1
|
Bali S, Gleason C. Unveiling the Diversity: Plant Parasitic Nematode Effectors and Their Plant Interaction Partners. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:179-189. [PMID: 37870371 DOI: 10.1094/mpmi-09-23-0124-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Sapinder Bali
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| |
Collapse
|
2
|
Zhang L, Zhao J, Kong L, Huang W, Peng H, Peng D, Meksem K, Liu S. No Pairwise Interactions of GmSNAP18, GmSHMT08 and AtPR1 with Suppressed AtPR1 Expression Enhance the Susceptibility of Arabidopsis to Beet Cyst Nematode. PLANTS (BASEL, SWITZERLAND) 2023; 12:4118. [PMID: 38140445 PMCID: PMC10747334 DOI: 10.3390/plants12244118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
GmSNAP18 and GmSHMT08 are two major genes conferring soybean cyst nematode (SCN) resistance in soybean. Overexpression of either of these two soybean genes would enhance the susceptibility of Arabidopsis to beet cyst nematode (BCN), while overexpression of either of their corresponding orthologs in Arabidopsis, AtSNAP2 and AtSHMT4, would suppress it. However, the mechanism by which these two pairs of orthologous genes boost or inhibit BCN susceptibility of Arabidopsis still remains elusive. In this study, Arabidopsis with simultaneously overexpressed GmSNAP18 and GmSHMT0 suppressed the growth of underground as well as above-ground parts of plants. Furthermore, Arabidopsis that simultaneously overexpressed GmSNAP18 and GmSHMT08 substantially stimulated BCN susceptibility and remarkably suppressed expression of AtPR1 in the salicylic acid signaling pathway. However, simultaneous overexpression of GmSNAP18 and GmSHMT08 did not impact the expression of AtJAR1 and AtHEL1 in the jasmonic acid and ethylene signaling pathways. GmSNAP18, GmSHMT08, and a pathogenesis-related (PR) protein, GmPR08-Bet VI, in soybean, and AtSNAP2, AtSHMT4, and AtPR1 in Arabidopsis could interact pair-wisely for mediating SCN and BCN resistance in soybean and Arabidopsis, respectively. Both AtSNAP2 and AtPR1 were localized on the plasma membrane, and AtSHMT4 was localized both on the plasma membrane and in the nucleus of cells. Nevertheless, after interactions, AtSNAP2 and AtPR1 could partially translocate into the cell nucleus. GmSNAP18 interacted with AtSHMT4, and GmSHMT4 interacted with AtSNAP2. However, neither GmSNAP18 nor GmSHMT08 interacted with AtPR1. Thus, no pairwise interactions among α-SNAPs, SHMTs, and AtPR1 occurred in Arabidopsis overexpressing either GmSNAP18 or GmSHMT08, or both of them. Transgenic Arabidopsis overexpressing either GmSNAP18 or GmSHMT08 substantially suppressed AtPR1 expression, while transgenic Arabidopsis overexpressing either AtSNAP2 or AtSHMT4 remarkably enhanced it. Taken together, no pairwise interactions of GmSNAP18, GmSHMT08, and AtPR1 with suppressed expression of AtPR1 enhanced BCN susceptibility in Arabidopsis. This study may provide a clue that nematode-resistant or -susceptible functions of plant genes likely depend on both hosts and nematode species.
Collapse
Affiliation(s)
- Liuping Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| |
Collapse
|
3
|
Sielemann K, Pucker B, Orsini E, Elashry A, Schulte L, Viehöver P, Müller AE, Schechert A, Weisshaar B, Holtgräwe D. Genomic characterization of a nematode tolerance locus in sugar beet. BMC Genomics 2023; 24:748. [PMID: 38057719 DOI: 10.1186/s12864-023-09823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Infection by beet cyst nematodes (BCN, Heterodera schachtii) causes a serious disease of sugar beet, and climatic change is expected to improve the conditions for BCN infection. Yield and yield stability under adverse conditions are among the main breeding objectives. Breeding of BCN tolerant sugar beet cultivars offering high yield in the presence of the pathogen is therefore of high relevance. RESULTS To identify causal genes providing tolerance against BCN infection, we combined several experimental and bioinformatic approaches. Relevant genomic regions were detected through mapping-by-sequencing using a segregating F2 population. DNA sequencing of contrasting F2 pools and analyses of allele frequencies for variant positions identified a single genomic region which confers nematode tolerance. The genomic interval was confirmed and narrowed down by genotyping with newly developed molecular markers. To pinpoint the causal genes within the potential nematode tolerance locus, we generated long read-based genome sequence assemblies of the tolerant parental breeding line Strube U2Bv and the susceptible reference line 2320Bv. We analyzed continuous sequences of the potential locus with regard to functional gene annotation and differential gene expression upon BCN infection. A cluster of genes with similarity to the Arabidopsis thaliana gene encoding nodule inception protein-like protein 7 (NLP7) was identified. Gene expression analyses confirmed transcriptional activity and revealed clear differences between susceptible and tolerant genotypes. CONCLUSIONS Our findings provide new insights into the genomic basis of plant-nematode interactions that can be used to design and accelerate novel management strategies against BCN.
Collapse
Affiliation(s)
- Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Elena Orsini
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | | | - Lukas Schulte
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Andreas E Müller
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Axel Schechert
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
4
|
Zhao J, Liu S. Beet cyst nematode HsSNARE1 interacts with both AtSNAP2 and AtPR1 and promotes disease in Arabidopsis. J Adv Res 2022; 47:27-40. [PMID: 35872350 PMCID: PMC10173200 DOI: 10.1016/j.jare.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Plant parasitic cyst nematodes secrete a number of effectors into hosts to initiate formation of syncytia and infection causing huge yield losses. OBJECTIVES The identified cyst nematode effectors are still limited, and the cyst nematode effectors-involved interaction mechanisms between cyst nematodes and plants remain largely unknown. METHODS The t-SNARE domain-containing effector in beet cyst nematode (BCN) was identified by In situ hybridization and immunohistochemistry analyses. The mutant of effector gene was designed by protein structure modeling analysis. The functions of effector gene and its mutant were analyzed by genetic transformation in Arabidopsis and infection by BCN. The protein-protein interaction was analyzed by yeast two hybrid, BiFC and pulldown assays. Gene expression was assayed by quantitative real-time PCR. RESULTS A t-SNARE domain-containing BCN HsSNARE1 was identified as an effector, and its mutant HsSNARE1-M1 carrying three mutations (E141D, A143T and -148S) that altered regional structure from random coils to α-helixes was designed and constructed. Transgenic analyses indicated that expression of HsSNARE1 significantly enhanced while expression of HsSNARE1-M1 and highly homologous HgSNARE1 remarkably suppressed BCN susceptibility of Arabidopsis. HsSNARE1 interacted with AtSNAP2 and AtPR1 via its t-SNARE domain and N-terminal, respectively, while HsSNARE1-M1/HgSNARE1 could not interact with AtPR1 but bound AtSNAP2. AtSNAP2, AtSHMT4 and AtPR1 interacted pairwise, but neither HsSNARE1 nor HsSNARE1-M1/HgSNARE1 could interact with AtSHMT4. Expression of HsSNARE1 significantly suppressed while expression of HsSNARE1-M1/HgSNARE1 considerably induced both AtSHMT4 and AtPR1 in transgenic Arabidopsis infected with BCN. Overexpression of AtPR1 significantly suppressed BCN susceptibility of Arabidopsis. CONCLUSIONS This work identified a t-SNARE-domain containing cyst nematode effector HsSNARE1 and deciphered a molecular mode of action of the t-SNARE-domain containing cyst nematode effectors that HsSNARE1 promotes cyst nematode disease by interaction with both AtSNAP2 and AtPR1 and significant suppression of both AtSHMT4 and AtPR1, which is mediated by three structure change-causing amino acid residues.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|