1
|
Wang Z, Li N, Wang W, Zhu Y, Liu Y. Endophytic bacterial community diversity in genetically related hybrid rice seeds. Appl Microbiol Biotechnol 2023; 107:6911-6922. [PMID: 37704771 DOI: 10.1007/s00253-023-12782-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
The Food and Agriculture Organization of the United Nations (FAO) has identified hybrid rice as ideal for addressing food scarcity in poor nations. A comprehensive investigation of the endophytic bacteria in hybrid rice seeds is essential from a microecological perspective to illuminate the mechanisms underlying its high yield, high quality, and multi-resistance. The endophytic bacterial diversity and community structures of 11 genetically correlated hybrid rice seeds with different rice blast resistance levels were studied using high-throughput sequencing (HTS) on the Illumina MiSeq platform to reveal their "core microbiota" and explore the effect of genotypes, genetic relationships, and resistance. Proteobacteria (78.15-99.15%) represented the most abundant group in the 11 hybrid rice cultivars, while Pantoea, Pseudomonas, and Microbacterium comprised the "core microbiota." Hybrid rice seeds with different genotypes, genetic correlations, and rice blast resistance displayed endophytic bacterial community structure and diversity variation. In addition, the network relationships between the rice seed endophytic bacteria of "the same female parent but different male parents" were more complex than those from "the same male parent but different female parents." Matrilineal inheritance may be the primary method of passing on endophytic bacteria in rice from generation to generation. The endophytic bacterial interaction network in rice blast-resistant hybrid rice seed varieties was more complicated than in susceptible varieties. In summary, this study demonstrated that the genotype, genetic relationship, and rice blast resistance were important factors affecting the community structures and diversity of endophytic bacteria in hybrid rice seeds, which was vital for revealing the interaction between endophytic bacteria and the host. KEY POINTS: • Pantoea, Pseudomonas, and Microbacterium represent the main endophytic bacteria in hybrid rice seeds. • Genotype is the primary factor affecting endophytic bacterial diversity in hybrid rice seeds. • The diversity of the endophytic bacterial community in hybrid rice seeds is related to their genotypes, genetic relationships, and rice blast resistance.
Collapse
Affiliation(s)
- Zhishan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha, 410125, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha, 410125, China.
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 201203, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
2
|
Yuan T, Huang Y, Luo L, Wang J, Li J, Chen J, Qin Y, Liu J. Complete Genome Sequence of Pantoea ananatis Strain LCFJ-001 Isolated from Bacterial Wilt Mulberry. PLANT DISEASE 2023; 107:2500-2505. [PMID: 36691281 DOI: 10.1094/pdis-10-22-2473-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Pantoea ananatis strain, named LCFJ-001 (GDMCC: 1.6101), was isolated for the first time from bacterial wilt-diseased roots of mulberry (Morus atropurpurea) in the western part of the Guangxi Zhuang Autonomous Region, China. Moreover, through Koch's postulates, it was proven that LCFJ-001 can cause mulberry wilt, which is one of the pathogens of mulberry bacterial wilt. Here, we report a complete, annotated genome sequence of P. ananatis LCFJ-001. The entire genome sequence of P. ananatis strain LCFJ-001 was a 4,499,350 bp circular chromosome with 53.50% GC content. In total, 3,521 genes were annotated, of which 3,418 were assigned protein-coding genes. In addition, 22 ribosomal RNAs and 81 transfer RNAs were identified. The presented resource will help explore the pathogenetic mechanisms of mulberry wilt disease caused by the genus Pantoea.
Collapse
Affiliation(s)
- Ting Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yuxing Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Longhui Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jicheng Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinhao Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jiehu Chen
- Science Corporation of Gene (SCGene), Guangzhou 510000, China
| | - Yue Qin
- School of Chemical and Biological Engineering, Hechi College, Hechi, Guangxi 546300, China
| | - Jiping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
3
|
Bing XL, Wan YY, Liu HH, Ji R, Zhao DS, Niu YD, Li TP, Hong XY. Characterization of Pantoea ananatis from rice planthoppers reveals a clade of rice-associated P. ananatis undergoing genome reduction. Microb Genom 2022; 8:mgen000907. [PMID: 36748509 PMCID: PMC9837560 DOI: 10.1099/mgen.0.000907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Pantoea ananatis is a bacterium that is found in many agronomic crops and agricultural pests. Here, we isolated a P. ananatis strain (Lstr) from the rice planthopper Laodelphax striatellus, a notorious pest that feeds on rice plant sap and transmits rice viruses, in order to examine its genome and biology. P. ananatis Lstr is an insect symbiont that is pathogenic to the host insect and appears to mostly inhabit the gut. Its pathogenicity thus raises the possibility of using the Lstr strain as a biological agent. To this end, we analysed the genome of the Lstr strain and compared it with the genomes of other Pantoea species. Our analysis of these genomes shows that P. ananatis can be divided into two mono-phylogenetic clades (clades one and two). The Lstr strain belongs to clade two and is grouped with P. ananatis strains that were isolated from rice or rice-associated samples. A comparative genomic analysis shows that clade two differs from clade one in many genomic characteristics including genome structures, mobile elements, and categories of coding proteins. The genomes of clade two P. ananatis are significantly smaller, have much fewer coding sequences but more pseudogenes than those of clade one, suggesting that clade two species are at the early stage of genome reduction. On the other hand, P. ananatis has a type VI secretion system that is highly variable but cannot be separated by clades. These results clarify our understanding of P. ananatis' phylogenetic diversity and provide clues to the interactions between P. ananatis, host insect, and plant that may lead to advances in rice protection and pest control.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yu-Ying Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Huan-Huan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yue-Di Niu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China,*Correspondence: Xiao-Yue Hong,
| |
Collapse
|
4
|
Yu L, Yang C, Ji Z, Zeng Y, Liang Y, Hou Y. Complete Genomic Data of Pantoea ananatis Strain TZ39 Associated with New Bacterial Blight of Rice in China. PLANT DISEASE 2022; 106:751-753. [PMID: 34597149 DOI: 10.1094/pdis-08-21-1845-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pantoea ananatis is a phytopathogen infecting many economically important crops, including rice worldwide. Here, we report the complete genome of P. ananatis strain TZ39 identified as causative agent of a new bacterial blight of rice that emerged in China in 2020. The assembled genome consists of one circular chromosome of 4,483,976 bp and two plasmids of 135,135 and 276,579 bp. This complete genome of the first Chinese pathogenic P. ananatis strain will provide new insights into the traits of pathogenicity on genomic level from China and worldwide.
Collapse
Affiliation(s)
- L Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - C Yang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Z Ji
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Y Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Y Liang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Y Hou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|