1
|
Nita M, Jones T, McHenry D, Bush E, Oliver C, Kawaguchi A, Nita A, Katori M. A NitroPure Nitrocellulose Membrane-Based Grapevine Virus Sampling Kit: Development and Deployment to Survey Japanese Vineyards and Nurseries. Viruses 2023; 15:2102. [PMID: 37896878 PMCID: PMC10612103 DOI: 10.3390/v15102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
We developed a NitroPure Nitrocellulose (NPN) membrane-based method for sampling and storing grapevine sap for grapevine virus detection. We devised an efficient nucleic acid extraction method for the NPN membrane, resulting in 100% amplification success for grapevine leafroll-associated virus 2 (GLRaV2) and 3 (GLRaV3), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A, grapevine virus B, and grapevine red blotch virus (GRBV). This method also allowed the storage of recoverable nucleic acid for 18 months at room temperature. We created a sampling kit to survey GLRaV2, GLRaV3, and GRBV in Japanese vineyards. We tested the kits in the field in 2018 and then conducted mail-in surveys in 2020-2021. The results showed a substantial prevalence of GLRaV3, with 48.5% of 132 sampled vines being positive. On the other hand, only 3% of samples tested positive for GLRaV2 and none for GRBV.
Collapse
Affiliation(s)
- Mizuho Nita
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
- Department of Law and Economics, Shinshu University, Nagano 390-8621, Japan
| | - Taylor Jones
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Diana McHenry
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Elizabeth Bush
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Charlotte Oliver
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Akira Kawaguchi
- National Agriculture and Food Research Organization (NARO), Western Region Agricultural Research Center, Hiroshima 721-8514, Japan
| | - Akiko Nita
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Miyuki Katori
- Department of Law and Economics, Shinshu University, Nagano 390-8621, Japan
| |
Collapse
|
2
|
Transmission of Grapevine Red Blotch Virus by Spissistilus festinus [Say, 1830] (Hemiptera: Membracidae) between Free-Living Vines and Vitis vinifera 'Cabernet Franc'. Viruses 2022; 14:v14061156. [PMID: 35746628 PMCID: PMC9227940 DOI: 10.3390/v14061156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Grapevine red blotch disease emerged within the past decade, disrupting North American vine stock production and vineyard profitability. Our understanding of how grapevine red blotch virus (GRBV), the causal agent of the disease, interacts with its Vitis hosts and insect vector, Spissistilus festinus, is limited. Here, we studied the capabilities of S. festinus to transmit GRBV from and to free-living vines, identified as first-generation hybrids of V. californica and V. vinifera ‘Sauvignon blanc’ (Vcal hybrids), and to and from V. vinifera ‘Cabernet franc’ (Vvin Cf) vines. The transmission rate of GRBV was high from infected Vcal hybrid vines to healthy Vcal hybrid vines (77%, 10 of 13) and from infected Vvin Cf vines to healthy Vcal hybrid vines (100%, 3 of 3). In contrast, the transmission rate of GRBV was low from infected Vcal hybrid vines to healthy Vvin Cf vines (15%, 2 of 13), and from infected Vvin Cf vines to healthy Vvin Cf vines (19%, 5 of 27). No association was found between transmission rates and GRBV titer in donor vines used in transmission assays, but the virus titer was higher in the recipient leaves of Vcal hybrid vines compared with recipient leaves of Vvin Cf vines. The transmission of GRBV from infected Vcal hybrid vines was also determined to be trans-stadial. Altogether, our findings revealed that free-living vines can be a source for the GRBV inoculum that is transmissible by S. festinus to other free-living vines and a wine grape cultivar, illustrating the interconnected roles of the two virus hosts in riparian areas and commercial vineyards, respectively, for virus spread. These new insights into red blotch disease epidemiology will inform the implementation of disease management strategies.
Collapse
|
3
|
Rienth M, Vigneron N, Walker RP, Castellarin SD, Sweetman C, Burbidge CA, Bonghi C, Famiani F, Darriet P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. FRONTIERS IN PLANT SCIENCE 2021; 12:717223. [PMID: 34956249 PMCID: PMC8693719 DOI: 10.3389/fpls.2021.717223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The grapevine is subject to high number of fungal and viral diseases, which are responsible for important economic losses in the global wine sector every year. These pathogens deteriorate grapevine berry quality either directly via the modulation of fruit metabolic pathways and the production of endogenous compounds associated with bad taste and/or flavor, or indirectly via their impact on vine physiology. The most common and devastating fungal diseases in viticulture are gray mold, downy mildew (DM), and powdery mildew (PM), caused, respectively by Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. Whereas B. cinerea mainly infects and deteriorates the ripening fruit directly, deteriorations by DM and PM are mostly indirect via a reduction of photosynthetic leaf area. Nevertheless, mildews can also infect berries at certain developmental stages and directly alter fruit quality via the biosynthesis of unpleasant flavor compounds that impair ultimate wine quality. The grapevine is furthermore host of a wide range of viruses that reduce vine longevity, productivity and berry quality in different ways. The most widespread virus-related diseases, that are known nowadays, are Grapevine Leafroll Disease (GLRD), Grapevine Fanleaf Disease (GFLD), and the more recently characterized grapevine red blotch disease (GRBD). Future climatic conditions are creating a more favorable environment for the proliferation of most virus-insect vectors, so the spread of virus-related diseases is expected to increase in most wine-growing regions. However, the impact of climate change on the evolution of fungal disease pressure will be variable and depending on region and pathogen, with mildews remaining certainly the major phytosanitary threat in most regions because their development rate is to a large extent temperature-driven. This paper aims to provide a review of published literature on most important grapevine fungal and viral pathogens and their impact on grape berry physiology and quality. Our overview of the published literature highlights gaps in our understanding of plant-pathogen interactions, which are valuable for conceiving future research programs dealing with the different pathogens and their impacts on grapevine berry quality and metabolism.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista A. Burbidge
- School of Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| |
Collapse
|
4
|
Flasco M, Hoyle V, Cieniewicz EJ, Roy BG, McLane HL, Perry KL, Loeb G, Nault B, Heck M, Fuchs M. Grapevine Red Blotch Virus Is Transmitted by the Three-Cornered Alfalfa Hopper in a Circulative, Nonpropagative Mode with Unique Attributes. PHYTOPATHOLOGY 2021; 111:1851-1861. [PMID: 33736453 DOI: 10.1094/phyto-02-21-0061-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The transmission mode of grapevine red blotch virus (GRBV, genus Grablovirus, family Geminiviridae) by Spissistilus festinus, the three-cornered alfalfa hopper, is unknown. By analogy with other members in the family Geminiviridae, we hypothesized circulative, nonpropagative transmission. Time-course experiments revealed GRBV in dissected guts, hemolymph, and heads with salivary glands after a 5-, 8-, and 10-day exposure to infected grapevines, respectively. After a 15-day acquisition on infected grapevines and subsequent transfer on alfalfa, a nonhost of GRBV, the virus titer decreased over time in adult insects, as shown by quantitative PCR. Snap bean proved to be a feeding host of S. festinus and a pseudosystemic host of GRBV after Agrobacterium tumefaciens-mediated delivery of an infectious clone. The virus was efficiently transmitted by S. festinus from infected snap bean plants to excised snap bean trifoliates (90%) or grapevine leaves (100%) but less efficiently from infected grapevine plants to excised grapevine leaves (10%) or snap bean trifoliates (67%). Transmission of GRBV also occurred trans-stadially but not via seeds. The virus titer was significantly higher in (i) guts and hemolymph relative to heads with salivary glands, and (ii) adults emanating from third compared with first instars that emerged on infected grapevine plants and developed on snap bean trifoliates. This study demonstrated circulative, nonpropagative transmission of GRBV by S. festinus with an extended acquisition access period compared with other viruses in the family Geminiviridae and marked differences in transmission efficiency between grapevine, the natural host, and snap bean, an alternative herbaceous host.
Collapse
Affiliation(s)
- Madison Flasco
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Victoria Hoyle
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | | | - Brandon G Roy
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Heather L McLane
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853
| | - Keith L Perry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853
| | - Gregory Loeb
- Department of Entomology, Cornell University, Geneva, NY 14456
| | - Brian Nault
- Department of Entomology, Cornell University, Geneva, NY 14456
| | - Michelle Heck
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| | - Marc Fuchs
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
5
|
Wilson H, Yazdani AS, Daane KM. Influence of Riparian Habitat and Ground Covers on Threecornered Alfalfa Hopper (Hemiptera: Membracidae) Populations in Vineyards. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2354-2361. [PMID: 32696968 DOI: 10.1093/jee/toaa151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Grapevine red blotch virus (GRBV) is the causal agent of grapevine red blotch disease, which affects wine grapes and leads to reduced crop yield and quality. While some virus spread can be attributed to the propagation of infected plant material, a greenhouse assay recently demonstrated that the threecornered alfalfa hopper (Membracidae: Spissistilus festinus Say) can transmit GRBV between grapevines. While S. festinus is not considered an economic pest of wine grapes, this species is present in California vineyards and their feeding can cause petiole girdling. Recent surveys have noted a correlation between S. festinus populations and GRBV-positive vines in vineyard areas adjacent to riparian habitat. Here, S. festinus populations were monitored over a 2-yr period at multiple vineyard sites adjacent to riparian habitats. At each site, insects were sampled from ground covers and the vine canopy at the vineyard edge and interior, and vines in both locations were evaluated for petiole girdling. Results indicate that there was no difference in abundance of S. festinus at the vineyard edge and interior. Populations in the vine canopy were highest in the late spring and early summer, and this was followed by the appearance of petiole girdling, indicating a key period of potential GRBV transmission. Furthermore, activity in the vine canopy appears to be amplified when the quality of ground covers is reduced as the season progresses. That said, overall populations of S. festinus were relatively low and additional work is needed to characterize the timing and efficiency of transmission under field conditions.
Collapse
Affiliation(s)
- Houston Wilson
- Department of Entomology, University of California-Riverside, Riverside, CA
- Kearney Agricultural Research and Extension Center, Parlier, CA
| | - Armand S Yazdani
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA
| |
Collapse
|
6
|
Thompson BD, Dahan J, Lee J, Martin RR, Karasev AV. A Novel Genetic Variant of Grapevine leafroll-associated virus-3 (GLRaV-3) from Idaho Grapevines. PLANT DISEASE 2019; 103:509-518. [PMID: 30667323 DOI: 10.1094/pdis-08-18-1303-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grapevine leafroll-associated virus-3 (GLRaV-3) is a major constraint on profitable grapevine cultivation. The virus is transmitted efficiently by mealybugs and soft scale insects, or through vegetative propagation by cuttings, and is present worldwide, wherever grapevines are grown. GLRaV-3 exists as a complex of genetic variants currently classified in several phylogenetic groups that can differ from each other by as much as 30% in nucleotide sequence of the whole genome. In the course of the GLRaV-3 testing of wine grapes in southern Idaho, plants of two grapevine cultivars were found to harbor a novel genetic variant of GLRaV-3, named ID45, which exhibited ≤80% nucleotide sequence identity level to the known GLRaV-3 isolates in its most conserved HSP70h gene. The ID45 variant caused no foliar symptoms in 'Cabernet Sauvignon' in the fall, and was demonstrated to have poor reactivity to commercial virus-specific antibodies. The entire 18,478-nt genome sequence of the GLRaV-3-ID45 was determined using a combination of high-throughput and conventional Sanger sequencing, and demonstrated to have typical organization for the genus Ampelovirus (family Closteroviridae), with only 70 to 77% identity level to the GLRaV-3 genomes from other established phylogroups. We concluded that ID45 represented a new phylogenetic group IX of GLRaV-3. Database search using ID45 nucleotide sequence as a query suggested that this novel ID45 variant is present in at least one other grape-growing state in the U.S., California, and in Brazil. An RT-PCR based test was developed to distinguish ID45 from the predominant GLRaV-3 phylogroup I found in Idaho in single and mixed infections.
Collapse
Affiliation(s)
- Brandon D Thompson
- 1 Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| | - Jennifer Dahan
- 1 Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| | - Jungmin Lee
- 2 Horticultural Crops Research Unit (HCRU; Corvallis, OR) Worksite, USDA-ARS, Parma, ID; and
| | | | - Alexander V Karasev
- 1 Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|