1
|
Ashley KA, Annis SL. Population Structure and Reproductive Biology of Monilinia vaccinii-corymbosi in Vaccinium angustifolium in Maine. PLANT DISEASE 2024; 108:182-189. [PMID: 37552166 DOI: 10.1094/pdis-07-22-1684-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The fungus Monilinia vaccinii-corymbosi (Mvc) causes mummy berry disease in blueberries including lowbush blueberry, Vaccinium angustifolium, and is a significant pathogen of concern for Maine lowbush blueberry growers. This disease is typically managed with fungicides or by burning of plant debris containing overwintering pseudosclerotia. The population structure of Mvc in various fields in Maine was investigated using microsatellites and isolates collected from three stages in the Mvc lifecycle. The impacts of management strategies were also examined. A high level of genetic diversity was observed in Mvc from 12 lowbush blueberry fields with 199 unique multilocus haplotypes (MLHs) occurring in an original sample of 232 isolates. Twelve private alleles, including six private alleles with frequencies above 0.05, which indicated gene flow, were observed in six out of 12 fields. The population of Mvc in Maine as a whole is mostly a sexual, outcrossing population, as was seen in the diversity of MLHs and low amounts of linkage disequilibrium, although some apothecia appear to result from selfing. Three fields appear to have some clonal reproduction but were not strictly clonal, as multiple MLHs were noted in these fields. Management does not appear to affect population structure, and Mvc may be one large statewide population in Maine.
Collapse
Affiliation(s)
| | - Seanna L Annis
- School of Biology and Ecology, University of Maine, Orono, ME 04469
| |
Collapse
|
2
|
Yow AG, Zhang Y, Bansal K, Eacker SM, Sullivan S, Liachko I, Cubeta MA, Rollins JA, Ashrafi H. Genome sequence of Monilinia vaccinii-corymbosi sheds light on mummy berry disease infection of blueberry and mating type. G3-GENES GENOMES GENETICS 2021; 11:6062400. [PMID: 33598705 PMCID: PMC8022979 DOI: 10.1093/g3journal/jkaa052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
Mummy berry disease, caused by the fungal pathogen Monilinia vaccinii-corymbosi (Mvc), is one of the most economically important diseases of blueberries in North America. Mvc is capable of inducing two separate blighting stages during its life cycle. Infected fruits are rendered mummified and unmarketable. Genomic data for this pathogen is lacking, but could be useful in understanding the reproductive biology of Mvc and the mechanisms it deploys to facilitate host infection. In this study, PacBio sequencing and Hi-C interaction data were utilized to create a chromosome-scale reference genome for Mvc. The genome comprises nine chromosomes with a total length of 30 Mb, an N50 length of 4.06 Mb, and an average 413X sequence coverage. A total of 9399 gene models were predicted and annotated, and BUSCO analysis revealed that 98% of 1,438 searched conserved eukaryotic genes were present in the predicted gene set. Potential effectors were identified, and the mating-type (MAT) locus was characterized. Biotrophic effectors allow the pathogen to avoid recognition by the host plant and evade or mitigate host defense responses during the early stages of fruit infection. Following locule colonization, necrotizing effectors promote the mummification of host tissues. Potential biotrophic effectors utilized by Mvc include chorismate mutase for reducing host salicylate and necrotrophic effectors include necrosis-inducing proteins and hydrolytic enzymes for macerating host tissue. The MAT locus sequences indicate the potential for homothallism in the reference genome, but a deletion allele of the MAT locus, characterized in a second isolate, indicates heterothallism. Further research is needed to verify the roles of individual effectors in virulence and to determine the role of the MAT locus in outcrossing and population genotypic diversity.
Collapse
Affiliation(s)
- Ashley G Yow
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Kamaldeep Bansal
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | - Marc A Cubeta
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Bock CH, Young CA, Stevenson KL, Charlton ND. Fine-Scale Population Genetic Structure and Within-Tree Distribution of Mating Types of Venturia effusa, Cause of Pecan Scab in the United States. PHYTOPATHOLOGY 2018; 108:1326-1336. [PMID: 29771192 DOI: 10.1094/phyto-02-18-0068-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern United States. There is no information available on the fine-scale population genetic diversity or the occurrence of clonal types at small spatial scales that provides insight into inoculum sources and dispersal mechanisms, and potential opportunity for sexual reproduction. To investigate fine-scale genetic diversity, four trees of cultivar Wichita (populations) were sampled hierarchically: within each tree canopy, four approximately evenly spaced terminals (subpopulations) were selected and up to six leaflets (sub-subpopulations) were sampled from different compound leaves on each terminal. All lesions (n = 1 to 8) on each leaflet were sampled. The isolates were screened against a panel of 29 informative microsatellite markers and the resulting multilocus genotypes (MLG) subject to analysis. Mating type was also determined for each isolate. Of 335 isolates, there were 165 MLG (clonal fraction 49.3%). Nei's unbiased measure of genetic diversity for the clone-corrected data were moderate to high (0.507). An analysis of molecular variance demonstrated differentiation (P = 0.001) between populations on leaflets within individual terminals and between terminals within trees in the tree canopies, with 93.8% of variance explained among isolates within leaflet populations. Other analyses (minimum-spanning network, Bayesian, and discriminant analysis of principal components) all indicated little affinity of isolate for source population. Of the 335 isolates, most unique MLG were found at the stratum of the individual leaflets (n = 242), with similar total numbers of unique MLG observed at the strata of the terminal (n = 170), tree (n = 166), and orchard (n = 165). Thus, the vast majority of shared clones existed on individual leaflets on a terminal at the scale of 10s of centimeters or less, indicating a notable component of short-distance dispersal. There was significant linkage disequilibrium (P < 0.001), and an analysis of Psex showed that where there were multiple encounters of an MLG, they were most probably the result of asexual reproduction (P < 0.05) but there was no evidence that asexual reproduction was involved in single or first encounters of an MLG (P > 0.05). Overall, the MAT1-1-1 and MAT1-2-1 idiomorphs were at equilibrium (73:92) and in most populations, subpopulations, and sub-subpopulations. Both mating types were frequently observed on the same leaflet. The results provide novel information on the characteristics of populations of V. effusa at fine spatial scales, and provide insights into the dispersal of the organism within and between trees. The proximity of both mating idiomorphs on single leaflets is further evidence of opportunity for development of the sexual stage in the field.
Collapse
Affiliation(s)
- Clive H Bock
- First author: U.S. Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; second and fourth authors: Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401; and third author: Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton 31793
| | - Carolyn A Young
- First author: U.S. Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; second and fourth authors: Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401; and third author: Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton 31793
| | - Katherine L Stevenson
- First author: U.S. Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; second and fourth authors: Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401; and third author: Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton 31793
| | - Nikki D Charlton
- First author: U.S. Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; second and fourth authors: Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401; and third author: Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton 31793
| |
Collapse
|
4
|
Yurgel SN, Douglas GM, Dusault A, Percival D, Langille MGI. Dissecting Community Structure in Wild Blueberry Root and Soil Microbiome. Front Microbiol 2018; 9:1187. [PMID: 29922264 PMCID: PMC5996171 DOI: 10.3389/fmicb.2018.01187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
A complex network of functions and symbiotic interactions between a eukaryotic host and its microbiome is a the foundation of the ecological unit holobiont. However, little is known about how the non-fungal eukaryotic microorganisms fit in this complex network of host-microbiome interactions. In this study, we employed a unique wild blueberry ecosystem to evaluate plant-associated microbiota, encompassing both eukaryotic and bacterial communities. We found that, while soil microbiome serves as a foundation for root microbiome, plant-influenced species sorting had stronger effect on eukaryotes than on bacteria. Our study identified several fungal and protist taxa, which are correlated with decreased fruit production in wild blueberry agricultural ecosystems. The specific effect of species sorting in root microbiome resulted in an increase in relative abundance of fungi adapted to plant-associated life-style, while the relative abundance of non-fungal eukaryotes was decreased along the soil-endosphere continuum in the root, probably because of low adaptation of these microorganisms to host-plant defense responses. Analysis of community correlation networks indicated that bacterial and eukaryotic interactions became more complex along the soil-endosphere continuum and, in addition to extensive mutualistic interactions, co-exclusion also played an important role in shaping wild blueberry associated microbiome. Our study identified several potential hub taxa with important roles in soil fertility and/or plant-microbe interaction, suggesting the key role of these taxa in the interconnection between soils and plant health and overall microbial community structure. This study also provides a comprehensive view of the role of non-fungal eukaryotes in soil ecosystem.
Collapse
Affiliation(s)
- Svetlana N. Yurgel
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Gavin M. Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ashley Dusault
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - David Percival
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | | |
Collapse
|