis and multiple genetic populations, three genes involved in stripe rust resistance were identified in Chinese wheat landrace Dahongpao, including a novel suppressor on 2BS. Dahongpao (DHP), a landrace of hexaploid wheat in China, exhibits a high degree of stripe rust resistance in the field for many years. In this study, bulked segregant analysis coupled with exome capture sequencing (BSE-Seq) was used to identify genes encoding stripe rust resistance in multiple genetic populations from the cross between DHP and a susceptible hexaploid Australian cultivar, Avocet S (AvS). The most effective QTL in DHP was Yr18, explaining up to 53.08% of phenotypic variance in the F2:3 families. To identify additional genes, secondary mapping populations SP1 and SP2 were produced by crossing AvS with two resistant lines derived from F2:3 families lacking Yr18. An all-stage resistance gene, Yr.DHP-6AS, was identified via BSE-Seq analysis of SP1. Combined the recombinant plants from both SP1 and SP2, Yr.DHP-6AS was located between KP6A_1.66 and KP6A_8.18, corresponding to the same region as Yr81. In addition, secondary mapping populations SP3 and SP4 were developed by selfing a segregating line from F2:3 families lacking Yr18. A novel suppressor gene on chromosome 2BS was identified from DHP for effectively suppressing the resistance of Yr.DHP-6AS in the SP3 and SP4. As a result, the wheat lines carrying both Yr18 and Yr.DHP-6AS show higher level of stripe rust resistance than DHP, providing an effective and simple combination for developing new wheat cultivars with ASR and APR genes. Further, the newly developed KASP markers, KP6A_1.99 and KP6A_5.22, will facilitate the application of Yr.DHP-6AS in wheat breeding via marker-assisted selection.
Collapse
Affiliation(s)
- Huiling Jin
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Haipeng Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yunpeng Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Linyu Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaoyue Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hao Li
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Liu L, Wang M, Ruff T, See DR, Hu X, Chen X. Characterization and Molecular Mapping of a Gene Conferring High-Temperature Adult-Plant Resistance to Stripe Rust Originally from Aegilops ventricosa. PLANT DISEASE 2023; 107:431-442. [PMID: 35852900 DOI: 10.1094/pdis-06-22-1419-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat near-isogenic line AvSYr17NIL carrying Yr17, originally from Aegilops ventricosa for all-stage resistance to Puccinia striiformis f. sp. tritici, also shows nonrace-specific, high-temperature adult-plant (HTAP) resistance to the stripe rust pathogen. To separate and identify the HTAP resistance gene, seeds of AvSYr17NIL were treated with ethyl methanesulfonate. Mutant lines with only HTAP resistance were obtained, and one of the lines, M1225, was crossed with the susceptible recurrent parent Avocet S (AvS). Field responses of the F2 plants and F3 lines, together with the parents, were recorded at the adult-plant stage in Pullman and Mount Vernon, WA under natural P. striiformis f. sp. tritici infection. The parents and the F4 population were phenotyped with a Yr17-virulent P. striiformis f. sp. tritici race in the adult-plant stage under the high-temperature profile in the greenhouse. The phenotypic results were confirmed by testing the F5 population in the field under natural P. striiformis f. sp. tritici infection. The F2 data indicated a single recessive gene, temporarily named YrM1225, for HTAP resistance. The F4 lines were genotyped with Kompetitive allele-specific PCR markers converted from single-nucleotide polymorphism markers polymorphic between M1225 and AvS. The HTAP resistance gene was mapped on the short arm of chromosome 2A in an interval of 7.5 centimorgans using both linkage and quantitative trait locus mapping approaches. The separation of the HTAP resistance gene from Yr17 should improve the understanding and utilization of the different types of resistance.
Collapse
Affiliation(s)
- Yuxiang Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Travis Ruff
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Deven R See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
- United States Department of Agriculture Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, U.S.A
| | - Xiaoping Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
- United States Department of Agriculture Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, U.S.A
| |
Collapse
|
6
|
Shahinnia F, Mohler V, Hartl L. Genetic Basis of Resistance to Warrior (-) Yellow Rust Race at the Seedling Stage in Current Central and Northern European Winter Wheat Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 12:420. [PMID: 36771509 PMCID: PMC9920722 DOI: 10.3390/plants12030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
To evaluate genetic variability and seedling plant response to a dominating Warrior (-) race of yellow rust in Northern and Central European germplasm, we used a population of 229 winter wheat cultivars and breeding lines for a genome-wide association study (GWAS). A wide variation in yellow rust disease severity (based on infection types 1-9) was observed in this panel. Four breeding lines, TS049 (from Austria), TS111, TS185, and TS229 (from Germany), and one cultivar, TS158 (KWS Talent), from Germany were found to be resistant to Warrior (-) FS 53/20 and Warrior (-) G 23/19. The GWAS identified five significant SNPs associated with yellow rust on chromosomes 1B, 2A, 5B, and 7A for Warrior (-) FS 53/20, while one SNP on chromosome 5B was associated with disease for Warrior (-) G 23/19. For Warrior (-) FS 53/20, we discovered a new QTL for yellow rust resistance associated with the marker Kukri_c5357_323 on chromosome 1B. The resistant alleles G and T at the marker loci Kukri_c5357_323 on chromosome 1B and Excalibur_c17489_804 on chromosome 5B showed the largest effects (1.21 and 0.81, respectively) on the severity of Warrior (-) FS 53/20 and Warrior (-) G 23/19. Our results provide the basis for knowledge-based resistance breeding in the face of the enormous impact of the Warrior (-) race on wheat production in Europe.
Collapse
|
7
|
Gill HS, Halder J, Zhang J, Rana A, Kleinjan J, Amand PS, Bernardo A, Bai G, Sehgal SK. Whole-genome analysis of hard winter wheat germplasm identifies genomic regions associated with spike and kernel traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2953-2967. [PMID: 35939073 DOI: 10.1007/s00122-022-04160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Genetic dissection of yield component traits including spike and kernel characteristics is essential for the continuous improvement in wheat yield. Genome-wide association studies (GWAS) have been frequently used to identify genetic determinants for spike and kernel-related traits in wheat, though none have been employed in hard winter wheat (HWW) which represents a major class in US wheat acreage. Further, most of these studies relied on assembled diversity panels instead of adapted breeding lines, limiting the transferability of results to practical wheat breeding. Here we assembled a population of advanced/elite breeding lines and well-adapted cultivars and evaluated over four environments for phenotypic analysis of spike and kernel traits. GWAS identified 17 significant multi-environment marker-trait associations (MTAs) for various traits, representing 12 putative quantitative trait loci (QTLs), with five QTLs affecting multiple traits. Four of these QTLs mapped on three chromosomes 1A, 5B, and 7A for spike length, number of spikelets per spike (NSPS), and kernel length are likely novel. Further, a highly significant QTL was detected on chromosome 7AS that has not been previously associated with NSPS and putative candidate genes were identified in this region. The allelic frequencies of important quantitative trait nucleotides (QTNs) were deduced in a larger set of 1,124 accessions which revealed the importance of identified MTAs in the US HWW breeding programs. The results from this study could be directly used by the breeders to select the lines with favorable alleles for making crosses, and reported markers will facilitate marker-assisted selection of stable QTLs for yield components in wheat breeding.
Collapse
Affiliation(s)
- Harsimardeep S Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Anshul Rana
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jonathan Kleinjan
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
8
|
Wang M, Wan A, Chen X. Race Characterization of Puccinia striiformis f. sp. tritici in the United States from 2013 to 2017. PLANT DISEASE 2022; 106:1462-1473. [PMID: 35077227 DOI: 10.1094/pdis-11-21-2499-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat. In this study, 1,567 isolates collected from the United States from 2013 to 2017 were tested for virulence on 18 wheat Yr single-gene lines to differentiate races. In total, 72 races, including 20 new, were identified, and their frequencies in different years and different epidemiological regions were determined and compared. The 20 new races had low frequencies, and 7 of them each were detected from only one sample and 10 only in a single year. Frequencies of virulence to Yr10, Yr24, and Yr32 were low (<10%); to Yr1, Yr76, YrTr1, and YrSP were moderate (10 to 40%); and to Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, Yr44, and Exp2 were high (>70%), although they varied from year to year and from region to region. No virulence was detected to either Yr5 or Yr15, indicating that these genes were still effective against the pathogen in the United States. Based on the virulence data, the diversity of the U.S. P. striiformis f. sp. tritici population was the highest in 2016 and lowest in 2015, and the diversity of the regional population was the highest in region 1 and lowest in region 11. The yearly populations between consecutive years were closer than nonconsecutive years, and the eastern populations were closer to each other than those among the western populations. The findings are useful for understanding the pathogen evolution and for developing resistant cultivars for control of the disease.
Collapse
Affiliation(s)
- Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
- United States Department of Agriculture-Agricultural Research Service Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
9
|
Bai Q, Wang M, Xia C, See DR, Chen X. Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. Int J Mol Sci 2022; 23:ijms23084114. [PMID: 35456934 PMCID: PMC9033109 DOI: 10.3390/ijms23084114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/14/2023] Open
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a destructive disease that occurs throughout the major wheat-growing regions of the world. This pathogen is highly variable due to the capacity of virulent races to undergo rapid changes in order to circumvent resistance in wheat cultivars and genotypes and to adapt to different environments. Intensive efforts have been made to study the genetics of wheat resistance to this disease; however, no known avirulence genes have been molecularly identified in Pst so far. To identify molecular markers for avirulence genes, a Pst panel of 157 selected isolates representing 126 races with diverse virulence spectra was genotyped using 209 secreted protein gene-based single nucleotide polymorphism (SP-SNP) markers via association analysis. Nineteen SP-SNP markers were identified for significant associations with 12 avirulence genes: AvYr1, AvYr6, AvYr7, AvYr9, AvYr10, AvYr24, AvYr27, AvYr32, AvYr43, AvYr44, AvYrSP, and AvYr76. Some SP-SNPs were associated with two or more avirulence genes. These results further confirmed that association analysis in combination with SP-SNP markers is a powerful tool for identifying markers for avirulence genes. This study provides genomic resources for further studies on the cloning of avirulence genes, understanding the mechanisms of host–pathogen interactions, and developing functional markers for tagging specific virulence genes and race groups.
Collapse
Affiliation(s)
- Qing Bai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
| | - Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (M.W.); (C.X.); (D.R.S.)
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
10
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
11
|
Yao F, Guan F, Duan L, Long L, Tang H, Jiang Y, Li H, Jiang Q, Wang J, Qi P, Kang H, Li W, Ma J, Pu Z, Deng M, Wei Y, Zheng Y, Chen X, Chen G. Genome-Wide Association Analysis of Stable Stripe Rust Resistance Loci in a Chinese Wheat Landrace Panel Using the 660K SNP Array. FRONTIERS IN PLANT SCIENCE 2021; 12:783830. [PMID: 35003168 PMCID: PMC8728361 DOI: 10.3389/fpls.2021.783830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases affecting wheat production. The disease is best controlled by developing and growing resistant cultivars. Chinese wheat (Triticum aestivum) landraces have excellent resistance to stripe rust. The objectives of this study were to identify wheat landraces with stable resistance and map quantitative trait loci (QTL) for resistance to stripe rust from 271 Chinese wheat landraces using a genome-wide association study (GWAS) approach. The landraces were phenotyped for stripe rust responses at the seedling stage with two predominant Chinese races of P. striiformis f. sp. tritici in a greenhouse and the adult-plant stage in four field environments and genotyped using the 660K wheat single-nucleotide polymorphism (SNP) array. Thirteen landraces with stable resistance were identified, and 17 QTL, including eight associated to all-stage resistance and nine to adult-plant resistance, were mapped on chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 5A, 5B, 6D, and 7A. These QTL explained 6.06-16.46% of the phenotypic variation. Five of the QTL, QYrCL.sicau-3AL, QYrCL.sicau-3B.4, QYrCL.sicau-3B.5, QYrCL.sicau-5AL.1 and QYrCL.sicau-7AL, were likely new. Five Kompetitive allele specific PCR (KASP) markers for four of the QTL were converted from the significant SNP markers. The identified wheat landraces with stable resistance to stripe rust, significant QTL, and KASP markers should be useful for breeding wheat cultivars with durable resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xianming Chen
- Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Aoun M, Chen X, Somo M, Xu SS, Li X, Elias EM. Novel stripe rust all-stage resistance loci identified in a worldwide collection of durum wheat using genome-wide association mapping. THE PLANT GENOME 2021; 14:e20136. [PMID: 34609797 DOI: 10.1002/tpg2.20136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Durumwheat [Triticum turgidum L. ssp. durum (Desf.)] production is constrained by fungal diseases including stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst). Continuous mining of germplasm for the discovery and deployment of stripe rust resistance (Yr) genes is needed to counter the impact of this disease. In this study, we evaluated a worldwide collection of 432 durum wheat accessions to seven U.S. Pst races that carry diverse virulence and avirulence combinations on wheat Yr genes. We found that 47-82% of the durum wheat accessions were susceptible to each of the tested Pst races. A total of 32 accessions were resistant to all seven races. Genome-wide association studies (GWAS) using over 97,000 single-nucleotide polymorphism markers generated from genotyping-by-sequencing of 364 accessions identified 56 quantitative trait loci (QTL) associated with all-stage stripe rust resistance located on all 14 durum wheat chromosomes. Six of these QTL were associated with resistance to 2-4 Pst races, and none were associated with resistance to all seven races. The remaining 50 QTL were race specific. Eighteen of the 56 identified QTL had relatively large effects against at least one of the races. A map-based comparison of the discovered QTL in this study with previously published Yr genes and QTL showed that 29 were previously identified, whereas the remaining 27 QTL appeared to be novel. This study reports effective sources of stripe rust resistance to contemporary races in the United States and shows that this durum wheat collection is abundant in novel resistance loci that can be transferred into adapted durum cultivars.
Collapse
Affiliation(s)
- Meriem Aoun
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, USA
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, USA
| | - Mohamed Somo
- Dep. of Plant Breeding and Genetics, Cornell Univ., Ithaca, NY, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND, USA
| | - Xuehui Li
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, USA
| | - Elias M Elias
- Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, USA
| |
Collapse
|
13
|
Liu T, Bai Q, Wang M, Li Y, Wan A, See DR, Xia C, Chen X. Genotyping Puccinia striiformis f. sp. tritici Isolates with SSR and SP-SNP Markers Reveals Dynamics of the Wheat Stripe Rust Pathogen in the United States from 1968 to 2009 and Identifies Avirulence-Associated Markers. PHYTOPATHOLOGY 2021; 111:1828-1839. [PMID: 33720751 DOI: 10.1094/phyto-01-21-0010-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating disease of wheat (Triticum aestivum) in the United States. The fungal pathogen can rapidly evolve, producing new virulent races infecting previously resistant cultivars and genotypes adapting to different environments. The objective of this study was to investigate the long-term population dynamics of P. striiformis f. sp. tritici in the United States. Through genotyping 1,083 isolates taken from 1968 to 2009, using 14 simple sequence repeat (SSR) markers and 92 secreted protein single nucleotide polymorphism (SP-SNP) markers, 614 and 945 genotypes were detected, respectively. In general, the two types of markers produced consistent genetic relationships among the P. striiformis f. sp. tritici populations over the 40-year period. The prior-to-2000 and the 2000-to-2009 populations were significantly different, with the latter showing higher genotypic diversity and higher heterozygosity than the earlier populations. Clustering analyses using genotypes of either SSR or SP-SNP markers revealed three molecular groups (MGs), MG1, MG2, and MG3. The prior-to-2000 and the 2000-to-2009 groups both had evidence of MG1 and MG2; however, MG3 was only found in the 2000-to-2009 population. Some of the isolates in the period of 2000 to 2009 formed individual clusters, suggesting exotic incursions. Other isolates of the same period were clustered with prior-to-2000 isolates, indicating that they were developed from the previously established populations. The data suggest the coexistence of newly introduced populations alongside established populations in the United States. Twenty SP-SNP markers were significantly associated to individual avirulence genes. These results are useful for developing more accurate monitoring systems and provide guidance for disease management.
Collapse
Affiliation(s)
- Tinglan Liu
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan 621010, China
| | - Qing Bai
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
| | - Yuxiang Li
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
| | - Deven R See
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
- Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Pullman 99164-6430, U.S.A
| | - Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
- Wheat Research Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
- Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Pullman 99164-6430, U.S.A
| |
Collapse
|
14
|
Long L, Yao F, Guan F, Cheng Y, Duan L, Zhao X, Li H, Pu Z, Li W, Jiang Q, Wei Y, Ma J, Kang H, Dai S, Qi P, Xu Q, Deng M, Zheng Y, Jiang Y, Chen G. A Stable Quantitative Trait Locus on Chromosome 5BL Combined with Yr18 Conferring High-Level Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Anyuehong. PHYTOPATHOLOGY 2021; 111:1594-1601. [PMID: 33599530 DOI: 10.1094/phyto-10-20-0465-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chinese wheat landrace Anyuehong (AYH) has displayed high levels of stable adult plant resistance (APR) to stripe rust for >15 years. To identify quantitative trait loci (QTLs) for stripe rust resistance in AYH, a set of 110 recombinant inbred lines (RILs) was developed from a cross between AYH and susceptible cultivar Taichung 29. The parents and RILs were evaluated for final disease severity (FDS) in six field tests with a mixture of predominant Puccinia striiformis f. sp. tritici races at the adult plant stage and genotyped via the wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,143 SNP markers. Three QTLs, designated as QYr.AYH-1AS, QYr.AYH-5BL, and QYr.AYH-7DS, were mapped on chromosome 1AS, 5BL, and 7DS, respectively. RILs combining three QTLs showed significantly lower FDS compared with the lines in other combinations. Of them, QYr.AYH-5BL and QYr.AYH-7DS were stably detected in all environments, explaining 13.6 to 21.4% and 17.6 to 33.6% of phenotypic variation, respectively. Compared with previous studies, QYr.AYH-5BL may be a new QTL, whereas QYr.AYH-7DS may be Yr18. Haplotype analysis revealed that QYr.AYH-5BL is probably present in 6.2% of the 323 surveyed Chinese wheat landraces. The kompetitive allele specific PCR (KASP) markers for QYr.AYH-5BL were developed by the linked SNP markers to successfully confirm the effects of the QTL in a validation population derived from a residual heterozygous line and were further assessed in 38 Chinese wheat landraces and 92 cultivars. Our results indicated that QYr.AYH-5BL with linked KASP markers has potential value for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
15
|
Bai Q, Wan A, Wang M, See DR, Chen X. Population Diversity, Dynamics, and Differentiation of Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici From 2010 to 2017 and Comparison With 1968 to 2009 in the United States. Front Microbiol 2021; 12:696835. [PMID: 34367096 PMCID: PMC8339480 DOI: 10.3389/fmicb.2021.696835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease on wheat in the United States, especially after 2000. In the present study, 2,247 Pst isolates collected over all stripe rust epidemiological regions in the United States from 2010 to 2017 were genotyped at 14 simple sequence repeat (SSR) loci to investigate the population diversity, dynamics, and differentiation. A total of 1,454 multilocus genotypes (MLGs) were detected. In general, the populations in the west (regions 1-6) had more MLGs and higher diversities than the populations in the east (regions 7-12). The populations of 2010 and 2011 were more different from the other years. Genetic variation was higher among years than among regions, indicating the fast changes of the population. The divergence (Gst) was bigger between the west population and east population than among regions within either the west or east population. Gene flow was stronger among the regional populations in the east than in the west. Clustering analyses revealed 3 major molecular groups (MGs) and 10 sub-MGs by combining the genotypic data of 2010-2017 isolates with those of 1968-2009. MG1 contained both 1968-2009 isolates (23.1%) and 2010-2017 isolates (76.9%). MG2 had 99.4% of isolates from 1968-2009. MG3, which was the most recent and distinct group, had 99.1% of isolates from 2010-2017. Of the 10 sub-MGs, 5 (MG1-3, MG1-5, MG3-2, MG3-3, and MG3-4) were detected only from 2011 to 2017. The SSR genotypes had a moderate, but significant correlation (r = 0.325; p < 0.0001) with the virulence phenotype data. The standard index values of association (rbarD = 0.11) based on either regional or yearly populations suggest clonal reproduction. This study indicated high diversity, fast dynamics, and various levels of differentiation of the Pst population over the years and among epidemiological regions, and the results should be useful for managing wheat stripe rust.
Collapse
Affiliation(s)
- Qing Bai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
16
|
Pirko YV, Karelov AV, Kozub NO, Ivashchuk BV, Sozinov IA, Topchii TV, Morgun VV, Blume YB. Identification of Genes for Resistance to Yellow Rust of Asian Origin in Winter Wheat Cultivars and Lines. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Yao F, Long L, Wang Y, Duan L, Zhao X, Jiang Y, Li H, Pu Z, Li W, Jiang Q, Wang J, Wei Y, Ma J, Kang H, Dai S, Qi P, Zheng Y, Chen X, Chen G. Population structure and genetic basis of the stripe rust resistance of 140 Chinese wheat landraces revealed by a genome-wide association study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110688. [PMID: 33218646 DOI: 10.1016/j.plantsci.2020.110688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most devastating foliar diseases in wheat. Host resistance is the most effective strategy for the management of the disease. To screen for accessions with stable resistance and identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using a panel of 140 Chinese wheat landraces. The panel was evaluated for stripe rust response at the adult-plant stage at six field-year environments with mixed races and at the seedling stage with two separate predominant races of the pathogen, and genotyped with the genome-wide Diversity Arrays Technology markers. The panel displayed abundant phenotypic variation in stripe rust responses, with 9 landraces showing stable resistance to the mixture of Pst races at the adult-plant stage in the field and 10 landraces showing resistance to individual races at the seedling stage in the greenhouse. GWAS identified 12 quantitative trait loci (QTL) significantly (P ≤ 0.001) associated to stripe rust resistance using the field data of at least two environments and 18 QTL using the seedling data with two races. Among these QTL, 10 were presumably novel, including 4 for adult-plant resistance mapped to chromosomes 1B (QYrcl.sicau-1B.3), 4A (QYrcl.sicau-4A.3), 6A (QYrcl.sicau-6A.2) and 7B (QYrcl.sicau-7B.2) and 6 for all-stage resistance mapped to chromosomes 2D (QYrcl.sicau-2D.1), 3B (QYrcl.sicau-3B.3), 3D (QYrcl.sicau-3D), 4B (QYrcl.sicau-4B), 6A (QYrcl.sicau-6A.1) and 6D (QYrcl.sicau-6D). The landraces with stable resistance can be used for developing wheat cultivars with effective resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
18
|
Mu J, Liu L, Liu Y, Wang M, See DR, Han D, Chen X. Genome-Wide Association Study and Gene Specific Markers Identified 51 Genes or QTL for Resistance to Stripe Rust in U.S. Winter Wheat Cultivars and Breeding Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:998. [PMID: 32719705 PMCID: PMC7350909 DOI: 10.3389/fpls.2020.00998] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/17/2020] [Indexed: 05/06/2023]
Abstract
Stripe (yellow) rust, caused by fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious disease of wheat in the United States and many other countries. Growing resistant cultivars has been approved to be the best approach for control of stripe rust. To determine stripe rust resistance genes in U.S. winter wheat cultivars and breeding lines, we analyzed a winter wheat panel of 857 cultivars and breeding lines in a genome-wide association study (GWAS) using genotyping by multiplexed sequencing (GMS) and by genotyping with molecular markers of 18 important stripe rust resistance genes or quantitative trait loci (QTL). The accessions were phenotyped for stripe rust response at adult-plant stage under natural infection in Pullman and Mount Vernon, Washington in 2018 and 2019, and in the seedling stage with six predominant or most virulent races of Pst. A total of 51 loci were identified to be related to stripe rust resistance, and at least 10 of them (QYrww.wgp.1D-3, QYrww.wgp.2B-2, QYrww.wgp.2B-3, QYrww.wgp.2B-4, QYrww.wgp.3A, QYrww.wgp.5A, QYrww.wgp.5B, QYrww.wgp.5D, QYrww.wgp.6A-2 and QYrww.wgp.7B-3) were previously reported. These genes or QTL were found to be present at different frequencies in breeding lines and cultivars developed by breeding programs in various winter wheat growing regions. Both Yr5 and Yr15, which are highly resistant to all races identified thus far in the U.S., as well as Yr46 providing resistance to many races, were found absent in the breeding lines and commercially grown cultivars. The identified genes or QTL and their markers are useful in breeding programs to improve the level and durability of resistance to stripe rust.
Collapse
Affiliation(s)
- Jingmei Mu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Yan Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- *Correspondence: Xianming Chen,
| |
Collapse
|
19
|
Liu L, Yuan C, Wang M, See DR, Chen X. Mapping Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 197734 Using a Doubled Haploid Population and Genotyping by Multiplexed Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:596962. [PMID: 33281855 PMCID: PMC7688900 DOI: 10.3389/fpls.2020.596962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/13/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a global concern for wheat production. Spring wheat cultivar PI 197734, of Sweden origin, has shown high-temperature adult-plant resistance (APR) to stripe rust for many years. To map resistance quantitative trait loci (QTL), 178 doubled haploid lines were developed from a cross of PI 197734 with susceptible AvS. The DH lines and parents were tested in fields in 2017 and 2018 under natural infection of Pst and genotyped with genotyping by multiplexed sequencing (GMS). Kompetitive allele specific PCR (KASP) and simple sequence repeat (SSR) markers from specific chromosomal regions were also used to genotype the population to validate and saturate resistance QTL regions. Two major QTL on chromosomes 1AL and 3BL and one minor QTL on 2AL were identified. The two major QTL, QYrPI197734.wgp-1A and QYrPI197734.wgp-3B, were detected in all tested environments explaining up to 20.7 and 46.8% phenotypic variation, respectively. An awnletted gene mapped to the expected distal end of chromosome 5AL indicated the accuracy of linkage mapping. The KASP markers converted from the GMS-SNPs in the 1A and 3B QTL regions were used to genotype 95 US spring wheat cultivars and breeding lines, and they individually showed different percentages of polymorphisms. The haplotypes of the three markers for the 1A QTL and four markers for the 3B QTL identified 37.9 and 21.1% of the wheat cultivar/breeding lines possibly carrying these two QTL, indicating their usefulness in marker-assisted selection (MAS) for incorporating the two major QTL into new wheat cultivars.
Collapse
Affiliation(s)
- Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - Congying Yuan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- *Correspondence: Xianming Chen, ;
| |
Collapse
|