1
|
Krasnow C, Ziv C, Nitzan N. First Report of Alternaria alternata Causing Decay in Exported Sweet Basil During Freight from Israel to Europe. PLANT DISEASE 2024; 108:41-44. [PMID: 37592429 DOI: 10.1094/pdis-05-23-1026-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Sweet basil (Ocimum basilicum) is an important spice herb grown in Israel for local markets and export. The crop is used as a fresh culinary herb or spice, and the essential oils are used in cosmetics and food flavorings. Due to increased demand, the production area of basil has increased in Israel. Postharvest losses due to fungal disease are a major economic concern for growers. In the summer of 2019, a leaf spot was observed in postharvest shipments of sweet basil destined for Europe; in late winter of 2022, leaf spots were observed on greenhouse-grown sweet basil. Fungal isolates from infected leaves were characterized by morphology in culture as Alternaria spp. PCR amplification of the Alternaria major allergen Alt a1, ITS, and gdp gene regions of the recovered isolates confirmed the presence of A. alternata, a common pathogen of numerous herbs and spice plants. In vitro growth tests demonstrated that 25°C was the optimum temperature for growth of the isolates. The isolates were tested for pathogenicity and found to infect a commonly grown cultivar of basil, cultivar Eli (previously cultivar Perrie). Foliar symptoms in pathogenicity tests were identical to those observed in commercial shipments and in the field, which completed Koch's postulates. Control of the nascent disease by applying fungicides to the plants may be necessary to reduce postharvest losses.
Collapse
Affiliation(s)
- Charles Krasnow
- Department of Postharvest Science, Agriculture Research Organization, Rishon LeZion 7505101, Israel
- Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Carmit Ziv
- Department of Postharvest Science, Agriculture Research Organization, Rishon LeZion 7505101, Israel
| | - Nadav Nitzan
- Plant Pathology Unit, Valley of Springs Research and Extension Center, Beit She'an 11710, Israel
| |
Collapse
|
2
|
Laura M, Forti C, Barberini S, Ciorba R, Mascarello C, Giovannini A, Pistelli L, Pieracci Y, Lanteri AP, Ronca A, Minuto A, Ruffoni B, Cardi T, Savona M. Highly Efficient CRISPR/Cas9 Mediated Gene Editing in Ocimum basilicum 'FT Italiko' to Induce Resistance to Peronospora belbahrii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2395. [PMID: 37446956 DOI: 10.3390/plants12132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Ocimum basilicum (sweet basil) is an economically important aromatic herb; in Italy, approximately 1000 ha of "Genovese-type" basil are grown annually in greenhouses and open fields and are subjected to Downy Mildew (DM) disease, caused by Peronospora belbahrii, leading to huge crop losses. Mutation of the Susceptibility (S) gene DMR6 (Downy Mildew Resistant 6) has been proven to confer a broad-spectrum resistance to DM. In this work, an effective Genome Editing (GE) approach mediated by CRISPR/Cas9 in O. basilicum 'Italiko', the élite cultivar used to produce "Pesto Genovese D.O.P", was developed. A highly efficient genetic transformation method mediated by A. tumefaciens has been optimized from cotyledonary nodes, obtaining 82.2% of regenerated shoots, 84.6% of which resulted in Cas9+ plants. Eleven T0 lines presented different type of mutations in ObDMR6; 60% were indel frameshift mutations with knock-out of ObDMR6 of 'FT Italiko'. Analysis of six T1 transgene-free seedlings revealed that the mutations of T0 plants were inherited and segregated. Based on infection trials conducted on T0 plants, clone 22B showed a very low percentage of disease incidence after 14 days post infection. The aromatic profile of all in vitro edited plants was also reported; all of them showed oxygenated monoterpenes as the major fraction.
Collapse
Affiliation(s)
- Marina Laura
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Chiara Forti
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, Via Bassini 12, 20133 Milano, Italy
| | - Sara Barberini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IPSP, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Roberto Ciorba
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Carlo Mascarello
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Annalisa Giovannini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Paola Lanteri
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Agostina Ronca
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Andrea Minuto
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Barbara Ruffoni
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBR, Institute of Biosciences and Bioresources, 80055 Portici, Italy
| | - Marco Savona
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| |
Collapse
|
3
|
Johnson ET, Lyon R, Zaitlin D, Khan AB, Jairajpuri MA. A comparison of transporter gene expression in three species of Peronospora plant pathogens during host infection. PLoS One 2023; 18:e0285685. [PMID: 37262030 PMCID: PMC10234565 DOI: 10.1371/journal.pone.0285685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Protein transporters move essential metabolites across membranes in all living organisms. Downy mildew causing plant pathogens are biotrophic oomycetes that transport essential nutrients from their hosts to grow. Little is known about the functions and gene expression levels of membrane transporters produced by downy mildew causing pathogens during infection of their hosts. Approximately 170-190 nonredundant transporter genes were identified in the genomes of Peronospora belbahrii, Peronospora effusa, and Peronospora tabacina, which are specialized pathogens of basil, spinach, and tobacco, respectively. The largest groups of transporter genes in each species belonged to the major facilitator superfamily, mitochondrial carriers (MC), and the drug/metabolite transporter group. Gene expression of putative Peronospora transporters was measured using RNA sequencing data at two time points following inoculation onto leaves of their hosts. There were 16 transporter genes, seven of which were MCs, expressed in each Peronospora species that were among the top 45 most highly expressed transporter genes 5-7 days after inoculation. Gene transcripts encoding the ADP/ATP translocase and the mitochondrial phosphate carrier protein were the most abundant mRNAs detected in each Peronospora species. This study found a number of Peronospora genes that are likely critical for pathogenesis and which might serve as future targets for control of these devastating plant pathogens.
Collapse
Affiliation(s)
- Eric T Johnson
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - Rebecca Lyon
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Unit, Peoria, Illinois, United States of America
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Abdul Burhan Khan
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | | |
Collapse
|
4
|
Avasiloaiei DI, Calara M, Brezeanu PM, Murariu OC, Brezeanu C. On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses. Genes (Basel) 2023; 14:genes14050955. [PMID: 37239315 DOI: 10.3390/genes14050955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Lamiaceae is one of the largest botanical families, encompassing over 6000 species that include a variety of aromatic and medicinal spices. The current study is focused on three plants within this botanical family: basil (Ocimum basilicum L.), thyme (Thymus vulgaris L.), and summer savory (Satureja hortensis L.). These three species contain primary and secondary metabolites such as phenolic and flavonoid compounds, fatty acids, antioxidants, and essential oils and have traditionally been used for flavoring, food preservation, and medicinal purposes. The goal of this study is to provide an overview of the nutraceutical, therapeutic, antioxidant, and antibacterial key features of these three aromatics to explore new breeding challenges and opportunities for varietal development. In this context, a literature search has been performed to describe the phytochemical profile of both primary and secondary metabolites and their pharmacological uses, as well as to further explore accession availability in the medicine industry and also to emphasize their bioactive roles in plant ecology and biotic and abiotic stress adaptability. The aim of this review is to explore future perspectives on the development of new, highly valuable basil, summer savory, and thyme cultivars. The findings of the current review emphasize the importance of identifying the key compounds and genes involved in stress resistance that can also provide valuable insights for further improvement of these important medicinal plants.
Collapse
Affiliation(s)
| | - Mariana Calara
- Vegetable Research and Development Station, 600388 Bacău, Romania
| | | | - Otilia Cristina Murariu
- Department of Food Technology, Iasi University of Life Sciences (IULS), 700490 Iasi, Romania
| | - Creola Brezeanu
- Vegetable Research and Development Station, 600388 Bacău, Romania
| |
Collapse
|
5
|
Tör M, Wood T, Webb A, Göl D, McDowell JM. Recent developments in plant-downy mildew interactions. Semin Cell Dev Biol 2023; 148-149:42-50. [PMID: 36670035 DOI: 10.1016/j.semcdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.
Collapse
Affiliation(s)
- Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK.
| | | | | | - Deniz Göl
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061-0329, USA
| |
Collapse
|
6
|
Ben-Naim Y, Weitman M. Joint Action of Pb1 and Pb2 Provides Dominant Complementary Resistance Against New Races of Peronospora belbahrii (Basil Downy Mildew). PHYTOPATHOLOGY 2022; 112:595-607. [PMID: 34213959 DOI: 10.1094/phyto-02-21-0065-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sweet basil (Ocimum basilicum, 2n = 4x = 48) is susceptible to downy mildew caused by Peronospora belbahrii. The Pb1 gene exhibits complete resistance to the disease. However, Pb1 became prone to disease because of occurrence of new virulent races. Here, we show that Zambian accession PI 500950 (Ocimum americanum var. pilosum) is highly resistant to the new races. From an interspecies backcross between PI 500950 and the susceptible 'Sweet basil' we obtained, by embryo rescue, a population of 131 BC1F1 plants. This population segregated 73 resistant (58) and susceptible (1:1; P = 0.22) plants, suggesting that resistance is controlled by one incompletely dominant gene called Pb2. To determine whether allelic relationship exists between Pb1 and Pb2, we used two differential races: race 0, which is avirulent to both PI 500945 (Pb1) and PI 500950 (Pb2), and race 1, which is virulent to PI 500945 but avirulent to PI 500950. F1 plants obtained from '12-4-6' (BC6F3 derived from PI 500945) and '56' (BC3F3 derived from PI 500950) showed resistant superiority to both races through dominant complementary interaction. F2 plants segregated to race 0 as follows: 12:3:1 (immune/incomplete resistant/susceptible) as opposed to 9:3:4 to race 1, indicating that Pb1 and Pb2 are not alleles. Because joint action is contributed in F1 plants and in advanced [BC3F3(56) × BC6F3(12-4-6) F4] populations that carry both genes, it can be assumed that both accessions carry two unlinked genes but share a common signal transduction pathway, which leads to dominant complementation superiority of the resistance against different races of basil downy mildew.
Collapse
Affiliation(s)
- Yariv Ben-Naim
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Michal Weitman
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
7
|
Hasley JAR, Navet N, Tian M. CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance. PLoS One 2021; 16:e0253245. [PMID: 34111225 PMCID: PMC8191900 DOI: 10.1371/journal.pone.0253245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
Sweet basil (Ocimum basilicum) is an economically important allotetraploid (2n = 4x = 48) herb whose global production is threatened by downy mildew disease caused by the obligate biotrophic oomycete, Peronospora belbahrii. Generation of disease resistant cultivars by mutagenesis of susceptibility (S) genes via CRISPR/Cas9 is currently one of the most promising strategies to maintain favored traits while improving disease resistance. Previous studies have identified Arabidopsis DMR6 (Downy Mildew Resistance 6) as an S gene required for pathogenesis of the downy mildew-causing oomycete pathogen Hyaloperonospora arabidopsidis. In this study, a sweet basil homolog of DMR6, designated ObDMR6, was identified in the popular sweet basil cultivar Genoveser and found to exist with a high copy number in the genome with polymorphisms among the variants. Two CRISPR/Cas9 constructs expressing one or two single guide RNAs (sgRNAs) targeting the conserved regions of ObDMR6 variants were generated and used to transform Genoveser via Agrobacterium-mediated transformation. 56 T0 lines were generated, and mutations of ObDMR6 were detected by analyzing the Sanger sequencing chromatograms of an ObDMR6 fragment using the Interference of CRISPR Edits (ICE) software. Among 54 lines containing mutations in the targeted sites, 13 had an indel percentage greater than 96% suggesting a near-complete knockout (KO) of ObDMR6. Three representative transgene-free lines with near-complete KO of ObDMR6 determined by ICE were identified in the T1 segregating populations derived from three independent T0 lines. The mutations were further confirmed using amplicon deep sequencing. Disease assays conducted on T2 seedlings of the above T1 lines showed a reduction in production of sporangia by 61-68% compared to the wild-type plants and 69-93% reduction in relative pathogen biomass determined by quantitative PCR (qPCR). This study not only has generated transgene-free sweet basil varieties with improved downy mildew resistance, but also contributed to our understanding of the molecular interactions of sweet basil-P. belbahrii.
Collapse
Affiliation(s)
- Jeremieh Abram R. Hasley
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Natasha Navet
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
8
|
Gonda I, Faigenboim A, Adler C, Milavski R, Karp MJ, Shachter A, Ronen G, Baruch K, Chaimovitsh D, Dudai N. The genome sequence of tetraploid sweet basil, Ocimum basilicum L., provides tools for advanced genome editing and molecular breeding. DNA Res 2020; 27:6042144. [PMID: 33340318 PMCID: PMC7758295 DOI: 10.1093/dnares/dsaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Sweet basil, Ocimum basilicum L., is a well-known culinary herb grown worldwide, but its uses go beyond the kitchen to traditional medicine, cosmetics and gardening. To date, the lack of an available reference genome has limited the utilization of advanced molecular breeding methods. We present a draft version of the sweet basil genome of the cultivar ‘Perrie’, a fresh-cut Genovese-type basil. Genome sequencing showed basil to be a tetraploid organism with a genome size of 2.13 Gbp, assembled in 12,212 scaffolds, with > 90% of the assembly being composed of 107 scaffolds. About 76% of the genome is composed of repetitive elements, with the majority being long-terminal repeats. We constructed and annotated 62,067 protein-coding genes and determined their expression in different plant tissues. We analysed the currently known phenylpropanoid volatiles biosynthesis genes. We demonstrated the necessity of the reference genome for a comprehensive understanding of this important pathway in the context of tetraploidy and gene redundancy. A complete reference genome is essential to overcome this redundancy and to avoid off-targeting when designing a CRISPR: Cas9-based genome editing research. This work bears promise for developing fast and accurate breeding tools to provide better cultivars for farmers and improved products for consumers.
Collapse
Affiliation(s)
- Itay Gonda
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Adi Faigenboim
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Chen Adler
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Renana Milavski
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Merrie-Jean Karp
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Alona Shachter
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Gil Ronen
- NRGene Ltd, Park HaMada, Ness Ziona, Israel
| | | | - David Chaimovitsh
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| |
Collapse
|
9
|
McGrath MT. Efficacy of Conventional Fungicides for Downy Mildew in Field-Grown Sweet Basil in the United States. PLANT DISEASE 2020; 104:2967-2972. [PMID: 32830999 DOI: 10.1094/pdis-11-19-2382-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Application of fungicides has been the main management practice for Peronospora belbahrii, which is the most important pathogen of sweet basil in the United States. Six replicated experiments were conducted between 2010 and 2016 with field-grown basil of a susceptible cultivar exposed to naturally occurring wind-dispersed sporangiospores of P. belbahrii to evaluate conventional fungicides registered for basil downy mildew in the United States and in development for this use. This project revealed the importance for successful management of using a preventive fungicide application schedule, maintaining a 7-day application interval, and using application equipment designed to provide thorough spray coverage to plants (drop nozzles). Fungicide efficacy was assessed based on incidence of symptomatic leaves rather than disease severity, which is stringent but realistic because there is zero tolerance for disease on fresh-market herbs. Most fungicides were tested as the formulated product marketed in the United States. Oxathiapiprolin was tested as experimental formulations. Its trade name is Orondis. Overall best control was achieved in 2016. Excellent control (99% based on AUDPC values) was obtained with four fungicide programs with oxathiapiprolin, Revus, and ProPhyt, indicating this combination of chemistry was more important than specific timing for each fungicide. Ranman applied in alternation with Revus plus K-Phite was not quite as effective (89% control); this treatment was ineffective in 2015 when the 7-day spray interval was not maintained. Best treatment in 2015 was Quadris applied in alternation with Revus plus oxathiapiprolin for two of three Revus applications. Two different alternations of these fungicides also were effective. But Quadris alternated with Revus was ineffective. When tested singly, the most effective fungicides in 2013 (listed in order based on AUDPC values) were Zampro, Revus, oxathiapiprolin, and Ranman. ProPhyt was effective in 2013 but not in 2012, when another phosphorous acid fungicide, K-Phite, also was ineffective. Only oxathiapiprolin and Zampro were effective in the 2012 experiment; Revus and Ranman were ineffective. Presidio was ineffective both years. Based on the results from this study, Orondis is the most effective fungicide among those evaluated for managing basil downy mildew, and Zampro is second. Neither were labeled for this use on field-grown basil as of June 2020. Ranman applied in alternation with Revus plus K-Phite, a commonly recommended program of labeled fungicides, provided very good control.
Collapse
Affiliation(s)
- Margaret Tuttle McGrath
- Plant Pathology and Plant-Microbe Biology Section, SIPS, Cornell University, Long Island Horticultural Research and Extension Center, Riverhead, NY 11901
| |
Collapse
|
10
|
Navet N, Tian M. Efficient targeted mutagenesis in allotetraploid sweet basil by CRISPR/Cas9. PLANT DIRECT 2020; 4:e00233. [PMID: 32537560 PMCID: PMC7287412 DOI: 10.1002/pld3.233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 05/25/2023]
Abstract
Sweet basil (Ocimum basilicum) is an economically important herb and its global production is threatened by basil downy mildew caused by the obligate biotrophic oomycete Peronospora belbahrii. Effective tools are required for functional understanding of its genes involved in synthesis of valuable secondary metabolites in essential oil and disease resistance, and breeding for varieties with improved traits. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has revolutionized crop breeding and functional genomics. The applicability and efficacy of this genomic tool in the allotetraploid sweet basil were tested by editing a potential susceptibility (S) gene ObDMR1, the basil homolog of Arabidopsis DMR1 (Downy Mildew Resistant 1) whose mutations conferred nearly complete resistance against Arabidopsis downy mildew pathogen, Hyaloperonospora arabidopsidis. Two single guide RNAs targeting two different sites of the ObDMR1 coding sequence were designed. A total of 56 transgenic lines were obtained via Agrobacterium-mediated stable transformation. Mutational analysis of 54 T0 transgenic lines identified 92.6% lines carrying mutations at target 1 site, while a very low mutation frequency was detected at target 2 site. Deep sequencing of six T0 lines revealed various mutations at target 1 site, with a complete knockout of all alleles in one line. ObDMR1 homozygous mutant plants with some being transgene free were identified from T1 segregating populations. T2 homozygous mutant plants with 1-bp frameshift mutations exhibited a dwarf phenotype at young seedling stage. In summary, this study established a highly efficient CRISPR/Cas9-mediated gene editing system for targeted mutagenesis in sweet basil. This system has the capacity to generate complete knockout mutants in this allotetraploid species at the first generation of transgenic plants and transgene-free homozygous mutants in the second generation. The establishment of this system is expected to accelerate basil functional genomics and breeding.
Collapse
Affiliation(s)
- Natasha Navet
- Department of Plant and Environmental Protection SciencesUniversity of Hawaii at ManoaHonoluluHIUSA
| | - Miaoying Tian
- Department of Plant and Environmental Protection SciencesUniversity of Hawaii at ManoaHonoluluHIUSA
| |
Collapse
|
11
|
Zhang G, Thompson A, Schisler D, Johnson ET. Characterization of the infection process by Peronospora belbahrii on basil by scanning electron microscopy. Heliyon 2019; 5:e01117. [PMID: 30766928 PMCID: PMC6360407 DOI: 10.1016/j.heliyon.2019.e01117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022] Open
Abstract
Basil downy mildew caused by Peronospora belbahrii is a disease of sweet basil (Ocimum basilicum) production worldwide. In this study, sweet basil was grown in plant growth chambers and inoculated with sporangia of P. belbahrii harvested from previously infected plants. Plants were placed in closed, clear plastic bags and leaves harvested over time and observed using scanning electron microscopy. In most cases, sporangia germinated myceliogenically on abaxial and adaxial leaf surfaces as early as three days after inoculation. Germ tubes and the tips of hyphae ramifying on leaf surfaces directly penetrated basil leaves to initiate the infection process. Hyphal growth was not observed to gain entrance to the interior of leaves through stomata, though growth over these openings was observed. Most frequently, seven days after inoculation, one or more sporangiophores grew through stomata to produce new sporangia on both the abaxial and adaxial surfaces of leaves. Macroscopic signs of infection were visible on both sides of leaves approximately ten days after inoculation under the conditions of this study. These results contribute to a better understanding of the infection process and disease onset of P. belbahrii and should help in the development of more effective measures for reducing basil downy mildew.
Collapse
Affiliation(s)
| | | | | | - Eric T. Johnson
- Crop Bioprotection Research Unit, USDA ARS, Peoria, IL, 61604, USA
| |
Collapse
|
12
|
Rastogi S, Shasany AK. Ocimum Genome Sequencing—A Futuristic Therapeutic Mine. THE OCIMUM GENOME 2018. [PMCID: PMC7124093 DOI: 10.1007/978-3-319-97430-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Next-generation sequencing (NGS) platforms from the past decade are in the continuous efforts of changing the impact of sequencing on our current knowledge about plant genes, genomes, and their regulation. Holy basil (Ocimum tenuiflorum L. or sanctum L.) genome sequencing has also paved the path for deeper exploration of the medicinal properties of this beneficial herb making it a true ‘elixir of life.’ The draft genome sequence of the holy basil has not only opened the avenues for the drug discovery but has also widened the prospects of the molecular breeding for development of new improved plant varieties.
Collapse
|