1
|
Hood ME, Bruns EL, Antonovics J, Davis I, Launi M, Bulzoni S, Rothberg SE. Genetic Independence of Naturally Correlated Variation in Resistance to Endemic and Novel Pathogens. Ecol Lett 2024; 27:e14553. [PMID: 39422195 DOI: 10.1111/ele.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
The emergence of new diseases is an urgent concern, but hosts can also vary in resistance to pathogens that are novel to them, facilitating evolutionary rescue. However, little is known about the genetic source for polymorphic resistance to novel pathogens or its relationship to defences against endemic diseases. With anther-smut disease from wild plant populations, we used selection experiments and genetic analyses to show that resistances to novel and endemic pathogens are genetically independent, despite being positively correlated in nature. Moreover, novel-pathogen resistance presented a much simpler genetic basis and more rapid response to selection. We demonstrate that polymorphic resistance to a newly introduced disease is genetically determined and not an extension of defences against the related endemic pathogen, challenging the conventional view of nonhost resistance.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
| | - Emily L Bruns
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Isabel Davis
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
| | - Michelle Launi
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Sophia Bulzoni
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
| | | |
Collapse
|
2
|
Carleson NC, Daniels HA, Reeser PW, Kanaskie A, Navarro SM, LeBoldus JM, Grünwald NJ. Novel Introductions and Epidemic Dynamics of the Sudden Oak Death Pathogen Phytophthora ramorum in Oregon Forests. PHYTOPATHOLOGY 2021; 111:731-740. [PMID: 33021878 DOI: 10.1094/phyto-05-20-0164-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sudden oak death caused by Phytophthora ramorum has been actively managed in Oregon since the early 2000s. To date, this epidemic has been driven mostly by the NA1 clonal lineage of P. ramorum, but an outbreak of the EU1 lineage has recently emerged. Here, we contrast the population dynamics of the NA1 outbreak first reported in 2001 to the outbreak of the EU1 lineage first detected in 2015. We performed tests to determine whether any of the lineages were introduced more than once. Infested regions of the forest were sampled between 2013 and 2018 (n = 903), and strains were genotyped at 15 microsatellite loci. Most genotypes observed were transient, with 272 of 358 unique genotypes emerging during one year and disappearing the next year. The diversity of EU1 was very low and isolates were spatially clustered (less than 8 km apart), suggesting a single EU1 introduction. Some forest isolates are genetically similar to isolates collected from a local nursery in 2012, suggesting the introduction of EU1 from this nursery or simultaneous introduction to both the nursery and latently into the forest. In contrast, the older NA1 populations were more polymorphic and spread more than 30 km2. A principal component analysis supported two to four independent NA1 introductions. The NA1 and EU1 epidemics infest the same area but show disparate demographics because of the initial introductions of the lineages spaced 10 years apart. Comparing these epidemics provides novel insight regarding patterns of emergence of clonal pathogens in forest ecosystems.
Collapse
Affiliation(s)
- Nicholas C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Hazel A Daniels
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Paul W Reeser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | | | | | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
- Forest Engineering, Resources and Management Department, Oregon State University, Corvallis, OR
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR
| |
Collapse
|
3
|
Simler‐Williamson AB, Metz MR, Frangioso KM, Meentemeyer RK, Rizzo DM. Compound disease and wildfire disturbances alter opportunities for seedling regeneration in resprouter‐dominated forests. Ecosphere 2019. [DOI: 10.1002/ecs2.2991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Margaret R. Metz
- Department of Biology Lewis & Clark College Portland Oregon 97219 USA
| | - Kerri M. Frangioso
- Department of Plant Pathology University of California Davis California 95616 USA
| | - Ross K. Meentemeyer
- Department of Forestry and Environmental Resources & the Center for Geospatial Analytics North Carolina State University Raleigh North Carolina 27695 USA
| | - David M. Rizzo
- Department of Plant Pathology University of California Davis California 95616 USA
| |
Collapse
|
4
|
Søndreli KL, Kanaskie A, Keriö S, LeBoldus JM. Variation in Susceptibility of Tanoak to the NA1 and EU1 Lineages of Phytophthora ramorum, the Cause of Sudden Oak Death. PLANT DISEASE 2019; 103:3154-3160. [PMID: 31560616 DOI: 10.1094/pdis-04-19-0831-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora ramorum, the cause of sudden oak death (SOD), kills tanoak (Notholithocarpus densiflorus) trees in southwestern Oregon and California. Two lineages of P. ramorum are now found in wildland forests of Oregon (NA1 and EU1). In addition to the management of SOD in forest ecosystems, disease resistance could be used as a way to mitigate the impact of P. ramorum. The objectives of this study were to (i) characterize the variability in resistance of N. densiflorus among families using lesion length; (ii) determine whether lineage, isolate, family, or their interactions significantly affect variation in lesion length; and (iii) determine whether there are differences among isolates and among families in terms of lesion length. The parameters isolate nested within lineage (isolate[lineage]) and family × isolate(lineage) interaction explained the majority of the variation in lesion length. There was no significant difference between the NA1 and EU1 lineages in terms of mean lesion length; however, there were differences among the six isolates. Lesions on seedlings collected from surviving trees at infested sites were smaller, on average, than lesions of seedlings collected from trees at noninfested sites (P = 0.0064). The results indicate that there is potential to establish a breeding program for tanoak resistance to SOD and that several isolates of P. ramorum should be used in an artificial inoculation assay.
Collapse
Affiliation(s)
- Kelsey L Søndreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902
| | - Alan Kanaskie
- Oregon Department of Forestry, Private Forests Program, Forest Health Section, Salem, OR 97310
| | - Susanna Keriö
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331-5704
| |
Collapse
|
5
|
Simler-Williamson AB, Rizzo DM, Cobb RC. Interacting Effects of Global Change on Forest Pest and Pathogen Dynamics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024934] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens and insect pests are important drivers of tree mortality and forest dynamics, but global change has rapidly altered or intensified their impacts. Predictive understanding of changing disease and outbreak occurrence has been limited by two factors: ( a) tree mortality and morbidity are emergent phenomena determined by interactions between plant hosts, biotic agents (insects or pathogens), and the environment; and ( b) disparate global change drivers co-occur, obscuring net impacts on each of these components. To expand our understanding of changing forest diseases, declines, and outbreaks, we adopt a framework that identifies and organizes observed impacts of diverse global change drivers on the primary mechanisms underlying agent virulence and host susceptibility. We then discuss insights from ecological theory that may advance prediction of forest epidemics and outbreaks. This approach highlights key drivers of changing pest and pathogen dynamics, which may inform forest management aimed at mitigating accelerating rates of tree mortality globally.
Collapse
Affiliation(s)
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;,
| | - Richard C. Cobb
- Department of Natural Resources Management and Environmental Science, California Polytechnic State University, San Luis Obispo, California 93407, USA
| |
Collapse
|