1
|
Saberi E, Qureshi JA, Brown JK. Differential expression of "Candidatus Liberibacter solanacearum" genes and prophage loci in different life stages of potato psyllid. Sci Rep 2024; 14:16248. [PMID: 39009624 PMCID: PMC11251058 DOI: 10.1038/s41598-024-65156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Psyllid species, including the potato psyllid (PoP) Bactericera cockerelli (Sulc) (Triozidae) serve as host and vector of "Candidatus Liberibacter spp." ("Ca. Liberibacter"), which also infects diverse plant hosts, including citrus and tomato. Psyllid transmission of "Ca. Liberibacter" is circulative and propagative. The time of "Ca. Liberibacter" acquisition and therefore vector life stage most competent for bacterial transmission varies by pathosystems. Here, the potato psyllid-"Ca. Liberibacter solanacearum" (CLso) pathosystem was investigated to dissect CLso-prophage interactions in the tomato plant and PoP-psyllid host by real-time quantitative reverse transcriptase amplification of CLso genes/loci with predicted involvement in host infection and psyllid-CLso transmission. Genes/loci analyzed were associated with (1) CLso-adhesion, -invasion, -pathogenicity, and -motility, (2) prophage-adhesion and pathogenicity, and (3) CLso-lysogenic cycle. Relative gene expression was quantified by qRT-PCR amplification from total RNA isolated from CLso-infected 1st-2nd and 4th-5th nymphs and teneral adults and CLso-infected tomato plants in which CLso infection is thought to occur without SC1-SC2 replication. Gene/loci expression was host-dependent and varied with the psyllid developmental stage. Loci previously associated with repressor-anti-repressor regulation in the "Ca Liberibacter asiaticus"-prophage pathosystem, which maintains the lysogenic cycle in Asian citrus psyllid Diaphorina citri, were expressed in CLso-infected psyllids but not in CLso-infected tomato plants.
Collapse
Affiliation(s)
- Esmaeil Saberi
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Jawwad A Qureshi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Maphosa S, Moleleki LN. A computational and secretome analysis approach reveals exclusive and shared candidate type six secretion system substrates in Pectobacterium brasiliense 1692. Microbiol Res 2024; 278:127501. [PMID: 37976736 DOI: 10.1016/j.micres.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
The type 6 secretion system (T6SS) of Gram-negative bacteria (GNB) has implications for bacterial competition, virulence, and survival. For the broad host range pathogen, Pectobacterium brasiliense 1692, T6SS-mediated competition occurs in a tissue-specific manner. However, no other roles have been investigated. The aim of this study was to identify T6SS-associated proteins under virulence inducing conditions. We used Bastion tools to predict 1479 Pbr1692 secreted proteins. Sixteen percent of these overlap between type 1-4 secretion systems (T1SS-T4SS) and T6SS. Using label-free quantitative mass spectrometry of Pbr1692 T6SS active and T6SS inactive strains' secretomes cultured in minimal media supplemented with host extract, 49 T6SS-associated proteins with varied gene ontology predicted functions were identified. We report 19 and 30 T6SS primary substrates and differentially secreted proteins, respectively, in T6SS mutants versus wild type strains. Of the total 49 T6SS-associated proteins presented in this study, 25 were also predicted using the BastionX platform as T6SS exclusive and shared substrates with T1SS-T4SS. This work provides a list of Pbr1692 T6SS secreted effector candidates. These include a potential antibacterial toxin HNH endonuclease and several predicted virulence proteins, including plant cell wall degrading enzymes. A preliminary basis for potential crosstalk between GNB secretion systems is also highlighted.
Collapse
Affiliation(s)
- S Maphosa
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - L N Moleleki
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
3
|
Garcia L, Molina MC, Padgett-Pagliai KA, Torres PS, Bruna RE, García Véscovi E, González CF, Gadea J, Marano MR. A serralysin-like protein of Candidatus Liberibacter asiaticus modulates components of the bacterial extracellular matrix. Front Microbiol 2022; 13:1006962. [DOI: 10.3389/fmicb.2022.1006962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.
Collapse
|
4
|
Levy JG, Gross R, Mendoza-Herrera A, Tang X, Babilonia K, Shan L, Kuhl JC, Dibble MS, Xiao F, Tamborindeguy C. Lso-HPE1, an Effector of ' Candidatus Liberibacter solanacearum', Can Repress Plant Immune Response. PHYTOPATHOLOGY 2020; 110:648-655. [PMID: 31697198 DOI: 10.1094/phyto-07-19-0252-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
'Candidatus Liberibacter solanacearum' is a plant pathogen affecting the families Solanaceae and Apiaceae in different parts of the world. 'Ca. L. solanacearum' is a Gram-negative, fastidious α-proteobacterium that is vectored by different psyllid species. Plant-pathogenic bacteria are known for interfering with the host physiology or defense mechanisms, often by secreting bacterial effectors. Effector proteins are critical for virulence; therefore, the identification of effectors could help with disease management. In this study, we characterized the Sec-translocon-dependent 'Ca. L. solanacearum'-hypothetical protein effector 1 (Lso-HPE1). We compared this protein sequence in the different 'Ca. L. solanacearum' haplotypes. We predicted the signal peptide and validated its function using Escherichia coli's alkaline phosphatase fusion assay. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana demonstrated that Lso-HPE1 from 'Ca. L. solanacearum' haplotypes A and B were able to inhibit the induction of cell death in plants. We also compared gene expression of the Lso-HPE1- transcripts in 'Ca. L. solanacearum' haplotypes A and B in tomato and in the vector Bactericera cockerelli. This work validates the identification of a Sec-translocon-dependent 'Ca. L. solanacearum' protein possibly involved in suppression of plant cell death.
Collapse
Affiliation(s)
- Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844
| | | | - Xiaotian Tang
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Kevin Babilonia
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Libo Shan
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844
| | | | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844
| | | |
Collapse
|
5
|
Gilkes JM, Sheen CR, Frampton RA, Smith GR, Dobson RCJ. The First Purification of Functional Proteins from the Unculturable, Genome-Reduced, Bottlenecked α-Proteobacterium ' Candidatus Liberibacter solanacearum'. PHYTOPATHOLOGY 2019; 109:1141-1148. [PMID: 30887888 DOI: 10.1094/phyto-12-18-0486-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter solanacearum' is an unculturable α-proteobacterium that is the causal agent of zebra chip disease of potato-a major problem in potato-growing areas, because it affects growth and yield. Developing effective treatments for 'Ca. L. solanacearum' has been hampered by the difficulty in functionally characterizing the proteins of this organism, largely because they are not easily expressed and purified in standard expression systems. 'Ca. L. solanacearum' has a reduced genome and its proteins are predicted to be prone to instability and aggregation. Among intracellular-dwelling bacteria, chaperone proteins are conserved and overexpressed to buffer against problems in protein folding. We mimicked this approach for expressing and purifying 'Ca. L. solanacearum' proteins in Escherichia coli by coexpressing them with chaperones. Neither of the representative 'Ca. L. solanacearum' enzymes, dihydrodipicolinate synthase (key in lysine biosynthesis) and pyruvate kinase (involved in glycolysis), were overexpressed in standard E. coli expression plasmids or strains. However, soluble dihydrodipicolinate synthase was successfully coexpressed with GroEL/GroES, while soluble pyruvate kinase was successfully coexpressed with either GroEL/GroES, dnaK/dnaJ/grpE, or a trigger factor. Both enzymes, believed to be key proteins for the organism, were purified by a combination of affinity chromatography and size-exclusion chromatography. Additionally, both 'Ca. L. solanacearum' enzymes are active and have the canonical tetrameric oligomeric structure in solution, consistent with other bacterial orthologs. This is the first study to successfully isolate and functionally characterize proteins from 'Ca. L. solanacearum'. Thus, we provide a general strategy for characterizing its proteins, enabling new research and drug discovery programs to study and manage the pathogenicity of the organism.
Collapse
Affiliation(s)
- Jenna M Gilkes
- 1 Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Campbell R Sheen
- 3 Callaghan Innovation, University of Canterbury, Christchurch 8041, New Zealand; and
| | - Rebekah A Frampton
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Grant R Smith
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Renwick C J Dobson
- 1 Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- 4 Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Delgado-Ortiz JC, Beltrán-Beache M, Cerna-Chávez E, Aguirre-Uribe LA, Landero-Flores J, Rodríguez-Pagaza Y, Ochoa-Fuentes YM. Candidatus Liberibacter solanacearum patógeno vascular de solanáceas: Diagnóstico y control. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) es una bacteria fitopatógena Gram-negativa, limitada al floema en solanáceas y no cultivable in vitro. Es transmitida de manera vertical y horizontal por el psílido Bactericera cockerelli. En México se asocia como responsable de la enfermedad "permanente del tomate", "punta morada de la papa" (Zebra chip) y "variegado del chile". Los síntomas causados por la bacteria varían según el cultivar y la etapa de crecimiento del hospedante pero consisten principalmente en amarillamientos y deformación de la lámina foliar, debido a la alimentación del vector y la colonización del patógeno. Las infecciones ocasionadas por CLso reducen la calidad del producto y el valor comercial en el mercado. La presencia de esta bacteria ha sido detectada en los estados de Coahuila, Sinaloa y Guanajuato, México a través de técnicas moleculares; mientras que el control de la enfermedad se encuentra enfocado en el vector, mediante prácticas culturales y la aplicación de agentes químicos y biológicos. Por lo anterior el objetivo del trabajo es puntualizar la situación actual de la distribución de CLso en México, los métodos de diagnóstico y las estrategias para el manejo integrado de la enfermedad y el vector.
Collapse
|
7
|
Mendoza-Herrera A, Levy J, Harrison K, Yao J, Ibanez F, Tamborindeguy C. Infection by Candidatus Liberibacter solanacearum' haplotypes A and B in Solanum lycopersicum 'Moneymaker'. PLANT DISEASE 2018; 102:2009-2015. [PMID: 30133358 DOI: 10.1094/pdis-12-17-1982-re] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
'Candidatus Liberibacter solanacearum' is a plant pathogen associated with diseases affecting several crops of the Solanaceae and Apiaceae families. Two 'Ca. L. solanacearum' haplotypes (LsoA and LsoB) infect solanaceous crops in North America and are transmitted by the tomato psyllid Bactericera cockerelli. Although both 'Ca. L. solanacearum' haplotypes cause zebra chip in potato, the diseases associated with each haplotype in tomato (Solanum lycopersicum) have not been described. 'Ca. L. solanacearum'-infected tomato plants exhibit symptoms resembling those of permanent yellowing disease (known in Mexico as "permanente del tomate") and sometimes called psyllid yellows. In this study, the symptoms associated with each 'Ca. L. solanacearum' haplotype in tomato were compared, and the bacterial abundance in different nodes of the plants was measured by quantitative polymerase chain reaction. Surprisingly, both plant phenotype and bacterium distribution were different between LsoA- and LsoB-infected plants. Plants infected with LsoB died prematurely, whereas those infected with LsoA did not. Across the measured time points, LsoB abundance in infected plants was consistent with previous reports describing a sink to source gradient, while such gradient was only observed in LsoA-infected plants early after infection. This is the first report describing the differences in symptoms in tomato associated with two 'Ca. L. solanacearum' haplotypes, LsoA and LsoB.
Collapse
Affiliation(s)
| | | | | | - Jianxiu Yao
- Department of Entomology, Texas A&M University, College Station 77843
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station 77843
| | | |
Collapse
|