1
|
Jia A, Lin L, Li Y, Fan X. Diversity and Pathogenicity of Six Diaporthe Species from Juglans regia in China. J Fungi (Basel) 2024; 10:583. [PMID: 39194908 DOI: 10.3390/jof10080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Walnut (Juglans regia L.) is cultivated extensively in China for its substantial economic potential as a woody oil species. However, many diseases caused by Diaporthe greatly affect the health of Juglans regia trees. The present study revealed the presence of Diaporthe species from Juglans regia. A total of six species of Diaporthe were isolated from twigs of Juglans regia in three provinces in China, including two known species (Diaporthe gammata and D. tibetensis) and four novel species (D. chaotianensis, D. olivacea, D. shangluoensis and D. shangrilaensis). Phylogenetic relationships of the new species were determined by multilocus phylogenetic analyses based on partial sequences of the internal transcribed spacer (ITS) region, calmodulin (cal) gene, histone H3 (his3) gene, translation elongation factor 1-α (tef1-α) gene and β-tubulin (tub2) gene. Pathogenicity tests indicated that all Diaporthe species obtained in this study were confirmed as pathogens of Juglans regia. This study deepens the understanding of species associated with several disease symptoms in Juglans regia and provides useful information for effective disease control.
Collapse
Affiliation(s)
- Aoli Jia
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Lu Lin
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yixuan Li
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xinlei Fan
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Wang D, Deng D, Zhan J, Wu W, Duan C, Sun S, Zhu Z. An Emerging Disease of Chickpea, Basal Stem Rot Caused by Diaporthe aspalathi in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1950. [PMID: 39065477 PMCID: PMC11280406 DOI: 10.3390/plants13141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Chickpea (Cicer arietinum L.) is an important legume crop worldwide. An emerging disease, basal stem rot with obvious wilt symptoms, was observed in the upper part of chickpea plants during the disease survey in Qiubei County of Yunnan Province. Three fungal isolates (ZD36-1, ZD36-2, and ZD36-3) were obtained from the diseased tissue of chickpea plants collected from the field. Those isolates were morphologically found to be similar to Diaporthe aspalathi. Molecular sequence analyses of multiple gene regions (ITS, tef1, tub2, cal, and his3) indicated that the three isolates showed a high identity with D. aspalathi. Pathogenicity and host range tests of the isolates were performed on the original host chickpea and eight other legume crops. The isolates were strongly pathogenic to chickpea and appeared highly pathogenic to soybean, cowpea, and mung bean; moderated or mild pathogenic to adzuki bean and common bean; however, the isolates did not cause symptoms on grass pea (Lathyrus sativus). Diaporthe aspalathi was previously reported as a main pathogen causing the southern stem canker in soybean. To our knowledge, this is the first report of D. aspalathi inducing basal stem rot on chickpea worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Suli Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| | - Zhendong Zhu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| |
Collapse
|
3
|
Wang X, Kotta-Loizou I, Coutts RHA, Deng H, Han Z, Hong N, Shafik K, Wang L, Guo Y, Yang M, Xu W, Wang G. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. MOLECULAR PLANT 2024; 17:955-971. [PMID: 38745413 DOI: 10.1016/j.molp.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.
Collapse
Affiliation(s)
- Xianhong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Huifang Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China; Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Liping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Yashuang Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Mengmeng Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| | - Guoping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
4
|
Petrović K, Šućur Elez J, Crnković M, Krsmanović S, Rajković M, Kuzmanović B, Malenčić Đ. The Biochemical Response of Soybean Cultivars Infected by Diaporthe Species Complex. PLANTS (BASEL, SWITZERLAND) 2023; 12:2896. [PMID: 37631108 PMCID: PMC10457839 DOI: 10.3390/plants12162896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Oxidative stress in soybean plants infected with Diaporthe isolates was evaluated in order to select (1) the least aggressive inoculation method, (2) to determine the most aggressive Diaporthe isolate, and (3) to determine the most tolerant soybean cultivar to this isolate. Based on the present malondialdehyde (MDA) content, the main end product of the lipid peroxidation process, and the biomarker for oxidative stress, the mycelium contact method was chosen as the least aggressive inoculation method, compared to the toothpick method and plug method. The activity of the antioxidant enzymes (superoxide-dismutase (SOD), catalase (CAT), and peroxidase (PX)), the reduced glutathione (GSH) content, and the level of lipid peroxidation (LP) were measured in soybean cv. Sava infected by five different Diaporthe species (DPM1F-D. aspalathi, DPC/KR19-D. caulivora, DPC004NY15-D. eres, 18-DIA-SOY-14-D. gulyae, and PL157A-D. longicolla). The most pathogenic Diaporthe species to cv. Sava was D. eres. The screening of the antioxidant enzymes activity in the leaves of 12 different soybean cultivars (Altona, Atlas, Capital, Chico, CX134, Favorit, Lakota, McCall, Morsoy, Strain, Rubin, and Victoria) infected with D. eres by the mycelium contact inoculation method showed that Capital, McCall, and Morsoy were the cultivars with the highest tolerance to D. eres, followed by Chico, Favorit, Lakota, and Rubin. The most sensitive cultivars were Atlas, CX134, Victoria, and Strain.
Collapse
Affiliation(s)
- Kristina Petrović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Breeding Department, Maize Research Institute, 11185 Belgrade, Serbia
- BioSense Institute, University of Novi Sad, 21101 Novi Sad, Serbia
| | - Jovana Šućur Elez
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Marina Crnković
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Slobodan Krsmanović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Sector for Plant Nutrition, Agromarket BiH, 76300 Bijeljina, Bosnia and Herzegovina
| | - Miloš Rajković
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Department for Research and Development in Agriculture, Institute of Medicinal Plant Research “Dr. Josif Pančić”, 11000 Belgrade, Serbia
| | - Boris Kuzmanović
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Đorđe Malenčić
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| |
Collapse
|
5
|
Wan Y, Li DW, Si YZ, Li M, Huang L, Zhu LH. Three New Species of Diaporthe Causing Leaf Blight on Acer palmatum in China. PLANT DISEASE 2023; 107:849-860. [PMID: 35961016 DOI: 10.1094/pdis-06-22-1475-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diaporthe spp. are often reported as plant pathogens, endophytes, and saprobes. In this study, three new species (Diaporthe foliicola, D. monospora, and D. nanjingensis) on Acer palmatum were described and illustrated based on morphological characteristics and phylogenetic analyses. Phylogenetic relationships of the new species were determined by multilocus phylogenetic analyses based on partial sequences of the internal transcribed spacer (ITS) region, translation elongation factor 1-α (TEF), β-tubulin (TUB), histone H3 (HIS), and calmodulin (CAL) genes. Genealogical concordance phylogenetic species recognition with a pairwise homoplasy index test was used to verify the conclusions of the phylogenetic analyses. All species were illustrated and their morphology and phylogenetic relationships with other related Diaporthe spp. are discussed. In addition, the tests of Koch's postulates showed that the three new species were pathogens causing leaf blight on A. palmatum.
Collapse
Affiliation(s)
- Yu Wan
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Min Li
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
6
|
Chemical Investigation of Endophytic Diaporthe unshiuensis YSP3 Reveals New Antibacterial and Cytotoxic Agents. J Fungi (Basel) 2023; 9:jof9020136. [PMID: 36836251 PMCID: PMC9963169 DOI: 10.3390/jof9020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Chemical investigation of the plant-derived endophytic fungus Diaporthe unshiuensis YSP3 led to the isolation of four new compounds (1-4), including two new xanthones (phomopthane A and B, 1 and 2), one new alternariol methyl ether derivative (3) and one α-pyrone derivative (phomopyrone B, 4), together with eight known compounds (5-12). The structures of new compounds were interpreted on the basis of spectroscopic data and single-crystal X-ray diffraction analysis. All new compounds were assessed for their antimicrobial and cytotoxic potential. Compound 1 showed cytotoxic activity against HeLa and MCF-7 cells with IC50 values of 5.92 µM and 7.50 µM, respectively, while compound 3 has an antibacterial effect on Bacillus subtilis (MIC value 16 μg/mL).
Collapse
|