1
|
Gandham P, Rajasekaran K, Sickler C, Mohan H, Gilbert M, Baisakh N. MicroRNA (miRNA) profiling of maize genotypes with differential response to Aspergillus flavus implies zma-miR156-squamosa promoter binding protein (SBP) and zma-miR398/zma-miR394-F -box combinations involved in resistance mechanisms. STRESS BIOLOGY 2024; 4:26. [PMID: 38727957 PMCID: PMC11087424 DOI: 10.1007/s44154-024-00158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 05/13/2024]
Abstract
Maize (Zea mays), a major food crop worldwide, is susceptible to infection by the saprophytic fungus Aspergillus flavus that can produce the carcinogenic metabolite aflatoxin (AF) especially under climate change induced abiotic stressors that favor mold growth. Several studies have used "-omics" approaches to identify genetic elements with potential roles in AF resistance, but there is a lack of research identifying the involvement of small RNAs such as microRNAs (miRNAs) in maize-A. flavus interaction. In this study, we compared the miRNA profiles of three maize lines (resistant TZAR102, moderately resistant MI82, and susceptible Va35) at 8 h, 3 d, and 7 d after A. flavus infection to investigate possible regulatory antifungal role of miRNAs. A total of 316 miRNAs (275 known and 41 putative novel) belonging to 115 miRNA families were identified in response to the fungal infection across all three maize lines. Eighty-two unique miRNAs were significantly differentially expressed with 39 miRNAs exhibiting temporal differential regulation irrespective of the maize genotype, which targeted 544 genes (mRNAs) involved in diverse molecular functions. The two most notable biological processes involved in plant immunity, namely cellular responses to oxidative stress (GO:00345990) and reactive oxygen species (GO:0034614) were significantly enriched in the resistant line TZAR102. Coexpression network analysis identified 34 hubs of miRNA-mRNA pairs where nine hubs had a node in the module connected to their target gene with potentially important roles in resistance/susceptible response of maize to A. flavus. The miRNA hubs in resistance modules (TZAR102 and MI82) were mostly connected to transcription factors and protein kinases. Specifically, the module of miRNA zma-miR156b-nb - squamosa promoter binding protein (SBP), zma-miR398a-3p - SKIP5, and zma-miR394a-5p - F-box protein 6 combinations in the resistance-associated modules were considered important candidates for future functional studies.
Collapse
Affiliation(s)
- Prasad Gandham
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA.
| | - Christine Sickler
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA
| | - Harikrishnan Mohan
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Matthew Gilbert
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70726, USA
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
2
|
Baisakh N, Da Silva EA, Pradhan AK, Rajasekaran K. Comprehensive meta-analysis of QTL and gene expression studies identify candidate genes associated with Aspergillus flavus resistance in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1214907. [PMID: 37534296 PMCID: PMC10392829 DOI: 10.3389/fpls.2023.1214907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Aflatoxin (AF) contamination, caused by Aspergillus flavus, compromises the food safety and marketability of commodities, such as maize, cotton, peanuts, and tree nuts. Multigenic inheritance of AF resistance impedes conventional introgression of resistance traits into high-yielding commercial maize varieties. Several AF resistance-associated quantitative trait loci (QTLs) and markers have been reported from multiple biparental mapping and genome-wide association studies (GWAS) in maize. However, QTLs with large confidence intervals (CI) explaining inconsistent phenotypic variance limit their use in marker-assisted selection. Meta-analysis of published QTLs can identify significant meta-QTLs (MQTLs) with a narrower CI for reliable identification of genes and linked markers for AF resistance. Using 276 out of 356 reported QTLs controlling resistance to A. flavus infection and AF contamination in maize, we identified 58 MQTLs on all 10 chromosomes with a 66.5% reduction in the average CI. Similarly, a meta-analysis of maize genes differentially expressed in response to (a)biotic stresses from the to-date published literature identified 591 genes putatively responding to only A. flavus infection, of which 14 were significantly differentially expressed (-1.0 ≤ Log2Fc ≥ 1.0; p ≤ 0.05). Eight MQTLs were validated by their colocalization with 14 A. flavus resistance-associated SNPs identified from GWAS in maize. A total of 15 genes were physically close between the MQTL intervals and SNPs. Assessment of 12 MQTL-linked SSR markers identified three markers that could discriminate 14 and eight cultivars with resistance and susceptible responses, respectively. A comprehensive meta-analysis of QTLs and differentially expressed genes led to the identification of genes and makers for their potential application in marker-assisted breeding of A. flavus-resistant maize varieties.
Collapse
Affiliation(s)
- Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Eduardo A. Da Silva
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| | - Anjan K. Pradhan
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), New Orleans, LA, United States
| |
Collapse
|
3
|
Majumdar R, Kandel SL, Cary JW, Rajasekaran K. Changes in Bacterial Endophyte Community Following Aspergillus flavus Infection in Resistant and Susceptible Maize Kernels. Int J Mol Sci 2021; 22:ijms22073747. [PMID: 33916873 PMCID: PMC8038446 DOI: 10.3390/ijms22073747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/10/2023] Open
Abstract
Aspergillus flavus (A. flavus)-mediated aflatoxin contamination in maize is a major global economic and health concern. As A. flavus is an opportunistic seed pathogen, the identification of factors contributing to kernel resistance will be of great importance in the development of novel mitigation strategies. Using V3–V4 bacterial rRNA sequencing and seeds of A. flavus-resistant maize breeding lines TZAR102 and MI82 and a susceptible line, SC212, we investigated kernel-specific changes in bacterial endophytes during infection. A total of 81 bacterial genera belonging to 10 phyla were detected. Bacteria belonging to the phylum Tenericutes comprised 86–99% of the detected phyla, followed by Proteobacteria (14%) and others (<5%) that changed with treatments and/or genotypes. Higher basal levels (without infection) of Streptomyces and Microbacterium in TZAR102 and increases in the abundance of Stenotrophomonas and Sphingomonas in MI82 following infection may suggest their role in resistance. Functional profiling of bacteria using 16S rRNA sequencing data revealed the presence of bacteria associated with the production of putative type II polyketides and sesquiterpenoids in the resistant vs. susceptible lines. Future characterization of endophytes predicted to possess antifungal/ anti-aflatoxigenic properties will aid in their development as effective biocontrol agents or microbiome markers for maize aflatoxin resistance.
Collapse
|
4
|
Aoun M, Stafstrom W, Priest P, Fuchs J, Windham GL, Williams WP, Nelson RJ. Low-cost grain sorting technologies to reduce mycotoxin contamination in maize and groundnut. Food Control 2020; 118:107363. [PMID: 33273755 PMCID: PMC7439795 DOI: 10.1016/j.foodcont.2020.107363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
The widespread contamination of foods by mycotoxins continues to be a public health hazard in sub-Saharan Africa, with maize and groundnut being major sources of contamination. This study was undertaken to assess the hypothesis that grain sorting can be used to reduce mycotoxin contamination in grain lots by removing toxic kernels. We tested a set of sorting principles and methods for reducing mycotoxin levels in maize and groundnut from a variety of genotypes and environments. We found that kernel bulk density (KBD) and 100-kernel weight (HKW) were associated with the levels of aflatoxins (AF) and fumonisins (FUM) in maize grain. A low-cost sorter prototype (the 'DropSort' device) that separated maize grain based on KBD and HKW was more effective in reducing FUM than AF. We then evaluated the effectiveness of DropSorting when combined with either size or visual sorting. Size sorting followed by DropSorting was the fastest method for reducing FUM to under 2 ppm, but was not effective in reducing AF levels in maize grain to under 20 ppb, especially for heavily AF-contaminated grain. Analysis of individual kernels showed that high -AF maize kernels had lower weight, volume, density, length, and width and higher sphericity than those with low AF. Single kernel weight was the most significant predictor of AF concentration. The DropSort excluded kernels with lower single kernel weight, volume, width, depth, and sphericity. We also found that visual sorting and bright greenish-yellow fluorescence sorting of maize single kernels were successful in separating kernels based on AF levels. For groundnut, the DropSort grouped grain based on HKW and did not significantly reduce AF concentrations, whereas size sorting and visual sorting were much more effective.
Collapse
Affiliation(s)
- Meriem Aoun
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - William Stafstrom
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Paige Priest
- Masters of Public Health Program, Cornell University, Ithaca, NY, 14853, USA
| | - John Fuchs
- The Widget Factory, Ithaca, NY, 14850, USA
| | - Gary L. Windham
- USDA, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State, MS, 39762, USA
| | - W. Paul Williams
- USDA, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State, MS, 39762, USA
| | - Rebecca J. Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Majumdar R, Minocha R, Lebar MD, Rajasekaran K, Long S, Carter-Wientjes C, Minocha S, Cary JW. Contribution of Maize Polyamine and Amino Acid Metabolism Toward Resistance Against Aspergillus flavus Infection and Aflatoxin Production. FRONTIERS IN PLANT SCIENCE 2019; 10:692. [PMID: 31178889 PMCID: PMC6543017 DOI: 10.3389/fpls.2019.00692] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/08/2019] [Indexed: 05/05/2023]
Abstract
Polyamines (PAs) are ubiquitous polycations found in plants and other organisms that are essential for growth, development, and resistance against abiotic and biotic stresses. The role of PAs in plant disease resistance depends on the relative abundance of higher PAs [spermidine (Spd), spermine (Spm)] vs. the diamine putrescine (Put) and PA catabolism. With respect to the pathogen, PAs are required to achieve successful pathogenesis of the host. Maize is an important food and feed crop, which is highly susceptible to Aspergillus flavus infection. Upon infection, the fungus produces carcinogenic aflatoxins and numerous other toxic secondary metabolites that adversely affect human health and crop value worldwide. To evaluate the role of PAs in aflatoxin resistance in maize, in vitro kernel infection assays were performed using maize lines that are susceptible (SC212) or resistant (TZAR102, MI82) to aflatoxin production. Results indicated significant induction of both PA biosynthetic and catabolic genes upon A. flavus infection. As compared to the susceptible line, the resistant maize lines showed higher basal expression of PA metabolism genes in mock-inoculated kernels that increased upon fungal infection. In general, increased biosynthesis and conversion of Put to Spd and Spm along with their increased catabolism was evident in the resistant lines vs. the susceptible line SC212. There were higher concentrations of amino acids such as glutamate (Glu), glutamine (Gln) and γ-aminobutyric acid (GABA) in SC212. The resistant lines were significantly lower in fungal load and aflatoxin production as compared to the susceptible line. The data presented here demonstrate an important role of PA metabolism in the resistance of maize to A. flavus colonization and aflatoxin contamination. These results provide future direction for the manipulation of PA metabolism in susceptible maize genotypes to improve aflatoxin resistance and overall stress tolerance.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Rakesh Minocha
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Stephanie Long
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Carol Carter-Wientjes
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
| | - Subhash Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, New Orleans, LA, United States
- *Correspondence: Jeffrey W. Cary,
| |
Collapse
|
6
|
Wu Q, Xie L, Xu H. Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chem 2018; 252:228-242. [DOI: 10.1016/j.foodchem.2018.01.076] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
|
7
|
Abstract
Aflatoxins can cause damage to the health of humans and animals. Several institutions around the world have established regulations to limit the levels of aflatoxins in food, and numerous analytical methods have been extensively developed for aflatoxin determination. This review covers the currently used analytical methods for the determination of aflatoxins in different food matrices, which includes sampling and sample preparation, sample pretreatment methods including extraction methods and purification methods of aflatoxin extracts, separation and determination methods. Validation for analysis of aflatoxins and safety considerations and precautions when doing the experiments are also discussed.
Collapse
Affiliation(s)
- Lijuan Xie
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , P. R. China.,b Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture , Ministry of Agriculture , Hangzhou , P. R. China
| | - Min Chen
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , P. R. China.,b Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture , Ministry of Agriculture , Hangzhou , P. R. China
| | - Yibin Ying
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , P. R. China.,b Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture , Ministry of Agriculture , Hangzhou , P. R. China
| |
Collapse
|
8
|
Williams W, Krakowsky M, Scully B, Brown R, Menkir A, Warburton M, Windham G. Identifying and developing maize germplasm with resistance to accumulation of aflatoxins. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1751] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Efforts to identify maize germplasm with resistance to Aspergillus flavus infection and subsequent accumulation of aflatoxins were initiated by the US Department of Agriculture, Agricultural Research Service at several locations in the late 1970s and early 1980s. Research units at four locations in the south-eastern USA are currently engaged in identification and development of maize germplasm with resistance to A. flavus infection and accumulation of aflatoxins. The Corn Host Plant Resistance Research Unit, Mississippi State, MS, developed procedures for screening germplasm for resistance to A. flavus infection and accumulation of aflatoxins. Mp313E, released in 1990, was the first line released as a source of resistance to A. flavus infection. Subsequently, germplasm lines Mp420, Mp715, Mp717, Mp718, and Mp719 were released as additional sources of resistance. Quantitative trait loci associated with resistance have also been identified in four bi-parental populations. The Crop Protection and Management Research Unit and Crop Genetics and Breeding Research Unit, Tifton, GA, created a breeding population GT-MAS:gk. GT601, GT602, and GT603 were developed from GT-MAS:gk. The Food and Feed Safety Research Unit, New Orleans, LA, in collaboration with the International Institute for Tropical Agriculture used a kernel screening assay to screen germplasm and develop six germplasm lines with resistance to aflatoxins. The Plant Science Research Unit, Raleigh, NC, through the Germplasm Enhancement of Maize (GEM) Project provides to co-operators diverse germplasm that is a valuable source of resistance to A. flavus infection and accumulation of aflatoxins in maize.
Collapse
Affiliation(s)
- W.P. Williams
- USDA-ARS, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762-9555, USA
| | - M.D. Krakowsky
- USDA-ARS, Plant Science Research Unit, North Carolina State University, 1236 Williams Hall, Raleigh, NC 27695-7620, USA
| | - B.T. Scully
- USDA-ARS, Corn Protection and Management Research Unit, 2747 Davis Rd., Tifton, GA 31793, USA
| | - R.L. Brown
- USDA-ARS, Food and Feed Safety Research Unit, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - A. Menkir
- International Institute of Tropical Agriculture, Oyo Rd., PMB 5320, Ibadan, Nigeria
| | - M.L. Warburton
- USDA-ARS, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762-9555, USA
| | - G.L. Windham
- USDA-ARS, Corn Host Plant Resistance Research Unit, Mississippi State, MS 39762-9555, USA
| |
Collapse
|
9
|
Matumba L, Monjerezi M, Van Poucke C, Biswick T, Mwatseteza J, De Saeger S. Evaluation of the bright greenish yellow fluorescence test as a screening technique for aflatoxin-contaminated maize in Malawi. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.1563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bright greenish yellow fluorescence (BGYF) test has been used with varying success in screening for aflatoxins in maize. This test was applied to 180 maize samples collected from different markets within 12 districts of Malawi in order to evaluate its performance against high performance liquid chromatographic analysis. The number of BGYF grains in 2.5 kg unground samples ranged from 0 to 35 and about 49% of all tested samples had aflatoxin concentrations ranging from 1 to 382 μg/kg. A total of 65 (36%) of the examined unground samples showed no BGYF. The European Commission recommends a false negative rate of less than 5% for a screening technique to be acceptable. In this study, four BGYF grains per 2.5 kg unground maize sample successfully indicated an aflatoxin contamination of >10 μg/kg (10 μg/kg being the maxium tolerable level proposed by the Common Market for Eastern and Southern Africa), with a 4.4% false negative rate. In this case, the amount of confirmatory analyses would be reduced by 63%, if the BGYF test was employed as a screening method. The screening technique therefore offers a practical tool for Malawi and possibly for the Sub-Saharan region.
Collapse
Affiliation(s)
- L. Matumba
- Department of Chemistry, Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
- Chitedze Agricultural Research Station, P.O. Box 158, 265 Lilongwe, Malawi
| | - M. Monjerezi
- Department of Chemistry, Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - C. Van Poucke
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Gent, Belgium
| | - T. Biswick
- Department of Chemistry, Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - J. Mwatseteza
- Department of Chemistry, Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - S. De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Gent, Belgium
| |
Collapse
|
10
|
Rajasekaran K, Sickler C, Brown R, Cary J, Bhatnagar D. Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Resistance or susceptibility of maize inbreds to infection by Aspergillus flavus was evaluated by the kernel screening assay. A green fluorescent protein-expressing strain of A. flavus was used to measure fungal spread and aflatoxin levels in real-time following fungal infection of kernels. Among the four inbreds tested, MI82 showed the most resistance and Ga209 the least. TZAR101 was also resistant to fungal infection, whereas Va35 was susceptible to fungal infection. However, Va35 produced lower aflatoxin levels compared to the susceptible line Ga209. Fluorescence microscopy indicated that the site of entry of the fungus into the kernel was consistently through the pedicel. Entry through the pericarp was never observed in undamaged kernels. In view of these results, incorporation or overexpression of antifungal proteins should be targeted to the pedicel and basal endosperm region in developing kernels. Once the fungus has entered through the pedicel, it spreads quickly through the open spaces between the pericarp and the aleurone layer, ultimately colonising the endosperm and scutellum and, finally, the embryo. A clear correlation was established between fungal fluorescence and aflatoxin levels. This method provides a quick, reliable means of evaluating resistance to A. flavus in undamaged kernels and provides breeders with a rapid method to evaluate maize germplasm.
Collapse
Affiliation(s)
- K. Rajasekaran
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - C.M. Sickler
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - R.L. Brown
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - J.W. Cary
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - D. Bhatnagar
- USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
11
|
Khlangwiset P, Wu F. Costs and efficacy of public health interventions to reduce aflatoxin-induced human disease. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:998-1014. [PMID: 20419532 PMCID: PMC2885555 DOI: 10.1080/19440041003677475] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study reviews available information on the economics and efficacy of aflatoxin risk-reduction interventions, and it provides an approach for analysis of the cost-effectiveness of public health interventions to reduce aflatoxin-induced human disease. Many strategies have been developed to reduce aflatoxin or its adverse effects in the body. However, a question that has been under-addressed is how likely these strategies will be adopted in the countries that need them most to improve public health. This study evaluates two aspects crucial to the adoption of new technologies and methods: the costs and the efficacy of different strategies. First, different aflatoxin risk-reduction strategies are described and categorized into pre-harvest, post-harvest, dietary, and clinical settings. Relevant data on the costs and efficacy of each strategy, in reducing either aflatoxin in food or its metabolites in the body are then compiled and discussed. In addition, we describe which crops are affected by each intervention, who is likely to pay for the control strategy, and who is likely to benefit. A framework is described for how to evaluate cost-effectiveness of strategies according to World Health Organization (WHO) standards. Finally, it is discussed which strategies are likely to be cost-effective and helpful under different conditions worldwide of regulations, local produce and soil ecology, and potential health emergencies.
Collapse
Affiliation(s)
- Pornsri Khlangwiset
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - Felicia Wu
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
12
|
Yao H, Hruska Z, Kincaid R, Brown R, Cleveland T, Bhatnagar D. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated withAspergillus flavusspores. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:701-9. [DOI: 10.1080/19440040903527368] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Bircan C, Barringer SA, Ulken U, Pehlivan R. Increased aflatoxin contamination of dried figs in a drought year. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 25:1400-8. [PMID: 19680848 DOI: 10.1080/02652030802163414] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dried figs (4917 samples) destined for export from Turkey to the European Union were collected between September and December during the very dry crop year of 2007 and tested for aflatoxins B(1), B(2), G(1) and G(2) by immunoaffinity column clean-up and reverse-phase high-performance liquid chromatography (RP-HPLC). While 32% of the samples contained detectable levels of total aflatoxins, 9.8% of them exceeded the European Union limits. Aflatoxin levels were in the range of 0.2-259.46 microg kg(-1) and 2.04-259.46 microg kg(-1) for all samples and samples that exceeded the limits, respectively. A substantial increase in the incidence of aflatoxins was observed in 2007 compared with previous years, most likely due to the drought stress, high temperatures and low relative humidity encountered during the period from January to September of that year. In 2007, the mean temperature was 1-2 degrees C higher, there was 300 mm less total rain, and the mean relative humidity was 10-15% lower than in 2002-06. The average concentration of individual aflatoxins present in the samples was quantified to determine whether the drought conditions promoted certain types of aflatoxins. Among the contaminated samples, aflatoxin B(1) occurred in 97% of the contaminated samples, followed by G(1) in 47%, B(2) in 24%, and G(2) in 6% of samples. Concentrations of individual aflatoxins exhibited great variability among the samples but were not significantly different from those reported in previous studies, which were conducted under conditions without drought and high temperatures.
Collapse
Affiliation(s)
- C Bircan
- Faculty of Agriculture, Department of Food Engineering, Adnan Menderes University, Aydin, Turkey.
| | | | | | | |
Collapse
|
14
|
Luo M, Brown RL, Chen ZY, Cleveland TE. Host genes involved in the interaction betweenAspergillus flavusand maize. TOXIN REV 2009. [DOI: 10.1080/15569540903089197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Clements MJ, White DG. Identifying Sources of Resistance to Aflatoxin and Fumonisin Contamination in Corn Grain. ACTA ACUST UNITED AC 2008. [DOI: 10.1081/txr-200027865] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Menkir A, Brown RL, Bandyopadhyay R, Chen ZY, Cleveland TE. A USA-Africa collaborative strategy for identifying, characterizing, and developing maize germplasm with resistance to aflatoxin contamination. Mycopathologia 2006; 162:225-32. [PMID: 16944289 DOI: 10.1007/s11046-006-0056-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aflatoxin contamination of maize by Aspergillus flavus poses serious potential economic losses in the US and health hazards to humans, particularly in West Africa. The Southern Regional Research Center of the United States Department of Agriculture, Agricultural Research Service (USDA-ARS-SRRC) and the International Institute of Tropical Agriculture (IITA) initiated a collaborative breeding project to develop maize germplasm with resistance to aflatoxin accumulation. Resistant genotypes from the US and selected inbred lines from IITA were used to generate backcrosses with 75% US germplasm and F(1) crosses with 50% IITA and 50% US germplasm. A total of 65 S(4) lines were developed from the backcross populations and 144 S(4) lines were derived from the F(1) crosses. These lines were separated into groups and screened in SRRC laboratory using a kernel-screening assay. Significant differences in aflatoxin production were detected among the lines within each group. Several promising S(4) lines with aflatoxin values significantly lower than their respective US resistant recurrent parent or their elite tropical inbred parent were selected for resistance-confirmation tests. We found pairs of S(4) lines with 75-94% common genetic backgrounds differing significantly in aflatoxin accumulation. These pairs of lines are currently being used for proteome analysis to identify resistance-associated proteins and the corresponding genes underlying resistance to aflatoxin accumulation. Following confirmation tests in the laboratory, lines with consistently low aflatoxin levels will be inoculated with A. flavus in the field in Nigeria to identify lines resistant to strains specific to both US and West Africa. Maize inbred lines with desirable agronomic traits and low levels of aflatoxin in the field would be released as sources of genes for resistance to aflatoxin production.
Collapse
Affiliation(s)
- Abebe Menkir
- International Institute of Tropical Agriculture, USDA-ARS, New Orleans, LA 70179, USA
| | | | | | | | | |
Collapse
|
17
|
Busboom KN, White DG. Inheritance of resistance to aflatoxin production and Aspergillus ear rot of corn from the cross of inbreds b73 and oh516. PHYTOPATHOLOGY 2004; 94:1107-1115. [PMID: 18943800 DOI: 10.1094/phyto.2004.94.10.1107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Our objective was to determine the value of corn (Zea mays) inbred Oh516 as a source of resistance to Aspergillus ear rot and aflatoxin accumulation in grain. Types and magnitudes of gene action associated with resistance were determined with generation means analysis. Molecular markers associated with resistance were identified from BCP(1)S(1) families developed from the cross of the susceptible inbred B73 and Oh516. In 2001 and 2002, B73 (P(1)), Oh516 (P(2)), and the F(1), F(2), F(3), BCP(1), BCP(2), and BCP(1)S(1) generations were evaluated for aflatoxin concentration in grain, percent bright greenish yellow fluorescence (BGYF), and severity of Aspergillus ear rot following inoculation in Urbana, IL. BCP(1)S(1) families testcrossed with LH185 also were evaluated at three locations in 2002. Molecular marker-quantitative trait loci (QTL) associations with all traits were determined with single factor analysis of variance. Dominance gene action was associated with aflatoxin concentration in grain and percent BGYF. QTL associated with aflatoxin accumulation in grain were identified on chromosomes 2, 3, and 7 (bins 2.01 to 2.03, 2.08, 3.08, and 7.06). Alleles from inbred Oh516 on chromosomes 2, 3, and 7 should improve resistance of commercially used, B73-type inbreds.
Collapse
|