1
|
Park J, Sathuvalli V, Yilma S, Whitworth J, Novy RG. Identification of QTL associated with plant vine characteristics and infection response to late blight, early blight, and Verticillium wilt in a tetraploid potato population derived from late blight-resistant Palisade Russet. FRONTIERS IN PLANT SCIENCE 2023; 14:1222596. [PMID: 37900754 PMCID: PMC10600477 DOI: 10.3389/fpls.2023.1222596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Potato late blight (causal agent Phytophthora infestans) is a disease of potatoes with economic importance worldwide. Control is primarily through field monitoring and the application of fungicides. Control of late blight with fungicides and host plant resistance is difficult, with documented cases of such control measures failing with the advent of new pathotypes of P. infestans. To better understand host plant resistance and to develop more durable late blight resistance, Quantitative Trait Locus/Loci (QTL) analysis was conducted on a tetraploid mapping population derived from late blight-resistant potato cultivar Palisade Russet. Additionally, QTL analyses for other traits such as Verticillium wilt and early blight resistance, vine size and maturity were performed to identify a potential relationship between multiple traits and prepare genetic resources for molecular markers useful in breeding programs. For this, one hundred ninety progenies from intercrossing Palisade Russet with a late blight susceptible breeding clone (ND028673B-2Russ) were assessed. Two parents and progenies were evaluated over a two-year period for response to infection by the US-8 genotype of P. infestans in inoculated field screenings in Corvallis, Oregon. In Aberdeen, Idaho, the same mapping population was also evaluated for phenotypic response to early blight and Verticillium wilt, and vine size and maturity in a field over a two-year period. After conducting QTL analyses with those collected phenotype data, it was observed that chromosome 5 has a significant QTL for all five traits. Verticillium wilt and vine maturity QTL were also observed on chromosome 1, and vine size QTL was also found on chromosomes 3 and 10. An early blight QTL was also detected on chromosome 2. The QTL identified in this study have the potential for converting into breeder-friendly molecular markers for marker-assisted selection.
Collapse
Affiliation(s)
- Jaebum Park
- Small Grains and Potato Germplasm Research Station, United States Department of Agriculture – Agricultural Research Service, Aberdeen, ID, United States
| | - Vidyasagar Sathuvalli
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Solomon Yilma
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Jonathan Whitworth
- Small Grains and Potato Germplasm Research Station, United States Department of Agriculture – Agricultural Research Service, Aberdeen, ID, United States
| | - Richard G. Novy
- Small Grains and Potato Germplasm Research Station, United States Department of Agriculture – Agricultural Research Service, Aberdeen, ID, United States
| |
Collapse
|
2
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|
3
|
Perez W, Alarcon L, Rojas T, Correa Y, Juarez H, Andrade-Piedra JL, Anglin NL, Ellis D. Screening South American Potato Landraces and Potato Wild Relatives for Novel Sources of Late Blight Resistance. PLANT DISEASE 2022; 106:1845-1856. [PMID: 35072509 DOI: 10.1094/pdis-07-21-1582-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans is one of the most important biotic constraints for potato production worldwide. This study assessed 508 accessions (79 wild potato species and 429 landraces from a cultivated core collection) held at the International Potato Center genebank for resistance to LB. One P. infestans isolate belonging to the EC-1 lineage, which is currently the predominant type of P. infestans in Peru, Ecuador, and Colombia, was used in whole plant assays under greenhouse conditions. Novel sources of resistance to LB were found in accessions of Solanum albornozii, S. andreanum, S. lesteri, S. longiconicum, S. morelliforme, S. stenophyllidium, S. mochiquense, S. cajamarquense, and S. huancabambense. All of these species are endemic to South America and thus could provide novel sources of resistance for potato breeding programs. We found that the level of resistance to LB in wild species and potato landraces cannot be predicted from altitude and bioclimatic variables of the locations where the accessions were collected. The high percentage (73%) of potato landraces susceptible to LB in our study suggests the importance of implementing disease control measures, including planting susceptible genotypes in less humid areas and seasons or switching to genotypes identified as resistant. In addition, this study points out a high risk of genetic erosion in potato biodiversity at high altitudes of the Andes due to susceptibility to LB in the native landraces, which has been exacerbated by climatic change that favors the development of LB in those regions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Willmer Perez
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Lesly Alarcon
- Universidad Nacional del Centro del Peru, Huancayo, Peru
| | - Tania Rojas
- Universidad Nacional Agraria La Molina, Lima, Peru
| | - Yanina Correa
- Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
| | - Henry Juarez
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Jorge L Andrade-Piedra
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Noelle L Anglin
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - David Ellis
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| |
Collapse
|
4
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
5
|
Fumia N, Pironon S, Rubinoff D, Khoury CK, Gore MA, Kantar MB. Wild relatives of potato may bolster its adaptation to new niches under future climate scenarios. Food Energy Secur 2022. [DOI: 10.1002/fes3.360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Nathan Fumia
- Department of Tropical Plant and Soil Science University of Hawaii at Manoa Honolulu Hawaii USA
| | | | - Daniel Rubinoff
- Department of Plant and Environmental Protection Sciences University of Hawaii at Manoa Honolulu Hawaii USA
| | - Colin K. Khoury
- International Center for Tropical Agriculture (CIAT) Cali Colombia
- San Diego Botanic Garden Encinitas California USA
| | - Michael A. Gore
- Plant Breeding and Genetics Section School of Integrative Plant Science Cornell University Ithaca New York USA
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Science University of Hawaii at Manoa Honolulu Hawaii USA
| |
Collapse
|
6
|
Karki HS, Jansky SH, Halterman DA. Screening of Wild Potatoes Identifies New Sources of Late Blight Resistance. PLANT DISEASE 2021; 105:368-376. [PMID: 32755364 DOI: 10.1094/pdis-06-20-1367-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species.
Collapse
Affiliation(s)
- Hari S Karki
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| | - Shelly H Jansky
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706
| | - Dennis A Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| |
Collapse
|
7
|
Bachmann-Pfabe S, Dehmer KJ. Evaluation of Wild Potato Germplasm for Tuber Starch Content and Nitrogen Utilization Efficiency. PLANTS 2020; 9:plants9070833. [PMID: 32630783 PMCID: PMC7411790 DOI: 10.3390/plants9070833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/03/2023]
Abstract
Potato wild relatives provide a considerable source of variation for important traits in cultivated potato (Solanum tuberosum L.) breeding. This study evaluates the variation of tuber starch content and nitrogen utilization efficiency (NutE) in wild potato germplasm. For the experiments regarding starch content, 28 accessions of ten different tuber-bearing wild Solanum-species were chosen, and in vitro plantlets were raised from seeds. Twenty plantlets (= genotypes) per accession were then cultivated in the greenhouse until natural senescence and tuber starch content was determined. The average tuber starch content across all genotypes tested was 21.7% of fresh mass. Contents above 28% of fresh mass were found in 50 genotypes, belonging to the species S. chacoense, S. commersonii, S. jamesii, and S. pinnatisectum. Subsequently, 22 wild genotypes revealing high tuber starch contents and four modern varieties of cultivated potato were studied as in vitro plantlets under optimal and low N supply (30 and 7.5 mmol L-1 N). Low N supply lead to a genotype-dependent reduction of shoot dry mass between 13 and 46%. The majority of the wild types also reduced root dry mass by 26 to 62%, while others maintained root growth and even exceeded the NutE of the varieties under low N supply. Thus, wild potato germplasm appears superior to cultivars in terms of tuber starch contents and N utilization efficiency, which should be investigated in further studies.
Collapse
|
8
|
Meade F, Hutten R, Wagener S, Prigge V, Dalton E, Kirk HG, Griffin D, Milbourne D. Detection of Novel QTLs for Late Blight Resistance Derived from the Wild Potato Species Solanum microdontum and Solanum pampasense. Genes (Basel) 2020; 11:E732. [PMID: 32630103 PMCID: PMC7396981 DOI: 10.3390/genes11070732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21-47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.
Collapse
Affiliation(s)
- Fergus Meade
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Ronald Hutten
- Wageningen University & Research (WUR), 6708 PB Wageningen, The Netherlands;
| | - Silke Wagener
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | - Vanessa Prigge
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | | | | | - Denis Griffin
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Dan Milbourne
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| |
Collapse
|
9
|
Cui Z, Yuan X, Yang CH, Huntley RB, Sun W, Wang J, Sundin GW, Zeng Q. Development of a Method to Monitor Gene Expression in Single Bacterial Cells During the Interaction With Plants and Use to Study the Expression of the Type III Secretion System in Single Cells of Dickeya dadantii in Potato. Front Microbiol 2018; 9:1429. [PMID: 30002651 PMCID: PMC6031750 DOI: 10.3389/fmicb.2018.01429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Dickeya dadantii is a bacterial plant pathogen that causes soft rot disease on a wide range of host plants. The type III secretion system (T3SS) is an important virulence factor in D. dadantii. Expression of the T3SS is induced in the plant apoplast or in hrp-inducing minimal medium (hrp-MM), and is repressed in nutrient-rich media. Despite the understanding of induction conditions, how individual cells in a clonal bacterial population respond to these conditions and modulate T3SS expression is not well understood. In our previous study, we reported that in a clonal population, only a small proportion of bacteria highly expressed T3SS genes while the majority of the population did not express T3SS genes under hrp-MM condition. In this study, we developed a method that enabled in situ observation and quantification of gene expression in single bacterial cells in planta. Using this technique, we observed that the expression of the T3SS genes hrpA and hrpN is restricted to a small proportion of D. dadantii cells during the infection of potato. We also report that the expression of T3SS genes is higher at early stages of infection compared to later stages. This expression modulation is achieved through adjusting the ratio of T3SS ON and T3SS OFF cells and the expression intensity of T3SS ON cells. Our findings not only shed light into how bacteria use a bi-stable gene expression manner to modulate an important virulence factor, but also provide a useful tool to study gene expression in individual bacterial cells in planta.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Regan B. Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| |
Collapse
|
10
|
Stam R, Scheikl D, Tellier A. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations. PeerJ 2017; 5:e2910. [PMID: 28133579 PMCID: PMC5248578 DOI: 10.7717/peerj.2910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 2017; 10:5-24. [PMID: 28035232 PMCID: PMC5192947 DOI: 10.1111/eva.12434] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Deleterious effects of climate change and human activities, as well as diverse environmental stresses, present critical challenges to food production and the maintenance of natural diversity. These challenges may be met by the development of novel crop varieties with increased biotic or abiotic resistance that enables them to thrive in marginal lands. However, considering the diverse interactions between crops and environmental factors, it is surprising that evolutionary principles have been underexploited in addressing these food and environmental challenges. Compared with domesticated cultivars, crop wild relatives (CWRs) have been challenged in natural environments for thousands of years and maintain a much higher level of genetic diversity. In this review, we highlight the significance of CWRs for crop improvement by providing examples of CWRs that have been used to increase biotic and abiotic stress resistance/tolerance and overall yield in various crop species. We also discuss the surge of advanced biotechnologies, such as next-generation sequencing technologies and omics, with particular emphasis on how they have facilitated gene discovery in CWRs. We end the review by discussing the available resources and conservation of CWRs, including the urgent need for CWR prioritization and collection to ensure continuous crop improvement for food sustainability.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Neha Mittal
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Larry J. Leamy
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Oz Barazani
- The Institute for Plant SciencesIsrael Plant Gene BankAgricultural Research OrganizationBet DaganIsrael
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|