1
|
Deressa T, Adugna G, Suresh LM, Bekeko Z, Iriarte-Broders G, Vaughan MM, Proctor RH, Mehl HL, Prasanna BM, Opoku J. Fusarium boothii, Fusarium meridionale, and Fusarium temperatum Are Emerging Preharvest Maize Ear Rot Pathogens in Ethiopia. PLANT DISEASE 2025; 109:297-307. [PMID: 39623288 DOI: 10.1094/pdis-12-23-2765-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Fusarium ear rot (FER) and Gibberella ear rot (GER) caused by Fusarium species are major diseases affecting maize production in Ethiopia. In addition to reducing quality and yield, these fungi can produce mycotoxins that contaminate maize kernels and, thereby, pose health hazards to humans and livestock. A survey was conducted in 10 administrative zones of Ethiopia within the major maize-growing regions of the country to identify the species of Fusarium associated with ear rot. Twenty kernels were sampled from ears randomly collected from each zone (12 ears per field, 24 fields per zone). Ninety-two fungal isolates recovered from the kernels were tentatively identified as Fusarium based on morphological traits. Subsequently, the species identity of each isolate was determined by DNA sequence analysis of a portion of the translation elongation factor 1-α gene and two noncontiguous fragments of the RNA polymerase II subunit gene. Based on phylogenetic analysis of the data, 37.3% of the isolates recovered from maize kernels were from three species that have not been reported previously in Ethiopia: Fusarium boothii (4.3%), F. meridionale (10.2%), and F. temperatum (22.8%). Completion of Koch's postulates with selected isolates confirmed that these three species can cause maize ear rot. Information on causal agents of maize ear rots in Ethiopia should be taken into consideration when developing disease management strategies, including breeding for resistance.
Collapse
Affiliation(s)
- Temesgen Deressa
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Bako National Maize Research Center, Ethiopian Institute of Agricultural Research, Bako, Ethiopia
| | - Girma Adugna
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - L M Suresh
- International Maize and Wheat Improvement Center, CIMMYT, Nairobi, Kenya
| | - Zelalem Bekeko
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Gloria Iriarte-Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Martha M Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Hillary Laureen Mehl
- United States Department of Agriculture-Agricultural Research Service, Tucson, AZ, U.S.A
| | | | - Joseph Opoku
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| |
Collapse
|
2
|
Ayesiga SB, Rubaihayo P, Sempiira JB, Adjei EA, Dramadri IO, Oloka BM, Sserumaga JP. Combining ability and gene action for resistance to Fusarium ear rot in tropical maize hybrids. FRONTIERS IN PLANT SCIENCE 2025; 16:1509859. [PMID: 39949414 PMCID: PMC11821605 DOI: 10.3389/fpls.2025.1509859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025]
Abstract
A comprehensive understanding of the genetics of resistance is essential for developing an effective breeding strategy to create germplasm resistant to Fusarium Ear Rot. This study aimed to determine the general combining ability (GCA), specific combining ability (SCA), and heritability of resistance to infection by Fusarium verticillioides in tropical maize. Using the North Carolina II mating design, six inbred lines as females and seven as males were crossed to produce 42 hybrids, which were evaluated across five environments using artificial inoculation. At harvest, the hybrids were scored for Fusarium Ear Rot (FER) infection using a 1-9 severity scale. Significant GCA effects for the parents and SCA effects for the hybrids were observed. The narrow-sense heritability estimate was 0.22, while the broad-sense heritability was 0.73, and the additive genetic effects, as represented by GCA (m+f), were more significant than non-additive effects. The inbred parents JPS25-13, JPS26-125, JPS26-86, JPS25-11, JPS25-5, JPS25-7, and JPS25-9 were identified as the best general combiners for FER resistance. These lines, with favorable general combining ability effects for resistance to Fusarium verticillioides, are strong candidates for breeding resistant varieties.
Collapse
Affiliation(s)
- Stella Bigirwa Ayesiga
- Department of Crop Science and Horticulture, College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
- National Livestock Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Patrick Rubaihayo
- Department of Crop Science and Horticulture, College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
| | - John Bosco Sempiira
- Department of Crop Science and Horticulture, College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
- National Livestock Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - Emmanuel Amponsah Adjei
- Council for Scientific and Industrial Research (CSIR)– Savanna Agriculture Research Institute, Tamale, Ghana
| | - Isaac Onziga Dramadri
- Department of Crop Science and Horticulture, College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
- Makerere University Regional Centre for Crop Improvement (MaRCCI), College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Bonny Michael Oloka
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Julius Pyton Sserumaga
- National Livestock Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| |
Collapse
|
3
|
Mesterhazy A. Food Safety Aspects of Breeding Maize to Multi-Resistance against the Major (Fusarium graminearum, F. verticillioides, Aspergillus flavus) and Minor Toxigenic Fungi ( Fusarium spp.) as Well as to Toxin Accumulation, Trends, and Solutions-A Review. J Fungi (Basel) 2024; 10:40. [PMID: 38248949 PMCID: PMC10817526 DOI: 10.3390/jof10010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Maize is the crop which is most commonly exposed to toxigenic fungi that produce many toxins that are harmful to humans and animals alike. Preharvest grain yield loss, preharvest toxin contamination (at harvest), and storage loss are estimated to be between 220 and 265 million metric tons. In the past ten years, the preharvest mycotoxin damage was stable or increased mainly in aflatoxin and fumonisins. The presence of multiple toxins is characteristic. The few breeding programs concentrate on one of the three main toxigenic fungi. About 90% of the experiments except AFB1 rarely test toxin contamination. As disease resistance and resistance to toxin contamination often differ in regard to F. graminearum, F. verticillioides, and A. flavus and their toxins, it is not possible to make a food safety evaluation according to symptom severity alone. The inheritance of the resistance is polygenic, often mixed with epistatic and additive effects, but only a minor part of their phenotypic variation can be explained. All tests are made by a single inoculum (pure isolate or mixture). Genotype ranking differs between isolates and according to aggressiveness level; therefore, the reliability of such resistance data is often problematic. Silk channel inoculation often causes lower ear rot severity than we find in kernel resistance tests. These explain the slow progress and raise skepticism towards resistance breeding. On the other hand, during genetic research, several effective putative resistance genes were identified, and some overlapped with known QTLs. QTLs were identified as securing specific or general resistance to different toxicogenic species. Hybrids were identified with good disease and toxin resistance to the three toxigenic species. Resistance and toxin differences were often tenfold or higher, allowing for the introduction of the resistance and resistance to toxin accumulation tests in the variety testing and the evaluation of the food safety risks of the hybrids within 2-3 years. Beyond this, resistance breeding programs and genetic investigations (QTL-analyses, GWAM tests, etc.) can be improved. All other research may use it with success, where artificial inoculation is necessary. The multi-toxin data reveal more toxins than we can treat now. Their control is not solved. As limits for nonregulated toxins can be introduced, or the existing regulations can be made to be stricter, the research should start. We should mention that a higher resistance to F. verticillioides and A. flavus can be very useful to balance the detrimental effect of hotter and dryer seasons on aflatoxin and fumonisin contamination. This is a new aspect to secure food and feed safety under otherwise damaging climatic conditions. The more resistant hybrids are to the three main agents, the more likely we are to reduce the toxin losses mentioned by about 50% or higher.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
4
|
Ayesiga SB, Rubaihayo P, Oloka BM, Dramadri IO, Sserumaga JP. Genome-wide association study and pathway analysis to decipher loci associated with Fusarium ear rot resistance in tropical maize germplasm. GENETIC RESOURCES AND CROP EVOLUTION 2023; 71:2435-2448. [PMID: 39026943 PMCID: PMC11252232 DOI: 10.1007/s10722-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 07/20/2024]
Abstract
Breeding for host resistance is the most efficient and environmentally safe method to curb the spread of fusarium ear rot (FER). However, conventional breeding for resistance to FER is hampered by the complex polygenic nature of this trait, which is highly influenced by environmental conditions. This study aimed to identify genomic regions, single nucleotide polymorphisms (SNPs), and putative candidate genes associated with FER resistance as well as candidate metabolic pathways and pathway genes involved in it. A panel of 151 tropical inbred maize lines were used to assess the genetic architecture of FER resistance over two seasons. During the study period, seven SNPs associated with FER resistance were identified on chromosomes 1, 2, 4, 5, and 9, accounting for 4-11% of the phenotypic variance. These significant markers were annotated into four genes. Seven significant metabolic pathways involved in FER resistance were identified using the Pathway Association Study Tool, the most significant being the superpathway of the glyoxylate cycle. Overall, this study confirmed that resistance to FER is indeed a complex mechanism controlled by several small to medium-effect loci. Our findings may contribute to fast-tracking the efforts to develop disease-resistant maize lines through marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s10722-023-01793-4.
Collapse
Affiliation(s)
- Stella Bigirwa Ayesiga
- Department of Agricultural Production, College of Agriculture and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
- National Livestock Resources Research Institute, National Agricultural Research Organization, PO Box 5704, Kampala, Uganda
| | - Patrick Rubaihayo
- Department of Agricultural Production, College of Agriculture and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Bonny Michael Oloka
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC USA
| | - Isaac Ozinga Dramadri
- Department of Agricultural Production, College of Agriculture and Environmental Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Julius Pyton Sserumaga
- National Livestock Resources Research Institute, National Agricultural Research Organization, PO Box 5704, Kampala, Uganda
| |
Collapse
|
5
|
Liu Y, Ao M, Lu M, Zheng S, Zhu F, Ruan Y, Guan Y, Zhang A, Cui Z. Genomic selection to improve husk tightness based on genomic molecular markers in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1252298. [PMID: 37828926 PMCID: PMC10566295 DOI: 10.3389/fpls.2023.1252298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
Introduction The husk tightness (HTI) in maize plays a crucial role in regulating the water content of ears during the maturity stage, thereby influencing the quality of mechanical grain harvesting in China. Genomic selection (GS), which employs molecular markers, offers a promising approach for identifying and selecting inbred lines with the desired HTI trait in maize breeding. However, the effectiveness of GS is contingent upon various factors, including the genetic architecture of breeding populations, sequencing platforms, and statistical models. Methods An association panel of maize inbred lines was grown across three sites over two years, divided into four subgroups. GS analysis for HTI prediction was performed using marker data from three sequencing platforms and six marker densities with six statistical methods. Results The findings indicate that a loosely attached husk can aid in the dissipation of water from kernels in temperate maize germplasms across most environments but not nessarily for tropical-origin maize. Considering the balance between GS prediction accuracy and breeding cost, the optimal prediction strategy is the rrBLUP model, the 50K sequencing platform, a 30% proportion of the test population, and a marker density of r2=0.1. Additionally, selecting a specific SS subgroup for sampling the testing set significantly enhances the predictive capacity for husk tightness. Discussion The determination of the optimal GS prediction strategy for HTI provides an economically feasible reference for the practice of molecular breeding. It also serves as a reference method for GS breeding of other agronomic traits.
Collapse
Affiliation(s)
- Yuncan Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Man Ao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shubo Zheng
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Fangbo Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yanye Ruan
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yixin Guan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhenhai Cui
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
6
|
Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins (Basel) 2023; 15:577. [PMID: 37756003 PMCID: PMC10534665 DOI: 10.3390/toxins15090577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
7
|
Ráduly Z, Szabó A, Mézes M, Balatoni I, Price RG, Dockrell ME, Pócsi I, Csernoch L. New perspectives in application of kidney biomarkers in mycotoxin induced nephrotoxicity, with a particular focus on domestic pigs. Front Microbiol 2023; 14:1085818. [PMID: 37125184 PMCID: PMC10140568 DOI: 10.3389/fmicb.2023.1085818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zsolt Ráduly,
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Miklós Mézes
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
- Department of Food Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Robert G. Price
- Department of Nutrition, Franklin-Wilkins Building, King’s College London, London, United Kingdom
| | - Mark E. Dockrell
- SWT Institute of Renal Research, London, United Kingdom
- Department of Molecular and Clinical Sciences, St. George’s University, London, United Kingdom
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Ortega-Beltran A, Agbetiameh D, Atehnkeng J, Falade TDO, Bandyopadhyay R. Does Use of Atoxigenic Biocontrol Products to Mitigate Aflatoxin in Maize Increase Fumonisin Content in Grains? PLANT DISEASE 2021; 105:2196-2201. [PMID: 33210967 DOI: 10.1094/pdis-07-20-1447-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the tropics and subtropics, maize (Zea mays) and other crops are frequently contaminated with aflatoxins by Aspergillus flavus. Treatment of crops with atoxigenic isolates of A. flavus formulated into biocontrol products can significantly reduce aflatoxin contamination. Treated crops contain up to 100% fewer aflatoxins compared with untreated crops. However, there is the notion that protecting crops from aflatoxin contamination may result in increased accumulation of other toxins, particularly fumonisins produced by a few Fusarium species. The objective of this study was to determine if treatment of maize with aflatoxin biocontrol products increased fumonisin concentration and fumonisin-producing fungi in grains. Over 200 maize samples from fields treated with atoxigenic biocontrol products in Nigeria and Ghana were examined for fumonisin content and contrasted with maize from untreated fields. Apart from low aflatoxin levels, most treated maize also harbored fumonisin levels considered safe by the European Union (<1 part per million; ppm). Most untreated maize also harbored equally low fumonisin levels but contained higher aflatoxin levels. In addition, during one year, we detected considerably lower Fusarium spp. densities in treated maize than in untreated maize. Our results do not support the hypothesis that treating crops with atoxigenic isolates of A. flavus used in biocontrol formulations results in higher grain fumonisin levels.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Agro Enterprise Development, Faculty of Applied Science and Technology, Ho Technical University, Ho, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Bukavu, D. R. Congo
| | | | | |
Collapse
|
9
|
Loss of ZmLIPOXYGENASE4 Decreases Fusarium verticillioides Resistance in Maize Seedlings. Genes (Basel) 2021; 12:genes12030335. [PMID: 33668883 PMCID: PMC7996282 DOI: 10.3390/genes12030335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/02/2022] Open
Abstract
Fusarium verticillioides is one of the most relevant fungal species in maize responsible for ear, stalk and seedling rot, as well as the fumonisin contamination of kernels. Plant lipoxygenases (LOX) synthesize oxylipins that play a crucial role in the regulation of defense mechanisms against pathogens and influence the outcome of pathogenesis. To better uncover the role of these signaling molecules in maize resistance against F. verticillioides, the functional characterization of the 9-LOX gene, ZmLOX4, was carried out in this study by employing mutants carrying Mu insertions in this gene (named as UFMulox4). In this regard, the genotyping of five UFMulox4 identified the mutant UFMu10924 as the only one having an insertion in the coding region of the gene. The impact of ZmLOX4 mutagenesis on kernel defense against F. verticillioides and fumonisin accumulation were investigated, resulting in an increased fungal susceptibility compared to the inbred lines W22 and Tzi18. Moreover, the expression of most of the genes involved in the LOX, jasmonic acid (JA) and green leaf volatiles (GLV) pathways, as well as LOX enzymatic activity, decreased or were unaffected by fungal inoculation in the mutant UFMu10924. These results confirm the strategic role of ZmLOX4 in controlling defense against F. verticillioides and its influence on the expression of several LOX, JA and GLV genes.
Collapse
|
10
|
Craven M, Morey L, Morey L, Abrahams A, Njom HA, Janse van Rensburg B. The Effect of northern corn leaf blight severity on Fusarium ear rot incidence of maize. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/8508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Northern corn leaf blight (NCLB) caused by Exserohilum turcicum and Fusarium ear rot caused by Fusarium verticillioides, are economically important maize diseases in South Africa. The effect of induced plant stress by NCLB on F. verticillioides ear rot and fumonisin production is unknown. Four field trials were conducted during 2016/2017 and 2017/2018 (November and December planting dates) at the Agricultural Research Council – Grain Crops in Potchefstroom (South Africa). Three maize cultivars with varying resistance levels to NCLB were selected (IMP50-10B – susceptible, BG3292 – moderately susceptible, DKC 61-94BR – resistant). NCLB severities were created through eight treatments: TMT1 – maximum control (three fungicide applications); TMT2 – standard control (two fungicide applications) and TMT3 – natural control (not inoculated or sprayed). The remaining treatments were inoculated with a cocktail of five NCLB races (Race 3, 3N, 23, 23N and 13N): TMT4 (five weeks after planting / WAP); TMT5 (five and six WAP); TMT6 (five, six and seven WAP); TMT7 (six and seven WAP); and TMT8 (seven WAP). Maize ears were naturally infected with F. verticillioides. Fifteen random plants were labelled at dent stage and NCLB severity (%), area under the disease progress curve, ear rot diseased area, ear rot severity (%), ear rot incidence (%) and total fumonisins (FB1+FB2+FB3; ug/kg) were established. Low levels of cob rot severity and fumonisins were obtained in all four trials. NCLB severity did not affect ear rot related parameters measured. Mean fumonisin levels were below the South African tolerance levels. Fumonisin concentrations differed significantly between cultivars but was not affected by NCLB severity or the cultivar x treatment interaction.
Collapse
Affiliation(s)
- Maryke Craven
- Grain Crops, Agricultural Research Council, Potchefstroom, South Africa
| | - Liesl Morey
- Biometry Unit, Agricultural Research Council, Pretoria, South Africa
| | - Liesl Morey
- Biometry Unit, Agricultural Research Council, Pretoria, South Africa
| | - Adrian Abrahams
- Grain Crops, Agricultural Research Council, Potchefstroom, South Africa
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa
| | - Henry A. Njom
- Grain Crops, Agricultural Research Council, Potchefstroom, South Africa
| | | |
Collapse
|
11
|
Assessment of the Potential for Genomic Selection To Improve Husk Traits in Maize. G3-GENES GENOMES GENETICS 2020; 10:3741-3749. [PMID: 32816916 PMCID: PMC7534435 DOI: 10.1534/g3.120.401600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Husk has multiple functions such as protecting ears from diseases, infection, and dehydration during development. Additionally, husks comprised of fewer, shorter, thinner, and narrower layers allow faster moisture evaporation of kernels prior to harvest. Intensive studies have been conducted to identify appropriate husk architecture by understanding the genetic basis of related traits, including husk length, husk layer number, husk thickness, and husk width. However, marker-assisted selection is inefficient because the identified quantitative trait loci and associated genetic loci could only explain a small proportion of total phenotypic variation. Genomic selection (GS) has been used successfully on many species including maize on other traits. Thus, the potential of using GS for husk traits to directly identify superior inbred lines, without knowing the specific underlying genetic loci, is well worth exploring. In this study, we compared four GS models on a maize association population with 498 inbred lines belonging to four subpopulations, including 27 lines in stiff stalk, 67 lines in non-stiff stalk, 193 lines in tropical-subtropical, and 211 lines in mixture subpopulations. Genomic Best Linear Unbiased Prediction with principal components as cofactor, performed the best and was selected to examine the impact of interaction between sampling proportions and subpopulations. We found that predictions on inbred lines in a subpopulation were benefited from excluding individuals from other subpopulations for training if the training population within the subpopulation was large enough. Husk thickness exhibited the highest prediction accuracy among all husk traits. These results gave strategic insight to improve husk architecture.
Collapse
|
12
|
Jiang S, Zhang H, Ni P, Yu S, Dong H, Zhang A, Cao H, Zhang L, Ruan Y, Cui Z. Genome-Wide Association Study Dissects the Genetic Architecture of Maize Husk Tightness. FRONTIERS IN PLANT SCIENCE 2020; 11:861. [PMID: 32695127 PMCID: PMC7338587 DOI: 10.3389/fpls.2020.00861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/27/2020] [Indexed: 06/01/2023]
Abstract
The husk is a leafy outer tissue that encloses a maize ear. Previously, we identified the optimum husk structure by measuring the husk length, husk layer number, husk thickness and husk width. Husk tightness (HTI) is a combined trait based on the above four husk measurements. Unveiling the genetic basis of HTI will aid in guiding the genetic improvement of maize for mechanical harvesting and for protecting the ear from pest damage and pathogen infection. Here, we used a maize associate population of 508 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic architecture of HTI. Evaluating the phenotypic diversity in three different environments showed that HTI exhibited broad natural variations and a moderate heritability level of 0.41. A diversity analysis indicated that the inbred lines having a temperate background were more loosely related than those having a tropical or subtropical background. HTI showed significant negative correlations with husk thickness and width, which indicates that thicker and wider husks wrapped the ear tighter than thinner and slimmer husks. Combining husk traits with ∼1.25 million single nucleotide polymorphisms in a genome-wide association study revealed 27 variants that were significantly associated with HTI above the threshold of P < 7.26 × 10-6. We found 27 candidate genes for HTI that may participate in (1) husk senescence involving lipid peroxidation (GRMZM2G017616) and programmed cell death (GRMZM2G168898 and GRMZM2G035045); (2) husk morphogenesis involving cell division (GRMZM5G869246) and cell wall architecture (GRMZM2G319798); and (3) cell signal transduction involving protein phosphorylation (GRMZM2G149277 and GRMZM2G004207) and the ABSISIC ACID INSENSITIVE3/VIVIPAROUS1 transcription factor (GRMZM2G088427). These results provide useful information for understanding the genetic basis of husk development. Further studies of identified candidate genes will help elucidate the molecular pathways that regulate HTI in maize.
Collapse
Affiliation(s)
- Siqi Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Haibo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Pengzun Ni
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Haixiao Dong
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Huiying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Lijun Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Zhenhai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| |
Collapse
|
13
|
Santiago R, Cao A, Malvar RA, Butrón A. Genomics of Maize Resistance to Fusarium Ear Rot and Fumonisin Contamination. Toxins (Basel) 2020; 12:E431. [PMID: 32629954 PMCID: PMC7404995 DOI: 10.3390/toxins12070431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
Food contamination with mycotoxins is a worldwide concern, because these toxins produced by several fungal species have detrimental effects on animal and/or human health. In maize, fumonisins are among the toxins with the highest threatening potential because they are mainly produced by Fusarium verticillioides, which is distributed worldwide. Plant breeding has emerged as an effective and environmentally safe method to reduce fumonisin levels in maize kernels, but although phenotypic selection has proved effective for improving resistance to fumonisin contamination, further resources should be mobilized to meet farmers' needs. Selection based on molecular markers linked to quantitative trait loci (QTL) for resistance to fumonisin contamination or/and genotype values obtained using prediction models with markers distributed across the whole genome could speed up breeding progress. Therefore, in the current paper, previously identified genomic regions, genes, and/or pathways implicated in resistance to fumonisin accumulation will be reviewed. Studies done until now have provide many markers to be used by breeders, but to get further insight on plant mechanisms to defend against fungal infection and to limit fumonisin contamination, the genes behind those QTLs should be identified.
Collapse
Affiliation(s)
- Rogelio Santiago
- Departamento de Biología Vegetal y Ciencias del Suelo, Facultad de Biología, Universidad de Vigo, As Lagoas Marcosende, Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), 36310 Vigo, Spain;
| | - Ana Cao
- Misión Biológica de Galicia (CSIC), Apdo. 28, 36080 Pontevedra, Spain; (A.C.); (R.A.M.)
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Apdo. 28, 36080 Pontevedra, Spain; (A.C.); (R.A.M.)
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Apdo. 28, 36080 Pontevedra, Spain; (A.C.); (R.A.M.)
| |
Collapse
|
14
|
Ciasca B, Lanubile A, Marocco A, Pascale M, Logrieco AF, Lattanzio VMT. Application of an Integrated and Open Source Workflow for LC-HRMS Plant Metabolomics Studies. Case-Control Study: Metabolic Changes of Maize in Response to Fusarium verticillioides Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:664. [PMID: 32582236 PMCID: PMC7290002 DOI: 10.3389/fpls.2020.00664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/29/2020] [Indexed: 06/01/2023]
Abstract
Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) represents the most powerful metabolomics platform to investigate biological systems. Reproducible and standardized workflows allow obtaining a meaningful biological interpretation. The purpose of this study was to set up and apply an open-source workflow for LC-HRMS plant metabolomics studies. Key steps of the proposed workflow were as follows: (1) experimental design, (2) sample preparation, (3) LC-HRMS analysis, (4) data processing, (5) custom database search, (6) statistical analysis, (7) compound identification, and (8) biochemical interpretation. Its applicability was evaluated through the study of metabolomics changes of two maize recombinant inbred lines with contrasting phenotypes with respect to disease severity after Fusarium verticillioides infection of seedlings. Analysis of data from the case-control study revealed abundance change in metabolites belonging to different metabolic pathways, including two amino acids (L-tryptophan and tyrosine), five flavonoids, and three N-hydroxynnamic acid amides.
Collapse
Affiliation(s)
- Biancamaria Ciasca
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Michelangelo Pascale
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | |
Collapse
|
15
|
Abstract
Mycotoxins are secondary metabolites of microscopic fungi, which commonly contaminate cereal grains. Contamination of small-grain cereals and maize with toxic metabolites of fungi, both pathogenic and saprotrophic, is one of the particularly important problems in global agriculture. Fusarium species are among the dangerous cereal pathogens with a high toxicity potential. Secondary metabolites of these fungi, such as deoxynivalenol, zearalenone and fumonisin B1 are among five most important mycotoxins on a European and world scale. The use of various methods to limit the development of Fusarium cereal head diseases and grain contamination with mycotoxins, before and after harvest, is an important element of sustainable agriculture and production of safe food. The applied strategies utilize chemical and non-chemical methods, including agronomic, physical and biological treatments. Biological methods now occupy a special place in plant protection as an element of biocontrol of fungal pathogens by inhibiting their development and reducing mycotoxins in grain. According to the literature, Good Agricultural Practices are the best line of defense for controlling Fusarium toxin contamination of cereal and maize grains. However, fluctuations in weather conditions can significantly reduce the effectiveness of plants protection methods against infection with Fusarium spp. and grain accumulation of mycotoxins.
Collapse
|
16
|
Abo Nouh FA, Gezaf SA, Abdel-Azeem AM. Aspergillus Mycotoxins: Potential as Biocontrol Agents. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Fumonisin Production by Fusarium verticillioides in Maize Genotypes Cultivated in Different Environments. Toxins (Basel) 2019; 11:toxins11040215. [PMID: 30974722 PMCID: PMC6520941 DOI: 10.3390/toxins11040215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Fumonisins are mycotoxins (MTs) produced mainly by the fungus Fusarium verticillioides, the main pathogens of maize which cause ear rot. The aim of this work was to evaluate some factors that may lead to high fumonisin production by F. verticillioides in maize grains, correlating the pathogen inoculation method with different genotypes grown in four Brazilian states. Experiments were conducted in 2015–2016 in maize crops from experimental maize fields located in four distinct states of Brazil. Results showed that contamination by fumonisin mycotoxins occurred even on symptomatic or asymptomatic grains. In all municipalities, the samples showed levels of fumonisin B1 that were higher than would be tolerable for the human consumption of corn products (the current tolerance limit for fumonisin is 1.5 μg g−1). High severity of grains infected with F. verticillioides does not always show high concentrations of fumonisins. Environments with higher temperatures may influence the production of high concentrations of fumonisin in maize hybrids. Spray inoculation methods and inoculation at the center of spikes did not influence fumonisin concentrations. Results showed that the hybrids P3630H, P32R48 and P3250 presented higher disease severity, as well as higher mycotoxin levels in the studied locations with higher temperatures.
Collapse
|
18
|
Septiani P, Lanubile A, Stagnati L, Busconi M, Nelissen H, Pè ME, Dell'Acqua M, Marocco A. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Sci Rep 2019; 9:5665. [PMID: 30952942 PMCID: PMC6451006 DOI: 10.1038/s41598-019-42248-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/26/2019] [Indexed: 12/16/2022] Open
Abstract
Fungal infection by Fusarium verticillioides is cause of prevalent maize disease leading to substantial reductions in yield and grain quality worldwide. Maize resistance to the fungus may occur at different developmental stages, from seedling to maturity. The breeding of resistant maize genotypes may take advantage of the identification of quantitative trait loci (QTL) responsible for disease resistance already commenced at seedling level. The Multi-parent Advance Generation Intercross (MAGIC) population was used to conduct high-definition QTL mapping for Fusarium seedling rot (FSR) resistance using rolled towel assay. Infection severity level, seedling weight and length were measured on 401 MAGIC maize recombinant inbred lines (RILs). QTL mapping was performed on reconstructed RIL haplotypes. One-fifth of the MAGIC RILs were resistant to FSR and 10 QTL were identified. For FSR, two QTL were detected at 2.8 Mb and 241.8 Mb on chromosome 4, and one QTL at 169.6 Mb on chromosome 5. Transcriptomic and sequencing information generated on the MAGIC founder lines was used to guide the identification of eight candidate genes within the identified FSR QTL. We conclude that the rolled towel assay applied to the MAGIC maize population provides a fast and cost-effective method to identify QTL and candidate genes for early resistance to F. verticillioides in maize.
Collapse
Affiliation(s)
- Popi Septiani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Lorenzo Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Matteo Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy.
| |
Collapse
|
19
|
Thompson MEH, Raizada MN. Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road. Pathogens 2018; 7:E81. [PMID: 30314351 PMCID: PMC6313692 DOI: 10.3390/pathogens7040081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/16/2022] Open
Abstract
Silks are the long threads at the tips of maize ears onto which pollen land and sperm nuclei travel long distances to fertilize egg cells, giving rise to embryos and seeds; however fungal pathogens also use this route to invade developing grain, causing damaging ear rots with dangerous mycotoxins. This review highlights the importance of silks as the direct highways by which globally important fungal pathogens enter maize kernels. First, the most important silk-entering fungal pathogens in maize are reviewed, including Fusarium graminearum, Fusarium verticillioides, and Aspergillus flavus, and their mycotoxins. Next, we compare the different modes used by each fungal pathogen to invade the silks, including susceptible time intervals and the effects of pollination. Innate silk defences and current strategies to protect silks from ear rot pathogens are reviewed, and future protective strategies and silk-based research are proposed. There is a particular gap in knowledge of how to improve silk health and defences around the time of pollination, and a need for protective silk sprays or other technologies. It is hoped that this review will stimulate innovations in breeding, inputs, and techniques to help growers protect silks, which are expected to become more vulnerable to pathogens due to climate change.
Collapse
Affiliation(s)
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
20
|
Orina I, Manley M, Kucheryavskiy S, Williams PJ. Application of Image Texture Analysis for Evaluation of X-Ray Images of Fungal-Infected Maize Kernels. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1251-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016; 32:179-205. [PMID: 27554261 PMCID: PMC5063913 DOI: 10.1007/s12550-016-0257-7] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
Collapse
Affiliation(s)
- Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse6, 37077, Göttingen, Germany
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122, Parma, Italy
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Johan De Meester
- Cargill R&D Center Europe, Havenstraat 84, B-1800, Vilvoorde, Belgium
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, Germany (retired), University of Kaiserslautern, P.O.Box 3049, 67653, Kaiserslautern, Germany
| | - Irène Perrin
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Isabelle P Oswald
- INRA, UMR 1331 ToxAlim, Research Center in Food Toxicology, 180 chemin de Tournefeuille, BP93173, 31027, Toulouse, France
- Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Winterkoning 7, 34353 RN, Nieuwegein, The Netherlands
| | - Alessandro Chiodini
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Tobias Recker
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Pierre Dussort
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| |
Collapse
|
22
|
Rose LJ, Mouton M, Beukes I, Flett BC, van der Vyver C, Viljoen A. Multi-environment Evaluation of Maize Inbred Lines for Resistance to Fusarium Ear Rot and Fumonisins. PLANT DISEASE 2016; 100:2134-2144. [PMID: 30683004 DOI: 10.1094/pdis-11-15-1360-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium verticillioides causes Fusarium ear rot (FER) of maize and produces fumonisins, which affects grain quality. Host-plant resistance can reduce both FER and fumonisins in maize. In this study, 18 maize inbred lines were evaluated for resistance to F. verticillioides and fumonisin accumulation at five localities in South Africa. Additive main effects and multiplicative interaction analyses revealed significant environment × genotype interactions, with inbred lines CML 390, US 2540W, RO 424W, and VO 617y-2 consistently exhibiting low FER severity (≤5.4%), fungal target DNA (≤0.1 ng μl-1), and fumonisin levels (≤5.6 ppm). Genotype main effect and genotype × environment biplots showed that inbred lines CML 390, US 2540W, and RO 424W were most resistant to FER, fungal colonization, and fumonisin accumulation, respectively, while inbred line RO 424W was most stable in its resistance response over environments. These inbred lines also demonstrated broad adaptability by consistently exhibiting resistance to FER, fungal colonization, and fumonisins across localities. The identified lines could serve as valuable sources of resistance against F. verticillioides and its fumonisins in local breeding programs.
Collapse
Affiliation(s)
- L J Rose
- Department of Plant Pathology, Stellenbosch University, Matieland 7602, South Africa
| | - M Mouton
- Department of Plant Pathology, Stellenbosch University, Matieland 7602, South Africa
| | - I Beukes
- Department of Plant Pathology, Stellenbosch University, Matieland 7602, South Africa
| | - B C Flett
- Grain Crops Institute, Agricultural Research Council, Potchefstroom 2520, South Africa
| | | | - A Viljoen
- Department of Plant Pathology, Stellenbosch University
| |
Collapse
|
23
|
Santiago R, Cao A, Butrón A. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding. Toxins (Basel) 2015; 7:3267-96. [PMID: 26308050 PMCID: PMC4549750 DOI: 10.3390/toxins7083267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 11/23/2022] Open
Abstract
Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects.
Collapse
Affiliation(s)
- Rogelio Santiago
- Facultad de Biología, Dpt Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, Vigo 36310, Spain.
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la Misión Biológica de Galicia (CSIC), Pontevedra 36143, Spain.
| | - Ana Cao
- Misión Biológica de Galicia (CSIC), Box 28, Pontevedra 36080, Spain.
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Box 28, Pontevedra 36080, Spain.
| |
Collapse
|
24
|
Ruiz de Galarreta JI, Butrón A, Ortiz-Barredo A, Malvar RA, Ordás A, Landa A, Revilla P. Mycotoxins in maize grains grown in organic and conventional agriculture. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Bryła M, Roszko M, Szymczyk K, Jędrzejczak R, Obiedziński MW, Sękul J. Fumonisins in plant-origin food and fodder – a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1626-40. [DOI: 10.1080/19440049.2013.809624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Hung HY, Holland JB. Diallel Analysis of Resistance to Fusarium Ear Rot and Fumonisin Contamination in Maize. CROP SCIENCE 2012. [PMID: 0 DOI: 10.2135/cropsci2012.03.0154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Hsiao-Yi Hung
- Dep. of Crop Science; North Carolina State Univ.; Campus Box 7620 Raleigh NC 27695
| | - James B. Holland
- Dep. of Crop Science; North Carolina State Univ.; Campus Box 7620 Raleigh NC 27695
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS)
| |
Collapse
|
27
|
Small IM, Flett BC, Marasas WFO, McLeod A, Stander MA, Viljoen A. Resistance in Maize Inbred Lines to Fusarium verticillioides and Fumonisin Accumulation in South Africa. PLANT DISEASE 2012; 96:881-888. [PMID: 30727350 DOI: 10.1094/pdis-08-11-0695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium ear rot of maize, caused by Fusarium verticillioides, is an important disease affecting maize production worldwide. Apart from reducing yield and grain quality, F. verticillioides produces fumonisins which have been associated with mycotoxicoses of animals and humans. Currently, no maize breeding lines are known with resistance to F. verticillioides in South Africa. The objective of this study, therefore, was to evaluate 24 genetically diverse maize inbred lines as potential sources of resistance to Fusarium ear rot and fumonisin accumulation in field trials at Potchefstroom and Vaalharts in South Africa. After artificial silk channel inoculation with F. verticillioides, Fusarium ear rot development was determined at harvest and fumonisins B1, B2, and B3 quantified. A significant inbred line by location effect was observed for Fusarium ear rot severity (P ≤ 0.001), although certain lines proved to be consistently resistant across both locations. The individual inbred lines also differed considerably in fumonisin accumulation between Potchefstroom and Vaalharts, with differentiation between susceptible and potentially resistant inbred lines only being possible at Vaalharts. A greenhouse inoculation trial was then also performed on a subset of potentially resistant and highly susceptible lines. The inbred lines CML 390, CML 444, CML 182, VO 617Y-2, and RO 549 W consistently showed a low Fusarium ear rot (<5%) incidence at both Potchefstroom and Vaalharts and in the greenhouse. Two of these inbred lines, CML 390 and CML 444, accumulated fumonisin levels <5 mg kg-1. These lines could potentially act as sources of resistance for use within a maize breeding program.
Collapse
Affiliation(s)
- I M Small
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - B C Flett
- Grain Crops Institute, Agricultural Research Council, Private Bag X1251, Potchefstroom 2520, South Africa
| | | | | | | | - A Viljoen
- Department of Plant Pathology, University of Stellenbosch, South Africa
| |
Collapse
|
28
|
Hefny M, Attaa S, Bayoumi T, Ammar S, El-Bramawy M. Breeding maize for resistance to ear rot caused by Fusarium moniliforme. Pak J Biol Sci 2012; 15:78-84. [PMID: 22545360 DOI: 10.3923/pjbs.2012.78.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Maize ear rots are among the most important impediments to increased maize production in Egypt. The present research was conducted to estimate combining abilities, heterosis and correlation coefficients for resistance to ear rot disease in seven corn inbred lines and their 21 crosses under field conditions. Results demonstrated that both additive and non-additive gene actions were responsible for the genetic expression of all characters with the preponderance of non-additive actions for days to 50% silking. The parental line L51 was the best combiner for earliness, low infection severity %, high phenols content, short plants and reasonable grain yield, while L101 was good combiner for low ear rot infection only. The cross: L122 x L84, L122 x L101, L51 x L101, L76 x L36, L76 x L84, L36 x L84, L36 x L81 and L36 x L101 which involved one or both parents with good General Combining Ability (GCA) effects expressed useful significant heterosis and Specific Combining Ability (SCA) effects for low infection severity %, high phenol contents, early silking, tall plants and high grain yield. Phenotypic and genotypic correlation coefficients suggest that selection for resistance to ear rot should identify lines with high yielding ability, early silking, tall plants, high phenols content and chitinase activity.
Collapse
Affiliation(s)
- M Hefny
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | | | | | | | | |
Collapse
|
29
|
Fumonisins in maize in relation to climate, planting time and hybrids in two agroecological zones in Zambia. Mycopathologia 2008; 167:209-19. [PMID: 19003428 DOI: 10.1007/s11046-008-9166-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
Field experiments in the high rainfall zone (HRZ) and the medium rainfall zone (MRZ) in Zambia were designed to determine the natural occurrence of fumonisins (FB(1-2)) in Zambian maize hybrids, accumulation of FB(1-2) resulting from artificial inoculation with Fusarium verticillioides and effects of climate and planting time on FB(1-2) in maize. Combined FB(1-2) concentrations varied from 0 to 13,050 ng/g, with an overall mean of 666 ng/g. Maize from the HRZ had low incidences of FB(1-2)-positive samples (mean 41%) which contained FB(1-2) below 500 ng/g. In the MRZ, higher incidences (mean 97%) and concentrations (40% of samples >1,000 ng/g) were recorded in two out of three years. There was no correlation between mean location FB(1-2) concentrations in individual years and precipitation, number of rain days or monthly precipitation. Postponing the planting time with 10 or 20 days did not significantly affect FB(1-2) concentration, but it reduced the yields in some years.
Collapse
|
30
|
Afolabi CG, Ojiambo PS, Ekpo EJA, Menkir A, Bandyopadhyay R. Novel Sources of Resistance to Fusarium Stalk Rot of Maize in Tropical Africa. PLANT DISEASE 2008; 92:772-780. [PMID: 30769599 DOI: 10.1094/pdis-92-5-0772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fusarium stalk rot is one of the most widespread and destructive diseases of maize, and deployment of resistant genotypes is one of the most effective strategies for controlling the disease. Fifty inbred lines and four checks from the breeding program of the International Institute of Tropical Agriculture were evaluated in field trials at Ikenne and Ibadan, Nigeria in 2003 and 2004 to identify new sources of resistance to stalk rot caused by Fusarium verticillioides. Evaluations were conducted under artificial inoculation and natural infection at Ibadan and Ikenne, respectively. Disease severity was recorded using a severity scale (SS) and direct estimation of stalk discoloration (SD). The two methods of disease assessment were compared and combined to classify genotypes into resistance groups using results from rank-sum analysis. In 2003, disease severity ranged from SS = 1 to 5 and SD = 1.3 to 33.8% at both locations. Both SS and SD were significantly (P < 0.01) higher in 2003 than in 2004 at the two locations. In both years, inbred lines significantly differed in SS (P < 0.02) and SD (P < 0.04) at Ibadan. Similarly, inbred lines significantly differed in SS (P < 0.04) and SD (P < 0.04) when genotypes were evaluated at Ikenne. Disease assessments based on SS and SD were significantly correlated (0.68 < r < 0.95, P < 0.01) in both years. Based on the results from rank-sum analysis, inbred lines were separated into highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible groups. At Ibadan, 6 (11.1%) and 8 (14.8%) were identified as highly resistant and resistant, respectively, whereas 11 (20.4%) were identified as resistant at Ikenne. Inbred lines 02C14609, 02C14643, 02C14654, and 02C14678 were consistently classified as either highly resistant or resistant to stalk rot across locations and years while the check genotypes were classified either as susceptible or moderately susceptible to stalk rot. These four inbred lines identified to have high levels of disease resistance may be used for breeding maize with resistance to Fusarium stalk rot.
Collapse
Affiliation(s)
- C G Afolabi
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria and Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | - P S Ojiambo
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - E J A Ekpo
- Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | | | | |
Collapse
|