1
|
Li D, Guo D, Liu F, Ren Y, Wang D, Zhou JJ, Song B, Chen Z. Association of haloacid dehydrogenase and alcohol dehydrogenase with vegetative growth, virulence and stress tolerance during tea plant infection by Didymella segeticola. Int J Biol Macromol 2025; 286:138388. [PMID: 39643170 DOI: 10.1016/j.ijbiomac.2024.138388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Tea leaf spot, caused by the fungus Didymella segeticola, occurs in the high-mountain tea plantations of Southwest China. Due to a limited understanding of the disease's epidemiology and the lack of comprehensive control measures, it has a significant negative impact on tea yield and quality. In this study, we revealed that D. segeticola infection begins when conidia germinate to form a germ tube on the leaf surface. The fungus then grows in the intercellular spaces of the leaf epidermal cells, invading tea tissue and causing necrotic lesions. This infection leads to significant alterations in the cell walls of spongy and palisade mesophyll cells, severely damaging chloroplasts. We employed transcriptomic and metabolomic analyses based on an in vitro infection model using matcha powder to uncover two key genes of D. segeticola: DsHAD (encoding holoacid dehydrogenase) and DsADH (encoding alcohol dehydrogenase). These genes are associated with conidiation, virulence, and sensitivity to oxidative stress. DsHAD regulates the virulence of D. segeticola by modulating glutamate homeostasis. Our results elucidate the infection strategy of D. segeticola on tea leaves and provide valuable data for future research on control measures for tea leaf spot.
Collapse
Affiliation(s)
- Dongxue Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Di Guo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Fenghua Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yafeng Ren
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, China
| | - Jing-Jiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Baoan Song
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Guo D, Li D, Liu F, Ma Y, Zhou J, Sheth S, Song B, Chen Z. LncRNA81246 regulates resistance against tea leaf spot by interrupting the miR164d-mediated degradation of NAC1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17173. [PMID: 39590921 PMCID: PMC11711933 DOI: 10.1111/tpj.17173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Non-coding RNAs play crucial roles in plant responses to viral stresses. However, their molecular mechanisms in tea leaf spot responses remain unclear. In this study, using Camellia sinensis, we identified lncRNA81246 as a long non-coding RNA that localizes to both the nucleus and cytoplasm. It functions as a competitive endogenous RNA, thereby disrupting CsNAC1 (encoding NAC domain-containing protein 1) degradation mediated by miR164d. Silencing lncRNA81246 increased the resistance of tea plants to presistanceathogens, whereas transient lncRNA81246-overexpression plants showed decreased resistance to pathogens. Co-expression assays in Nicotiana benthamiana revealed that lncRNA81246 affects the miR164d-CsNAC1 regulatory module. Transient miR164d-overexpression and silencing assays demonstrated its positive regulation of tea plant resistance. Specifically, silencing its target, CsNAC1, enhanced disease resistance, whereas transient overexpression reduced plant resistance. Yeast one-hybrid, dual-luciferase, and RT-qPCR assay results suggested that CsNAC1 alters the expression of CsEXLB1, whereas AsODN and tobacco transient overexpression assays showed that CsEXLB1 negatively regulated tea plant resistance. Thus, our research demonstrated that lncRNA81246 acts as a mediator to interfere with the miR164d-CsNAC1 regulatory module involved in the disease resistance of tea plants.
Collapse
Affiliation(s)
- Di Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
- College of Tea ScienceGuizhou UniversityGuiyangGuizhou550025China
| | - Dongxue Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Fenghua Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Yue Ma
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
- College of AgricultureGuizhou UniversityGuiyangGuizhou550025China
| | - Jing‐Jiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| | - Sujitraj Sheth
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| | - Zhuo Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangGuizhou550025China
| |
Collapse
|
3
|
Zhang Y, Tu Y, Chen Y, Fang J, Chen F, Liu L, Zhang X, Wang Y, Lv W. Quantification of the fungal pathogen Didymella segeticola in Camellia sinensis using a DNA-based qRT-PCR assay. PLANT METHODS 2024; 20:157. [PMID: 39380031 PMCID: PMC11462658 DOI: 10.1186/s13007-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
The fungal pathogen Didymella segeticola causes leaf spot and leaf blight on tea plant (Camellia sinensis), leading to production losses and affecting tea quality and flavor. Accurate detection and quantification of D. segeticola growth in tea plant leaves are crucial for diagnosing disease severity or evaluating host resistance. In this study, we monitored disease progression and D. segeticola development in tea plant leaves inoculated with a GFP-expressing strain. By contrast, a DNA-based qRT-PCR analysis was employed for a more convenient and maneuverable detection of D. segeticola growth in tea leaves. This method was based on the comparison of D. segeticola-specific DNA encoding a Cys2His2-zinc-finger protein (NCBI accession number: OR987684) in relation to tea plant Cs18S rDNA1. Unlike ITS and TUB2 sequences, this specific DNA was only amplified in D. segeticola isolates, not in other tea plant pathogens. This assay is also applicable for detecting D. segeticola during interactions with various tea cultivars. Among the five cultivars tested, 'Zhongcha102' (ZC102) and 'Fuding-dabaicha' (FDDB) were more susceptible to D. segeticola compared with 'Longjing43' (LJ43), 'Zhongcha108' (ZC108), and 'Zhongcha302' (ZC302). Different D. segeticola isolates also exhibited varying levels of aggressiveness towards LJ43. In conclusion, the DNA-based qRT-PCR analysis is highly sensitive, convenient, and effective method for quantifying D. segeticola growth in tea plant. This technique can be used to diagnose the severity of tea leaf spot and blight or to evaluate tea plant resistance to this pathogen.
Collapse
Affiliation(s)
- You Zhang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yijia Chen
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Jialu Fang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Fan'anni Chen
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Lian Liu
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoman Zhang
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
4
|
Tu Y, Wang Y, Jiang H, Ren H, Wang X, Lv W. A Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Didymella segeticola Causing Tea Leaf Spot. J Fungi (Basel) 2024; 10:467. [PMID: 39057352 PMCID: PMC11278140 DOI: 10.3390/jof10070467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Tea leaf spot caused by Didymella segeticola is an important disease that threatens the healthy growth of tea plants (Camellia sinensis) and results in reductions in the productivity and quality of tea leaves. Early diagnosis of the disease is particularly important for managing the infection. Loop-mediated isothermal amplification (LAMP) assay is an efficient diagnostic technique with the advantages of simplicity, specificity, and sensitivity. In this study, we developed a rapid, visual, and high-sensitivity LAMP assay for D. segeticola detection based on sequence-characterized amplified regions. Two pairs of amplification primers (external primers F3 and B3 and internal primers FIP and BIP) were designed based on a specific sequence in D. segeticola (NCBI accession number: OR987684). Compared to common pathogens of other genera in tea plants and other species in the Didymella genus (Didymella coffeae-arabicae, Didymella pomorum, and Didymella sinensis), the LAMP method is specific for detecting the species D. segeticola. The assay was able to detect D. segeticola at a minimal concentration of 1 fg/μL genomic DNA at an optimal reaction temperature of 65 °C for 60 min. When healthy leaves were inoculated with D. segeticola in the laboratory, the LAMP method successfully detected D. segeticola in diseased tea leaves at 72 h post inoculation. The LAMP assays were negative when the DNA samples were extracted from healthy leaves. Leaf tissues with necrotic lesions from 18 germplasms of tea plants tested positive for the pathogen by the LAMP assay. In summary, this study established a specific, sensitive, and simple LAMP method to detect D. segeticola, which provides reliable technical support for estimating disease prevalence and facilitates sustainable management of tea leaf spot.
Collapse
Affiliation(s)
- Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
| | - Hengze Ren
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
| | - Xinchao Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China; (Y.T.); (Y.W.); (H.J.); (H.R.)
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
5
|
Lv W, Jiang H, Cao Q, Ren H, Wang X, Wang Y. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1356-1376. [PMID: 38059663 DOI: 10.1111/tpj.16567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Qinghai Cao
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Henze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| |
Collapse
|
6
|
He S, Deng X, Han Y, Gong Z, Wang J, Tao X, Tong H, Chen Y. Metabolites and metagenomic analysis reveals the quality of Pu-erh "tea head". Food Chem 2023; 429:136992. [PMID: 37516054 DOI: 10.1016/j.foodchem.2023.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Tea head, a derivative product of Pu-erh tea, are tight tea lumps formed during pile-fermentation. The aim of this study was to reveal the differences of quality-related metabolites and microbial communities between ripened Pu-erh tea (PE-21) and tea heads (CT-21). Compared with PE-21, CT-21 showed a more mellow and smooth taste with slight bitterness and astringency, and can withstand multiple infusions. Metabolites analysis indicated CT-21 had more abundant water-soluble substances (47.39%) and showed significant differences with PE-21 in the main compositions of amino acids, catechins and saccharides which contributed to the viscosity of tea liquor, mellow taste and the tight tea lumps formation. Microbial communities and COG annotation analysis revealed CT-21 had lower abundance of Bacteria (84.05%), and higher abundance of Eukaryota (15.10%), carbohydrate transport and metabolism (8.28%) and glycoside hydrolases (37.36%) compared with PE-21. The different microbial communities may cause metabolites changes, forming distinct flavor of Pu-erh.
Collapse
Affiliation(s)
- Shiqiang He
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhengli Gong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Jian Wang
- Ice Island Mountain Tea Company, Mengku Town, Shuangjiang Autonomous County, Yunnan Province, China
| | - Xiaoqi Tao
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Yan J, Miao Y, Zhou J, Huang R, Dai H, Liu M, Lin Y, Chen Y, Ho CT, Tong H, Meng Q. Sensory-directed isolation and identification of an intense salicin-like bitter compound in infected teas with bird's eye spot disease. Food Res Int 2023; 173:113272. [PMID: 37803583 DOI: 10.1016/j.foodres.2023.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Teas infected with bird's eye spot disease generally exhibited a lingering and long-lasting, salicin-like bitter taste, which was unpalatable to consumers. Sensory-directed isolation processes have been performed in this study to investigate the salicin-like bitter compounds in infected teas. Results showed that infected teas were extracted using a 70% methanol aqueous solution to produce methanol extract, which was then further separated by sequential solvent extraction (SSE) to obtain dichloromethane extract, which contained the salicin-like bitter compounds. The dichloromethane extract was then isolated by flash chromatography to produce two salicin-like bitter fractions, eluted using 60% and 65% methanol aqueous solution. Finally, these two salicin-like bitter fractions were analyzed by RP-HPLC using 60-68% and 70-75% methanol aqueous solution, respectively, affording the location of the salicin-like bitter compounds in RP-HPLC chromatograms. Moreover, a new ursane-type triterpenoid, camellisin A methyl ester, was identified from infected teas. This study has provided preliminary isolation methods of salicin-like bitter compounds from the infected teas, which were essential to designing targeted debittering strategies for infected teas and improving the quality of the finished tea and the effective utilization of fresh tea leaves.
Collapse
Affiliation(s)
- Jingna Yan
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yiwen Miao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jingyun Zhou
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Huang
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Hongwei Dai
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Ming Liu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yunzhi Lin
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yingjuan Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Huarong Tong
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Qing Meng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
8
|
Qu H, Long Y, Wang X, Wang K, Chen L, Yang Y, Chen L. Diversity and Abundance of Bacterial and Fungal Communities Inhabiting Camellia sinensis Leaf, Rhizospheric Soil, and Gut of Agriophara rhombata. Microorganisms 2023; 11:2188. [PMID: 37764032 PMCID: PMC10536862 DOI: 10.3390/microorganisms11092188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Agriophara rhombata is a tea leaf moth that is considered one of the most destructive pests of Camellia sinensis (tea plant). Several recent studies have shown that many insects acquire part of the microbiome from their host and soil, but the pattern and diversity of their microbiome have not been clearly demonstrated. The present study aimed to investigate the bacterial and fungal communities present in the rhizospheric soil and leaf of tea plant compared to the gut of tea moth at different developmental stages (larvae, pupae, adult female and male) using Illumina MiSeq technology. Alpha diversity (Shannon index) showed higher (p < 0.05) bacterial and fungal diversity in soil samples than in leaf and tea moth larvae, pupae, and adult gut samples. However, during different developmental stages of tea moth, bacterial and fungal diversity did not differ (p > 0.05) between larvae, pupae, female, and male guts. Beta diversity also revealed more distinct bacterial and fungal communities in soil and leaf samples compared with tea moth gut samples, which had a more similar microbiome. Furthermore, Proteobacteria, Firmicutes, and Tenericutes were detected as the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most abundant fungal phyla among all groups, but their relative abundance was comparatively higher (p < 0.05) in soil and leaf samples compared to tea moth gut samples. Similarly, Klebsiella, Streptophyta, and Enterococcus were the top three bacterial genera, while Candida, Aureobasidium, and Strelitziana were the top three fungal genera, and their relative abundance varied significantly (p < 0.05) among all groups. The KEGG analysis also revealed significantly higher (p < 0.5) enrichment of the functional pathways of bacterial communities in soil and leaf samples than in tea moth gut samples. Our study concluded that the bacterial and fungal communities of soil and tea leaves were more diverse and were significantly different from the tea moth gut microbiome at different developmental stages. Our findings contribute to our understanding of the gut microbiota of the tea moth and its potential application in the development of pest management techniques.
Collapse
Affiliation(s)
- Hao Qu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Yaqin Long
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Xuesong Wang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Kaibo Wang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Long Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230000, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| |
Collapse
|