1
|
Mandal MK, Koike ST, Tsuchida C, Stanghellini H, Guerrero J, Sandoya GV, Klosterman SJ, Simko I, Subbarao KV. Distribution of Three Verticillium dahliae Races in Coastal California and Evaluation of Resistance in Lettuce. PLANT DISEASE 2024; 108:2170-2180. [PMID: 38506911 DOI: 10.1094/pdis-01-24-0193-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Verticillium wilt, caused by Verticillium dahliae, is one of the most devastating soilborne diseases of lettuce (Lactuca sativa L.). There are three races of V. dahliae, and each race has been characterized by markers representing race-specific effectors. Race 1 is differentiated by the presence of the functional secretory Ave1 effector. Similarly, races 2 and 3 are differentiated by effectors VdR2e and VdR3e, respectively. Although the presence of race 1 in coastal California was well established, the presence of effector-based races 2 and 3 was uncertain. This study therefore focused on characterizing 727 isolates collected from 142 ranches of symptomatic lettuce and other crops from coastal California. Based on this evaluation, 523 isolates were designated as race 1, 20 isolates as race 2, 23 isolates as race 3, and 17 as race undefined. Isolates representing other Verticillium species totaled 110, and 34 were non-Verticillium fungal species. Because the use of resistant cultivars is a key strategy to manage this disease, we evaluated 48 lettuce germplasm lines and 1 endive (Cichorium endivia L.) line, comprising commercial cultivars and breeding lines, including the race 1-resistant heirloom cultivar La Brillante and the susceptible cultivar Salinas as controls. Resistance against races 1, 2, and 3 along with VdLs17, a virulent isolate of V. dahliae from lettuce that is currently not assigned to a race, was evaluated in replicated greenhouse experiments. Two crisphead lettuce lines, HL28 and HL29, exhibited resistance against race 1 and a partial resistance against race 2, whereas all other lines were highly susceptible to races 1 and 2 and VdLs17. The majority of lines exhibited higher resistance to race 3 relative to the other two races. This study documents the current distribution of the different races in coastal California. In addition, the sources of resistance currently being developed should be effective or partially effective against these races for targeted deployment as soon as they are available.
Collapse
Affiliation(s)
- Mihir K Mandal
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA 93905
| | | | | | | | | | - Germán V Sandoya
- Horticultural Sciences Department, Everglades Research & Education Center, University of Florida, Belle Glade, FL 33430
| | - Steven J Klosterman
- Sam Farr United States Crop Improvement and Protection Research Center, U.S. Department of Agriculture, Agricultural Research Service, Salinas, CA 93905
| | - Ivan Simko
- Sam Farr United States Crop Improvement and Protection Research Center, U.S. Department of Agriculture, Agricultural Research Service, Salinas, CA 93905
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA 93905
| |
Collapse
|
2
|
Tie Z, Wang P, Chen W, Tang B, Yu Y, Liu Z, Zhao S, Khan FH, Zhang X, Xi H. Different responses of the rhizosphere microbiome to Verticillium dahliae infection in two cotton cultivars. Front Microbiol 2023; 14:1229454. [PMID: 37637103 PMCID: PMC10450913 DOI: 10.3389/fmicb.2023.1229454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Verticillium wilt is a disastrous disease caused by Verticillium dahliae that severely damages the production of cotton in China. Even under homogeneous conditions, the same cotton cultivar facing V. dahliae tends to either stay healthy or become seriously ill and die. This binary outcome may be related to the interactions between microbiome assembly and plant health. Understanding how the rhizosphere microbiome responds to V. dahliae infection is vital to controlling Verticillium wilt through the manipulation of the microbiome. In this study, we evaluated the healthy and diseased rhizosphere microbiome of two upland cotton cultivars that are resistant to V. dahliae, Zhong 2 (resistant) and Xin 36 (susceptible), using 16S rRNA and ITS high-throughput sequencing. The results showed that the healthy rhizosphere of both resistant cultivar and susceptible cultivar had more unique bacterial ASVs than the diseased rhizosphere, whereas fewer unique fungal ASVs were found in the healthy rhizosphere of resistant cultivar. There were no significant differences in alpha diversity and beta diversity between the resistant cultivar and susceptible cultivar. In both resistant cultivar and susceptible cultivar, bacterial genera such as Pseudomonas and Acidobacteria bacterium LP6, and fungal genera such as Cephalotrichum and Mortierella were both highly enriched in the diseased rhizosphere, and Pseudomonas abundance in diseased rhizospheres was significantly higher than that in the healthy rhizosphere regardless of the cultivar type. However, cultivar and V. dahliae infection can cause composition changes in the rhizosphere bacterial and fungal communities, especially in the relative abundances of core microbiome members, which varied significantly, with different responses in the two cotton cultivars. Analysis of co-occurrence networks showed that resistant cultivar has a more complex network relationship than susceptible cultivar in the bacterial communities, and V. dahliae has a significant impact on the bacterial community structure. These findings will further broaden the understanding of plant-rhizosphere microbiome interactions and provide an integrative perspective on the cotton rhizosphere microbiome, which is beneficial to cotton health and production.
Collapse
Affiliation(s)
- Zhanjiang Tie
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Peng Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Weijian Chen
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Binghui Tang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, Xinjiang, China
| | - Yu Yu
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, China
| | - Zheng Liu
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Sifeng Zhao
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Faisal Hayat Khan
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - XueKun Zhang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Xi
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Farag MM, Arafa RAA, Abou-zeid MA, Alwutayd KM, Moneim DAE, Ghebrial EW. First Appearance of Verticillium tricorpus Causing Verticillium Wilt in tested Okra varieties.. [DOI: 10.21203/rs.3.rs-3044783/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Symptoms of Verticillium wilt were observed on okra (Abelmoschus esculentus L.) grown widely in Beni Suef Governorate (Nasser, Beba and El-Wasta Counties) in summer 2021. All disease symptoms are externally, infected shoots' leaves turn a light green to yellow colour, lose their turgor, and finally desiccate. Individual shoots in a portion of the plant stem may show symptoms, or the symptoms may emerge over the entire plant. In certain cases, the disease typically progresses over months. According to the morphological characteristics of the isolated fungus, disease symptoms and pathogenicity test, Verticillium tricorpus was identified as the causal agent of Verticillium wilt of okra. Identification of this species was confirmed by sequencing of internal transcribed space (ITS region) of ribosomal RNA gene. V. tricorpus absolutely has not previously been reported on okra. The sequencing of this fungus showed close ties with V. tricorpus, as evidenced by the 99.24–100% identity and 97–100% coverage with several strains of V. tricorpus, including the type strain CBS447.54 (NR_126128). The obtained sequences were deposited in the GenBank with accession number MZ936483. Pathogenicity tests confirmed that V. tricorpus was pathogenic showing the same disease symptoms previously observed on okra plants in the surveyed areas. The infection sensitivity showed that Iranian red cv. is more sensitive to infection than Balady green cv. This appears to be the first record of V. tricorpus associated with Verticillium okra wilt disease.
Collapse
|
4
|
Towards Practical Application of Verticillium isaacii Vt305 to Control Verticillium Wilt of Cauliflower: Exploring Complementary Biocontrol Strategies. PLANTS 2020; 9:plants9111469. [PMID: 33143380 PMCID: PMC7693794 DOI: 10.3390/plants9111469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022]
Abstract
Verticillium wilt is one of the most important diseases of cauliflower and can lead to serious economic losses. In this study, two complementary strategies were explored to employ the antagonistic capacity of Verticillium isaacii towards Verticillium wilt of cauliflower. The first strategy focused on introducing V. isaacii Vt305 by artificial inoculation of cauliflower plantlets at the nursery stage. Two inoculum types (spores and microsclerotia of V. isaacii Vt305) and different concentrations of microsclerotia were tested in greenhouse and field trials. Seed treatment with 500 microsclerotia seed−1 led to a satisfying biocontrol level of Verticillium wilt. In addition, the PHYTO-DRIP® system was successful in delivering the microsclerotia to cauliflower seeds. The second strategy relied on the stimulation of the natural V. isaacii populations by rotating cauliflower with green manures and potato. Four green manure crops and potato were tested during multiple field experiments. Although these crops seemed to stimulate the V. isaacii soil population, this increase did not result in a control effect on Verticillium wilt of cauliflower in the short term. Importantly, our results indicate that the use of green manures is compatible with the application of V. isaacii Vt305 as biocontrol agent of Verticillium wilt in cauliflower.
Collapse
|
5
|
Co-Occurrence of Defoliating and Non-Defoliating Pathotypes of Verticillium Dahliae in Field-Grown Cotton Plants in New South Wales, Australia. PLANTS 2020; 9:plants9060750. [PMID: 32549220 PMCID: PMC7355434 DOI: 10.3390/plants9060750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022]
Abstract
Verticillium wilt (VW) is a major constraint to cotton production in Australia and worldwide. The disease is caused by a soilborne fungus, Verticillium dahliae, a highly virulent pathogen on cotton. Commonly, V. dahliae is designated into two pathotypes: defoliating (D) and non-defoliating (ND), based on induced symptoms. In the previous two survey seasons between 2017 and 2019, stems with suspected VW were sampled for the confirmation of presence and distribution of D and ND pathotypes across New South Wales (NSW), Australia. A total of 151 and 84 VW-suspected stems sampled from the 2017/18 and 2018/19 seasons, respectively, were subjected to pathogen isolation. Of these, 94 and 57 stems were positive for V. dahliae; and 18 and 20 stems sampled respectively from the two seasons yielded the D pathotype isolates. Two stems from the 2017/18 season and one stem from 2018/19 season yielded both D and ND pathotype isolates. We also successfully demonstrated the co-infection of both pathotypes in pot trials, which was driven predominantly by either of the pathotypes, and appeared independent on vegetative growth, fecundity and spore germination traits. Our study is the first report of the natural co-occurrence of both D and ND pathotypes in same field-grown cotton plants in NSW, to which a challenge to the disease management will be discussed.
Collapse
|
6
|
Wheeler DL, Johnson DA. Verticillium isaacii is a Pathogen and Endophyte of Potato and Sunflower in the Columbia Basin of Washington. PLANT DISEASE 2019; 103:3150-3153. [PMID: 31596689 DOI: 10.1094/pdis-04-19-0779-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The objective of this research was to test the hypothesis that Verticillium isaacii causes diseases of sunflower and potato plants. Two sunflower genotypes and one potato cultivar were inoculated with five V. isaacii isolates and three pathogenic V. dahliae isolates. Biomass, disease expression, and stem colonization were quantified. Overt wilt symptoms were observed on both sunflower genotypes and potato plants inoculated with a subset of the V. isaacii isolates. Biomass of both sunflower genotypes was not affected by V. isaacii infection. Tuber yields either decreased in response to infection by one V. isaacii isolate or were not affected by infection. Stems of sunflower and potato plants were infected by at least four of the five V. isaacii isolates. A new disease of sunflower and potato is documented. Evidence that V. isaacii exhibits different lifestyles including pathogenicity and endophytism is presented. Finally, this research documents variation in fungal lifestyles that can exist in samples from a single field.
Collapse
Affiliation(s)
- David Linnard Wheeler
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT
| | - Dennis A Johnson
- Department of Plant Pathology, Washington State University, Pullman, WA
| |
Collapse
|
7
|
Wheeler DL, Johnson DA. Does Coinoculation with Different Verticillium dahliae Genotypes Affect the Host or Fungus? PHYTOPATHOLOGY 2019; 109:780-786. [PMID: 30614378 DOI: 10.1094/phyto-11-18-0430-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inferences about Verticillium dahliae are often deduced from experiments where hosts are inoculated with one isolate. The assumption that the outcomes from these experiments scale with V. dahliae diversity is untested. The objectives of this research were to test the hypotheses that (i) coinoculation with combinations of isolates affects plant biomass, disease expression, and fungal colonization; and (ii) hosts select for the specific isolates. Potato, mustard, and barley plants were coinoculated with seven combinations of three isolates. Genotypes recovered from infected plants were genotyped with microsatellite markers. Disease expression and fungal colonization but not plant biomass of potato was affected by coinoculation (F = 7.07, P < 0.0001; F = 2.36, P = 0.0427) and depended on the isolates with which plants were inoculated. One genotype was disproportionately selected for by all hosts. Putative heterokaryons were recovered from mustard plants coinoculated with isolates of different vegetative compatibility groups (VCG). These results support the assumption that mixed infections have marginal impacts on plant biomass but challenge the assumption that they do not affect disease expression and fungal colonization. Finally, this research provides evidence that plants select for specific V. dahliae genotypes and isolates from different VCGs can anastomose in planta.
Collapse
|
8
|
Puri KD, Vallad GE, Qin QM, Hayes RJ, Subbarao KV. Harvest of Lettuce from Verticillium-Infested Fields Has Little Impact on Postharvest Quality. PLANT DISEASE 2019; 103:668-676. [PMID: 30742555 DOI: 10.1094/pdis-04-18-0546-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Verticillium wilt of lettuce, caused by the soilborne pathogen Verticillium dahliae, poses a serious threat to the California lettuce industry. Knowledge of disease development and its impact on postharvest marketability would facilitate better management of the affected fields. This study investigated postharvest marketability of 22 lettuce varieties harvested from two Verticillium-infested commercial lettuce fields in Salinas and Watsonville, CA, in 2005 using a randomized complete block design. Periodic sampling to monitor disease in several crisphead varieties in the field demonstrated that root symptoms developed quickly at later stages of heading, followed by the onset of foliar symptoms as the crop reached harvest maturity. Harvested marketable heads were vacuum cooled soon after harvest to about 4°C and maintained at this temperature in commercial coolers. The impact of V. dahliae on postharvest marketability was assessed based on the percentage of heads per case deemed marketable following 1, 2, and 3 weeks of refrigerated storage. Across both field experiments, the average disease incidence and postharvest marketability ranged from 4.2 to 87.5% and from 69.4 to 100.0%, respectively, among lettuce types and varieties. The Pearson correlation analysis detected no significant relationship between disease incidence and postharvest marketability across all varieties tested (r = 0.041, P = 0.727), or within lettuce types, even though V. dahliae was recovered from 34% of the plants harvested, and recovery ranged from 0 to 73.3% for V. dahliae and from 10 to 91.7% for non-V. dahliae (V. isaacii or V. klebahnii) species. These findings demonstrate that growers can harvest lettuce from an infested field before foliar symptoms develop with negligible impact by Verticillium spp. on postharvest marketability or quality.
Collapse
Affiliation(s)
- Krishna D Puri
- 1 Department of Plant Pathology, University of California, Davis, Salinas, CA 93905, U.S.A
| | - Gary E Vallad
- 2 Plant Pathology Department, Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL 33598, U.S.A
| | - Qing-Ming Qin
- 3 Department of Plant Protection, Jilin University, Changchun, Jilin 130062, China; and
| | - Ryan J Hayes
- 4 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, CA 93950, U.S.A
| | - Krishna V Subbarao
- 1 Department of Plant Pathology, University of California, Davis, Salinas, CA 93905, U.S.A
| |
Collapse
|
9
|
Abstract
The family Plectosphaerellaceae (Glomerellales, Sordariomycetes) includes numerous plant pathogenic genera and soil-borne fungal species. Ten genera are currently accepted, including several taxa that occupy an unresolved position within the family. To address this issue, a multilocus sequence analysis was carried out using partial gene sequences from the 28S large subunit nrRNA gene (LSU), the internal transcribed spacer (ITS) regions of the nrDNA region, including the 5.8S nrRNA gene, the translation elongation factor 1-alpha (TEF1-α), tryptophan synthase (TS), actin (ACT) and the RNA polymerase II second largest subunit (RPB2), based on a large set of isolates mainly from the CBS collection. Results of the molecular data combined with a detailed morphological study resolved 22 genera in the family, of which 12 are newly described. Additionally, 15 new species and 10 new combinations are proposed. An epitype and neotype are also introduced for Stachylidium bicolor and Plectosphaerella cucumerina, respectively.
Collapse
Affiliation(s)
- A. Giraldo
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
10
|
Morris H, Plavcová L, Gorai M, Klepsch MM, Kotowska M, Jochen Schenk H, Jansen S. Vessel-associated cells in angiosperm xylem: Highly specialized living cells at the symplast-apoplast boundary. AMERICAN JOURNAL OF BOTANY 2018; 105:151-160. [PMID: 29578292 DOI: 10.1002/ajb2.1030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/13/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Vessel-associated cells (VACs) are highly specialized, living parenchyma cells that are in direct contact with water-conducting, dead vessels. The contact may be sparse or in large tight groups of parenchyma that completely surrounds vessels. VACs differ from vessel distant parenchyma in physiology, anatomy, and function and have half-bordered pits at the vessel-parenchyma juncture. The distinct anatomy of VACs is related to the exchange of substances to and from the water-transport system, with the cells long thought to be involved in water transport in woody angiosperms, but where direct experimental evidence is lacking. SCOPE This review focuses on our current knowledge of VACs regarding anatomy and function, including hydraulic capacitance, storage of nonstructural carbohydrates, symplastic and apoplastic interactions, defense against pathogens and frost, osmoregulation, and the novel hypothesis of surfactant production. Based on microscopy, we visually represent how VACs vary in dimensions and general appearance between species, with special attention to the protoplast, amorphous layer, and the vessel-parenchyma pit membrane. CONCLUSIONS An understanding of the relationship between VACs and vessels is crucial to tackling questions related to how water is transported over long distances in xylem, as well as defense against pathogens. New avenues of research show how parenchyma-vessel contact is related to vessel diameter and a new hypothesis may explain how surfactants arising from VAC can allow water to travel under negative pressure. We also reinforce the message of connectivity between VAC and other cells between xylem and phloem.
Collapse
Affiliation(s)
- Hugh Morris
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Laboratory for Applied Wood Materials, Empa-Swiss Federal Laboratories for Materials Testing and Research, St. Gallen, Switzerland
| | - Lenka Plavcová
- University of Hradec Králové, Department of Biology, Faculty of Science, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Mustapha Gorai
- University of Gabes, Higher Institute of Applied Biology of Medenine, Medenine, 4119, Tunisia
| | - Matthias M Klepsch
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martyna Kotowska
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Macquarie University, Department of Biological Sciences, North Ryde, NSW, 2109, Australia
| | - H Jochen Schenk
- California State University Fullerton, Department of Biological Science, 800 N. State College Blvd., Fullerton, CA, 92831-3599, USA
| | - Steven Jansen
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
11
|
Deketelaere S, Tyvaert L, França SC, Höfte M. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt. Front Microbiol 2017; 8:1186. [PMID: 28729855 PMCID: PMC5498563 DOI: 10.3389/fmicb.2017.01186] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/12/2017] [Indexed: 01/14/2023] Open
Abstract
The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against Verticillium.
Collapse
Affiliation(s)
| | | | | | - Monica Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
12
|
Development and validation of a new real-time assay for the quantification of Verticillium dahliae in the soil: a comparison with conventional soil plating. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1196-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Gurung S, Short DPG, Hu X, Sandoya GV, Hayes RJ, Koike ST, Subbarao KV. Host Range of Verticillium isaacii and Verticillium klebahnii from Artichoke, Spinach, and Lettuce. PLANT DISEASE 2015; 99:933-938. [PMID: 30690967 DOI: 10.1094/pdis-12-14-1307-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Verticillium is a genus that includes major vascular wilt pathogens. Recently, multilocus phylogenetic analyses of the genus identified five new species, including Verticillium isaacii and V. klebahnii, both of which occur in agricultural soils in coastal California and have been isolated from asymptomatic and diseased spinach and lettuce plants. Little data are available regarding their pathogenicity and virulence on a broader range of crops important to the region. Four isolates each of V. isaacii and V. klebahnii along with two reference isolates of V. dahliae races 1 and 2 were inoculated on eight crops (artichoke, cauliflower, eggplant, lettuce, pepper, tomato, spinach, and strawberry) in a greenhouse experiment. After 8 weeks, plants were assessed for disease severity to determine the relative host ranges of Verticillium isolates. Additionally, 13 lettuce lines resistant to race 1 and partially resistant to race 2 of V. dahliae were screened against V. isaacii and V. klebahnii to evaluate their responses. Three of four V. isaacii and four of four V. klebahnii isolates tested were nonpathogenic on all crops tested except those indicated below. One V. isaacii isolate caused wilt on artichoke and 'Salinas' lettuce and most isolates of both species caused varying degrees of Verticillium wilt on strawberry. Lettuce lines resistant to V. dahliae race 1 and partially resistant to V. dahliae race 2 also exhibited resistance to all of the isolates of V. isaacii and V. klebahnii. Thus, at least some isolates in the populations of V. isaacii and V. klebahnii have the potential to become significant pathogens of coastal California crops. However, resistance developed against V. dahliae also offers resistance to the pathogenic isolates of both species, at least in lettuce.
Collapse
Affiliation(s)
- Suraj Gurung
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas 93905
| | - Dylan P G Short
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas 93905
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - German V Sandoya
- The Genome Center and Department of Plant Sciences, University of California, Davis
| | - Ryan J Hayes
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905
| | - Steven T Koike
- University of California Cooperative Extension, Salinas 93901
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas
| |
Collapse
|
14
|
Seidl MF, Faino L, Shi-Kunne X, van den Berg GCM, Bolton MD, Thomma BPHJ. The Genome of the Saprophytic Fungus Verticillium tricorpus Reveals a Complex Effector Repertoire Resembling That of Its Pathogenic Relatives. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:362-373. [PMID: 25208342 DOI: 10.1094/mpmi-06-14-0173-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vascular wilts caused by Verticillium spp. are destructive plant diseases affecting hundreds of hosts. Only a few Verticillium spp. are causal agents of vascular wilt diseases, of which V. dahliae is the most notorious pathogen, and several V. dahliae genomes are available. In contrast, V. tricorpus is mainly known as a saprophyte and causal agent of opportunistic infections. Based on a hybrid approach that combines second and third generation sequencing, a near-gapless V. tricorpus genome assembly was obtained. With comparative genomics, we sought to identify genomic features in V. dahliae that confer the ability to cause vascular wilt disease. Unexpectedly, both species encode similar effector repertoires and share a genomic structure with genes encoding secreted proteins clustered in genomic islands. Intriguingly, V. tricorpus contains significantly fewer repetitive elements and an extended spectrum of secreted carbohydrate- active enzymes when compared with V. dahliae. In conclusion, we highlight the technical advances of a hybrid sequencing and assembly approach and show that the saprophyte V. tricorpus shares many hallmark features with the pathogen V. dahliae.
Collapse
|
15
|
Short DPG, Gurung S, Koike ST, Klosterman SJ, Subbarao KV. Frequency of Verticillium Species in Commercial Spinach Fields and Transmission of V. dahliae from Spinach to Subsequent Lettuce Crops. PHYTOPATHOLOGY 2015; 105:80-90. [PMID: 25098494 DOI: 10.1094/phyto-02-14-0046-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Verticillium wilt caused by V. dahliae is a devastating disease of lettuce in California (CA). The disease is currently restricted to a small geographic area in central coastal CA, even though cropping patterns in other coastal lettuce production regions in the state are similar. Infested spinach seed has been implicated in the introduction of V. dahliae into lettuce fields but direct evidence linking this inoculum to wilt epidemics in lettuce is lacking. In this study, 100 commercial spinach fields in four coastal CA counties were surveyed to evaluate the frequency of Verticillium species recovered from spinach seedlings and the area under spinach production in each county was assessed. Regardless of the county, V. isaacii was the most frequently isolated species from spinach followed by V. dahliae and, less frequently, V. klebahnii. The frequency of recovery of Verticillium species was unrelated to the occurrence of Verticillium wilt on lettuce in the four counties but was related to the area under spinach production in individual counties. The transmission of V. dahliae from infested spinach seeds to lettuce was investigated in microplots. Verticillium wilt developed on lettuce following two or three plantings of Verticillium-infested spinach, in independent experiments. The pathogen recovered from the infected lettuce from microplots was confirmed as V. dahliae by polymerase chain reaction assays. In a greenhouse study, transmission of a green fluorescence protein-tagged mutant strain of V. dahliae from spinach to lettuce roots was demonstrated, after two cycles of incorporation of infected spinach residue into the soil. This study presents conclusive evidence that V. dahliae introduced via spinach seed can cause Verticillium wilt in lettuce.
Collapse
|
16
|
Inderbitzin P, Subbarao KV. Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. PHYTOPATHOLOGY 2014; 104:564-74. [PMID: 24548214 DOI: 10.1094/phyto-11-13-0315-ia] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Verticillium wilts are important vascular wilt diseases that affect many crops and ornamentals in different regions of the world. Verticillium wilts are caused by members of the ascomycete genus Verticillium, a small group of 10 species that are related to the agents of anthracnose caused by Colletotrichum species. Verticillium has a long and complicated taxonomic history with controversies about species boundaries and long overlooked cryptic species, which confused and limited our knowledge of the biology of individual species. We first review the taxonomic history of Verticillium, provide an update and explanation of the current system of classification and compile host range and geographic distribution data for individual species from internal transcribed spacer (ITS) GenBank records. Using Verticillium as an example, we show that species names are a poor vehicle for archiving and retrieving information, and that species identifications should always be backed up by DNA sequence data and DNA extracts that are made publicly available. If such a system were made a prerequisite for publication, all species identifications could be evaluated retroactively, and our knowledge of the biology of individual species would be immune from taxonomic changes, controversy and misidentification. Adoption of this system would improve quarantine practices and the management of diseases caused by various plant pathogens.
Collapse
|
17
|
Sengupta S, Majumder AL. Physiological and genomic basis of mechanical-functional trade-off in plant vasculature. FRONTIERS IN PLANT SCIENCE 2014; 5:224. [PMID: 24904619 PMCID: PMC4035604 DOI: 10.3389/fpls.2014.00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/05/2014] [Indexed: 05/13/2023]
Abstract
Some areas in plant abiotic stress research are not frequently addressed by genomic and molecular tools. One such area is the cross reaction of gravitational force with upward capillary pull of water and the mechanical-functional trade-off in plant vasculature. Although frost, drought and flooding stress greatly impact these physiological processes and consequently plant performance, the genomic and molecular basis of such trade-off is only sporadically addressed and so is its adaptive value. Embolism resistance is an important multiple stress- opposition trait and do offer scopes for critical insight to unravel and modify the input of living cells in the process and their biotechnological intervention may be of great importance. Vascular plants employ different physiological strategies to cope with embolism and variation is observed across the kingdom. The genomic resources in this area have started to emerge and open up possibilities of synthesis, validation and utilization of the new knowledge-base. This review article assesses the research till date on this issue and discusses new possibilities for bridging physiology and genomics of a plant, and foresees its implementation in crop science.
Collapse
Affiliation(s)
- Sonali Sengupta
- Division of Plant Biology, Acharya J C Bose Biotechnology Innovation Centre, Bose InstituteKolkata, India
| | | |
Collapse
|
18
|
Tyvaert L, França SC, Debode J, Höfte M. The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt. J Appl Microbiol 2014; 116:1563-71. [PMID: 24905219 DOI: 10.1111/jam.12481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the interaction between cauliflower and the isolate VerticilliumVt305, obtained from a field suppressive to Verticillium wilt of cauliflower, and to evaluate the ability of VerticilliumVt305 to control Verticillium wilt of cauliflower caused by V. longisporum. METHODS AND RESULTS Single and combined inoculations of VerticilliumVt305 and V. longisporum were performed on cauliflower seedlings. Symptom development was evaluated, and fungal colonization was measured in the roots, hypocotyl and stem with real-time PCR. No symptoms were observed after single inoculation of VerticilliumVt305, although it colonized the plant tissues. Pre-inoculation of VerticilliumVt305 reduced symptom development and colonization of plant tissues by V. longisporum. CONCLUSIONS VerticilliumVt305 is an endophyte on cauliflower plants and showed effective biological control of V. longisporum in controlled conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This work can contribute to the development of a sustainable control measure of V. longisporum in Brassicaceae hosts, which is currently not available. Additionally, this study provides evidence for the different roles of Verticillium species present in the agro-ecosystem.
Collapse
Affiliation(s)
- L Tyvaert
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
19
|
Iglesias-Garcia AM, Villarroel-Zeballos MI, Feng C, Toit LJD, Correll JC. Pathogenicity, Virulence, and Vegetative Compatibility Grouping of Verticillium Isolates from Spinach Seed. PLANT DISEASE 2013; 97:1457-1469. [PMID: 30708458 DOI: 10.1094/pdis-01-13-0016-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In 2005, Verticillium dahliae was first reported to be pathogenic to spinach seed crops in the Pacific Northwest, with symptoms only developing after initiation of the reproductive stage of plant growth, and to be prevalent on commercial spinach seed lots produced in Denmark, The Netherlands, and the United States. In this study, the genetic diversity, pathogenicity, and virulence were examined for a collection of isolates of Verticillium spp. from spinach as well as other hosts (alfalfa, cotton, lettuce, mint, peppermint, potato, radish, and tomato) from various countries and from different vegetative compatibility groups (VCGs). Of a total of 210 isolates of V. dahliae obtained from spinach seed produced in Denmark, the Netherlands, New Zealand, or the United States, 128 were assigned to VCG 4B (89% of 91 U.S. isolates, 86% of 42 isolates from the Netherlands, 19% of 43 Denmark isolates, and 8% of 13 New Zealand isolates), 65 to VCG 2B (92% of the New Zealand isolates, 79% of the Denmark isolates, 14% of the Netherlands isolates, and 9% of the U.S. isolates), and 3 to VCG 2A (2% of each of the Denmark and U.S. isolates, and 0% of the Netherlands and New Zealand isolates); 14 isolates could not be assigned to a VCG. Although little variation in the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA was observed among isolates within each Verticillium sp., the ITS region readily differentiated isolates of the species V. dahliae, V. tricorpus, and Gibellulopsis nigrescens (formerly V. nigrescens) obtained from spinach seed. Greenhouse pathogenicity assays on spinach, cotton, lettuce, and tomato plants using isolates of V. dahliae (n = 29 to 34 isolates), V. tricorpus (n = 3), G. nigrescens (n = 2), and V. albo-atrum (n = 1) originally obtained from these hosts as well as from alfalfa, mint, peppermint, potato, and radish, revealed a wide range in virulence among the isolates. Isolates of V. tricorpus and G. nigrescens recovered from spinach seed and an isolate of V. albo-atrum from alfalfa were not pathogenic on spinach. In addition, isolates of V. dahliae from mint and peppermint were not pathogenic or only weakly virulent on the hosts evaluated. Although there was a wide range in virulence among the isolates of V. dahliae tested, all of the V. dahliae isolates caused Verticillium wilt symptoms on spinach, lettuce, tomato, and cotton. None of the isolates of V. dahliae showed host specificity. These results indicate that Verticillium and related species associated with spinach seed display substantial variability in virulence and pathogenicity to spinach and other plants but the V. dahliae isolates were restricted to three VCGs.
Collapse
Affiliation(s)
| | | | - Chunda Feng
- Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Lindsey J du Toit
- Department of Plant Pathology, Washington State University Mount Vernon NWREC, Mount Vernon 98273
| | - James C Correll
- Department of Plant Pathology, University of Arkansas, Fayetteville
| |
Collapse
|
20
|
Inderbitzin P, Davis RM, Bostock RM, Subbarao KV. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays. PLoS One 2013; 8:e65990. [PMID: 23823707 PMCID: PMC3688845 DOI: 10.1371/journal.pone.0065990] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/30/2013] [Indexed: 12/05/2022] Open
Abstract
Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers.
Collapse
Affiliation(s)
- Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - R. Michael Davis
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Richard M. Bostock
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
21
|
Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Fan X, Ren Y, Shen D, Liu L, Dou D, Chang Y. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One 2012; 7:e51091. [PMID: 23251427 PMCID: PMC3519487 DOI: 10.1371/journal.pone.0051091] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.
Collapse
Affiliation(s)
- Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wengui Yu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingli Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongjuan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaohui Fan
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongzhe Ren
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Youhong Chang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
22
|
Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One 2011; 6:e28341. [PMID: 22174791 PMCID: PMC3233568 DOI: 10.1371/journal.pone.0028341] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/06/2011] [Indexed: 11/18/2022] Open
Abstract
Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen. A morphology-based key is provided for identification to species or species groups.
Collapse
Affiliation(s)
- Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Richard M. Bostock
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - R. Michael Davis
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Toshiyuki Usami
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Harold W. Platt
- Agriculture and Agri-Food Canada, Charlottetown Research Centre, Charlottetown, Prince Edward Island, Canada
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
23
|
Debode J, Van Poucke K, França SC, Maes M, Höfte M, Heungens K. Detection of Multiple Verticillium Species in Soil Using Density Flotation and Real-Time Polymerase Chain Reaction. PLANT DISEASE 2011; 95:1571-1580. [PMID: 30731999 DOI: 10.1094/pdis-04-11-0267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wet sieving of soil samples, followed by plating on semi-selective medium and microscopic analysis, is the most commonly used technique to quantify microsclerotia-forming Verticillium species in soil. However, the method is restricted to small samples, does not allow easy differentiation between species, and takes several weeks to complete. This study describes an alternative method to test 100-g soil samples for three Verticillium species (V. tricorpus, V. dahliae, and V. longisporum) using density flotation-based extraction of microsclerotia followed by new real-time polymerase chain reaction (PCR) assays. Primers for these real-time PCR assays were designed to the ribosomal DNA internal transcribed spacer for V. tricorpus and the β-tubulin gene for V. dahliae + V. longisporum and V. longisporum. Tests with artificially and naturally infested soils showed that the new method is reproducible and sensitive (0.1 to 0.5 microsclerotia/g soil), allows differentiation among the three species, and can be completed in one day. The results of the new method and the wet-sieving method were highly correlated for V. tricorpus (R2 = 0.78), but not for V. dahliae/V. longisporum, probably due to the loss of germinability of V. dahliae/V. longisporum microsclerotia during prolonged dry storage of the soil.
Collapse
Affiliation(s)
- J Debode
- Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), Burg. van Gansberghelaan 96 bus 2, 9820 Merelbeke, Belgium
| | - K Van Poucke
- Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), Burg. van Gansberghelaan 96 bus 2, 9820 Merelbeke, Belgium
| | - S C França
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - M Maes
- Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), Burg. van Gansberghelaan 96 bus 2, 9820 Merelbeke, Belgium
| | - M Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - K Heungens
- Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research (ILVO), Burg. van Gansberghelaan 96 bus 2, 9820 Merelbeke, Belgium
| |
Collapse
|
24
|
Atallah ZK, Hayes RJ, Subbarao KV. Fifteen Years of Verticillium Wilt of Lettuce in America's Salad Bowl: A Tale of Immigration, Subjugation, and Abatement. PLANT DISEASE 2011; 95:784-792. [PMID: 30731743 DOI: 10.1094/pdis-01-11-0075] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Zahi K Atallah
- University of California-Davis, c/o U.S. Agricultural Research Stations, CA
| | | | - Krishna V Subbarao
- University of California Davis, c/o U.S. Agricultural Research Station, Salinas, CA
| |
Collapse
|
25
|
Cirulli M, Bubici G, Amenduni M, Armengol J, Berbegal M, Jiménez-Gasco MDM, Jiménez-Díaz RM. Verticillium Wilt: A Threat to Artichoke Production. PLANT DISEASE 2010; 94:1176-1187. [PMID: 30743614 DOI: 10.1094/pdis-12-09-0852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Verticillium wilt is becoming an increasing concern in artichoke production because the rapid spread of the disease to new growing areas has led to declining production. Scientists from Italy, Spain, and the United States combine to bring us up to date on diagnosis of the disease, its epidemiology and life cycle, as well as management strategies, current and forthcoming.
Collapse
Affiliation(s)
| | | | | | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Valencia, Spain
| | - Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Rafael M Jiménez-Díaz
- Universidad de Córdoba and Instituto de Agricultura Sostenible, CSIC, Córdoba, Spain
| |
Collapse
|
26
|
Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. Diversity, pathogenicity, and management of verticillium species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:39-62. [PMID: 19385730 DOI: 10.1146/annurev-phyto-080508-081748] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genus Verticillium encompasses phytopathogenic species that cause vascular wilts of plants. In this review, we focus on Verticillium dahliae, placing emphasis on the controversy surrounding the elevation of a long-spored variant as a new species, recent advances in the analysis of compatible and incompatible interactions, highlighted by the use of strains expressing fluorescent proteins, and the genetic diversity among Verticillium spp. A synthesis of the approaches to explore genetic diversity, gene flow, and the potential for cryptic recombination is provided. Control of Verticillium wilt has relied on a panoply of chemical and nonchemical strategies, but is beset with environmental or site-specific efficacy problems. Host resistance remains the most logical choice, but is unavailable in most crops. The genetic basis of resistance to Verticillium wilt is unknown in most crops, as are the subcellular signaling mechanisms associated with Ve-mediated, race-specific resistance. Increased understanding in each of these areas promises to facilitate management of Verticillium wilts across a broad range of crops.
Collapse
|