1
|
Li C, Gao X, Huo Y, Asseri TAY, Tian X, Luo K. Evaluation of biocontrol efficacy of rhizosphere Pseudomonas aeruginosa for management of Phytophthora capsici of pepper. PLoS One 2024; 19:e0309705. [PMID: 39302985 DOI: 10.1371/journal.pone.0309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
A significant population of biocontrol microorganisms resides in the rhizosphere of plants, which can be utilized for plant disease control. To explore the potential of rhizosphere soil microorganisms as biocontrol agents against pepper blight, a bacterial strain Pa608 was screened from rhizosphere soil of pepper and identified as Pseudomonas aeruginosa through morphological characteristics and 16S rRNA sequences. The result showed that the strain Pa608 demonstrated antagonistic activity against Phytophthora capsici, effectively suppressing mycelial growth. The potted experiment showed a high control efficacy of 88.0%. Remarkably, the strain Pa608 also reduced the disease index of pepper blight in the field, resulting in control efficiencies of 74.9%. Moreover, the strain Pa608 also enhanced pepper plant height and yield. GC-MS analysis revealed the production of numerous secondary metabolites by the strain Pa608, with α-pinene displaying potent anti-oomycete activity by inhibiting P. capsici growth. In conclusion, P. aeruginosa Pa608 exhibited high biocontrol activity against P. capsici and can be utilized for the management of P. capsici in pepper cultivation.
Collapse
Affiliation(s)
- Chenzhen Li
- School of Aine Arts and Design, Huaihua University, Huaihua, Hunan, China
| | - Xianghui Gao
- Department of Plant Quarantine, Forest Pest and Disease Management & Quarantine Station of Linxia Gansu Province, Linxia, Ganshu, China
- College of Plant Protection, Hunan Agricultural University, Changsha, Huan, China
| | - Yunfeng Huo
- Henan Institute of Science and Technology, School of Resource and Environment, Xinxiang, Henan, China
| | - Tahani A Y Asseri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Xueliang Tian
- Henan Institute of Science and Technology, School of Resource and Environment, Xinxiang, Henan, China
| | - Kun Luo
- College of Plant Protection, Hunan Agricultural University, Changsha, Huan, China
| |
Collapse
|
2
|
Spooren J, van Bentum S, Thomashow LS, Pieterse CMJ, Weller DM, Berendsen RL. Plant-Driven Assembly of Disease-Suppressive Soil Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:1-30. [PMID: 38857541 DOI: 10.1146/annurev-phyto-021622-100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.
Collapse
Affiliation(s)
- Jelle Spooren
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Sietske van Bentum
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Khalifa A, Alsowayeh N. Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium Priestia filamentosa Strain AZC66 Obtained from Zygophyllum coccineum Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2023; 12:1944. [PMID: 37653860 PMCID: PMC10222010 DOI: 10.3390/plants12101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to isolate, screen the plant-growth-enhancing features, and explore the whole-genome sequence of AZC66 isolated from the rhizosphere of Zygophyllum coccineum and determine its biostimulating effects on the growth of cowpea under greenhouse conditions. Salkowski reagent was used to measure AZC66's indole acetic acid production. AZC66's inorganic phosphate solubility on Pikovskaya agar was evaluated using tricalcium phosphate. The results indicated the ability of AZC66 to fix nitrogen, produce IAA (66.33 ± 0.44 μg mL-1), solubilize inorganic phosphate, and exhibit the activity of ACC deaminase (278.40 ± 21 mol -ketobutyrate mg-1 h-1). Cowpea's root and shoot dry weights were also significantly increased after in vitro inoculation with AZC66. The identity of AZC66 was confirmed as Priestia filamentosa, and 4840 genes were predicted in its genome. The gene sequences were compared against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that the top three pathways wherein the maximum number of genes are involved are signaling and cellular processes, genetic information processing, and carbohydrate metabolism. The genome sequencing of the strain AZC66 revealed a number of genes implicated in plant biostimulation activities such as nitrogen fixation (nifU), phytohormone synthesis (trpAB genes), phosphate solubilization (PhbCEF, pstABCS, and phoU), and siderophore formation (FbpA, feoAB, and fetB). The AZC66 genome contained numerous genes involved in nitrogen metabolism, nitrogen regulation, and the nitrate reduction pathway. The phenazine biosynthetic gene in AZC66 demonstrated biocontrol and soil survival properties. The trehalose synthesis genes in AZC66 may help plants resist osmotic and salt stress. The discovery of glycine betaine, cold shock, and heat shock protein genes demonstrated that AZC66 could withstand harsh conditions. AZC66 might be used to create robust, sustainable biological fertilizers for future agricultural use in Saudi Arabia. Furthermore, the predicted adaptable metabolic pathways might serve as the basis for potential biotechnological applications in agriculture and industry.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noorah Alsowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| |
Collapse
|
4
|
Jirakkakul J, Khoiri AN, Duangfoo T, Dulsawat S, Sutheeworapong S, Petsong K, Wattanachaisaereekul S, Paenkaew P, Tachaleat A, Cheevadhanarak S, Prommeenate P. Insights into the genome of Methylobacterium sp. NMS14P, a novel bacterium for growth promotion of maize, chili, and sugarcane. PLoS One 2023; 18:e0281505. [PMID: 36749783 PMCID: PMC9904496 DOI: 10.1371/journal.pone.0281505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.
Collapse
Affiliation(s)
- Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Thanawat Duangfoo
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kantiya Petsong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Prasobsook Paenkaew
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
5
|
Shen Z, Thomashow LS, Ou Y, Tao C, Wang J, Xiong W, Liu H, Li R, Shen Q, Kowalchuk GA. Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt. Research (Wash D C) 2022; 2022:9818073. [PMID: 36204250 PMCID: PMC9513836 DOI: 10.34133/2022/9818073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Microbial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems. To disentangle the mechanisms underlying suppression of banana Panama disease caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4), we used amplicon sequencing to analyze the composition of the soil microbiome from six separate locations, each comprised of paired orchards, one potentially suppressive and one conducive to the disease. Functional potentials of the microbiomes from one site were further examined by shotgun metagenomic sequencing after soil suppressiveness was confirmed by greenhouse experiments. Potential key antagonists involved in disease suppression were also isolated, and their activities were validated by a combination of microcosm and pot experiments. We found that potentially suppressive soils shared a common core community with relatively low levels of F. oxysporum and relatively high proportions of Myxococcales, Pseudomonadales, and Xanthomonadales, with five genera, Anaeromyxobacter, Kofleria, Plesiocystis, Pseudomonas, and Rhodanobacter being significantly enriched. Further, Pseudomonas was identified as a potential key taxon linked to pathogen suppression. Metagenomic analysis showed that, compared to the conducive soil, the microbiome in the disease suppressive soil displayed a significantly greater incidence of genes related to quorum sensing, biofilm formation, and synthesis of antimicrobial compounds potentially active against Foc4. We also recovered a higher frequency of antagonistic Pseudomonas isolates from disease suppressive experimental field sites, and their protective effects against banana Fusarium wilt disease were demonstrated under greenhouse conditions. Despite differences in location and soil conditions, separately located suppressive soils shared common characteristics, including enrichment of Myxococcales, Pseudomonadales, and Xanthomonadales, and enrichment of specific Pseudomonas populations with antagonistic activity against the pathogen. Moreover, changes in functional capacity toward an increase in quorum sensing, biofilm formation, and antimicrobial compound synthesizing involve in disease suppression.
Collapse
Affiliation(s)
- Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Linda S. Thomashow
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, USA
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Jiabao Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - George A. Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, Netherlands
| |
Collapse
|
6
|
Morohoshi T, Yabe N, Yaguchi N, Xie X, Someya N. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium. J Biosci Bioeng 2022; 133:541-546. [PMID: 35365429 DOI: 10.1016/j.jbiosc.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Quorum sensing is a population density-dependent gene regulation mechanism. N-Acyl-l-homoserine lactone (AHL) has been identified as a signal compound in quorum sensing in gram-negative bacteria. Phenazine derivatives are bacterial secondary metabolites known for their broad-spectrum antifungal activity. Pseudomonas chlororaphis has been demonstrated to be a biocontrol strain, and most of its species can produce phenazine derivatives under AHL-mediated quorum sensing. Although P. chlororaphis is divided into four subspecies, the relationship between phenazine production and quorum sensing has not been investigated in two of the subspecies, P. chlororaphis subsp. chlororaphis and piscium. Two luxI/luxR homolog gene sets, phzI and phzR and csaI and csaR, were found in the complete genome sequences of the type strains of P. chlororaphis subsp. chlororaphis JCM 2778T and P. chlororaphis subsp. piscium DSM 21509T. Two major AHLs, N-(3-hydroxyhexanoyl)-l-homoserine lactone and N-(3-hydroxyoctanoyl)-l-homoserine lactone, were detected in JCM 2778 and DSM 21509 samples. PhzI synthesized all AHLs; however, CsaI could not perform AHL biosynthesis in JCM 2778 and DSM 21509. In both strains, disruption of the phzI caused complete disappearance of phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN) production; however, disruption of csaI did not induce significant changes in PCA and PCN production. Phenazine derivatives produced by JCM 2778 and DSM 21509 under quorum sensing are crucial for the control of the plant pathogenic fungi, Rhizoctonia solani, Fusarium graminearum, and Fusarium nirenbergiae. These results demonstrated that PhzI/PhzR quorum-sensing system play an important role in production of phenazine derivatives and biocontrol activity.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | - Naoka Yabe
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Naoya Yaguchi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Nobutaka Someya
- Institute for Plant Protection, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| |
Collapse
|
7
|
Bhattacharyya A, Pablo CHD, Mavrodi OV, Weller DM, Thomashow LS, Mavrodi DV. Rhizosphere plant-microbe interactions under water stress. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:65-113. [PMID: 34140134 DOI: 10.1016/bs.aambs.2021.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Climate change, with its extreme temperature, weather and precipitation patterns, is a major global concern of dryland farmers, who currently meet the challenges of climate change agronomically and with growth of drought-tolerant crops. Plants themselves compensate for water stress by modifying aerial surfaces to control transpiration and altering root hydraulic conductance to increase water uptake. These responses are complemented by metabolic changes involving phytohormone network-mediated activation of stress response pathways, resulting in decreased photosynthetic activity and the accumulation of metabolites to maintain osmotic and redox homeostasis. Phylogenetically diverse microbial communities sustained by plants contribute to host drought tolerance by modulating phytohormone levels in the rhizosphere and producing water-sequestering biofilms. Drylands of the Inland Pacific Northwest, USA, illustrate the interdependence of dryland crops and their associated microbiota. Indigenous Pseudomonas spp. selected there by long-term wheat monoculture suppress root diseases via the production of antibiotics, with soil moisture a critical determinant of the bacterial distribution, dynamics and activity. Those pseudomonads producing phenazine antibiotics on wheat had more abundant rhizosphere biofilms and provided improved tolerance to drought, suggesting a role of the antibiotic in alleviation of drought stress. The transcriptome and metabolome studies suggest the importance of wheat root exudate-derived osmoprotectants for the adaptation of these pseudomonads to the rhizosphere lifestyle and support the idea that the exchange of metabolites between plant roots and microorganisms profoundly affects and shapes the belowground plant microbiome under water stress.
Collapse
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Clint H D Pablo
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David M Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda S Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
8
|
Li J, Hu M, Xue Y, Chen X, Lu G, Zhang L, Zhou J. Screening, Identification and Efficacy Evaluation of Antagonistic Bacteria for Biocontrol of Soft Rot Disease Caused by Dickeya zeae. Microorganisms 2020; 8:microorganisms8050697. [PMID: 32397545 PMCID: PMC7285164 DOI: 10.3390/microorganisms8050697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Dickeya zeae is the causal agent of bacterial soft rot disease, with a wide range of hosts all over the world. At present, chemical agents, especially agricultural antibiotics, are commonly used in the prevention and control of bacterial soft rot, causing the emergence of resistant pathogens and therefore increasing the difficulty of disease prevention and control. This study aims to provide a safer and more effective biocontrol method for soft rot disease caused by D. zeae. The spot-on-lawn assay was used to screen antagonistic bacteria, and three strains including SC3, SC11 and 3-10 revealed strong antagonistic effects and were identified as Pseudomonas fluorescens, P. parafulva and Bacillus velezensis, respectively, using multi-locus sequence analysis (MLSA) based on the sequences of 16S rRNA and other housekeeping genes. In vitro antimicrobial activity showed that two Pseudomonas strains SC3 and SC11 were only antagonistic to some pathogenic bacteria, while strain 3-10 had broad-spectrum antimicrobial activity on both pathogenic bacteria and fungi. Evaluation of control efficacy in greenhouse trials showed that they all restrained the occurrence and development of soft rot disease caused by D. zeae MS2 or EC1. Among them, strain SC3 had the most impressive biocontrol efficacy on alleviating the soft rot symptoms on both monocotyledonous and dicotyledonous hosts, and strain 3-10 additionally reduced the occurrence of banana wilt disease caused by Fusarium oxysporum f. sp. cubensis. This is the first report of P. fluorescens, P. parafulva and B. velezensis as potential bio-reagents on controlling soft rot disease caused by D. zeae.
Collapse
Affiliation(s)
- Jieling Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Xia Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Lianhui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
- Correspondence:
| |
Collapse
|
9
|
Yue SJ, Huang P, Li S, Jan M, Hu HB, Wang W, Zhang XH. Enhanced Production of 2-Hydroxyphenazine from Glycerol by a Two-Stage Fermentation Strategy in Pseudomonas chlororaphis GP72AN. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:561-566. [PMID: 31840510 DOI: 10.1021/acs.jafc.9b05033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2-Hydroxyphenazine (2-OH-PHZ) is an effective biocontrol antibiotic secreted by Pseudomonas chlororaphis GP72AN and is transformed from phenazine-1-carboxylic acid (PCA). PCA is the main component of the recently registered biopesticide "Shenqinmycin". Previous research showed that 2-OH-PHZ was better in controlling wheat take-all disease than PCA; however, 2-OH-PHZ production was low under natural conditions. Herein, we confirmed that PCA induced reactive oxygen species in its host P. chlororaphis GP72AN and that the addition of DTT improved PCA production by 1.8-fold, whereas the supplementation of K3[Fe(CN)6] and H2O2 increased the conversion rate of PCA to 2-OH-PHZ. Finally, a two-stage fermentation strategy combining the addition of DTT at 12 h and H2O2 at 24 h enhanced 2-OH-PHZ production. Taken together, the two-stage fermentation strategy was designed to enhance 2-OH-PHZ production for the first time, and it provided a valuable reference for the fermentation of other antibiotics.
Collapse
|
10
|
Biessy A, Novinscak A, Blom J, Léger G, Thomashow LS, Cazorla FM, Josic D, Filion M. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp. Environ Microbiol 2018; 21:437-455. [PMID: 30421490 DOI: 10.1111/1462-2920.14476] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence.
Collapse
Affiliation(s)
- Adrien Biessy
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Geneviève Léger
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Linda S Thomashow
- United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Dragana Josic
- Department of Microbiology, Institute of Soil Science, Belgrade, Serbia
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
11
|
Pan X, Wu J, Xu S, Duan T, Duan Y, Wang J, Zhang F, Zhou M. Contribution of OxyR Towards Differential Sensitivity to Antioxidants in Xanthomonas oryzae pathovars oryzae and oryzicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1244-1256. [PMID: 29905495 DOI: 10.1094/mpmi-03-18-0074-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OxyR and SoxR are two transcriptional regulators in response to oxidative stress in most bacteria, and SoxR has been reported to be activated by the endogenous redox-cycling compound phenazine in phenazine-producing organisms. However, which transcriptional regulator is activated in pathogens treated with the antibiotic phenazine-1-carboxylic acid (PCA) has not been determined. In this study, we found that PCA treatment activated OxyR rather than SoxR in the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. We also found that X. oryzae pv. oryzae was much more sensitive to PCA and H2O2 and had a defective antioxidant system (i.e., less of total antioxidant capacity and total catalase activity than X. oryzae pv. oryzicola, although X. oryzae pvs. oryzae and oryzicola are very closely related). Based on KEGG sequences, OxyR differs in 10 amino acids in X. oryzae pv. oryzae versus X. oryzae pv. oryzicola. By exchanging OxyR between X. oryzae pvs. oryzae and oryzicola, we elucidated that OxyR contributed to the differences in antioxidant capacity, total catalase activity, and sensitivity to PCA and H2O2. We also found that OxyR affected X. oryzae pvs. oryzae and oryzicola growth in a nutrient-poor medium, virulence on host plants (rice), and the hypersensitive response on nonhost plants (Nicotiana benthamiana). Thus, OxyR is a critical regulator that relates to the differences in antioxidative stress between X. oryzae pvs. oryzae and oryzicola and contributes to the differences in survival of them against oxidative stress.
Collapse
Affiliation(s)
- Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Zhang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Biessy A, Filion M. Phenazines in plant-beneficialPseudomonasspp.: biosynthesis, regulation, function and genomics. Environ Microbiol 2018; 20:3905-3917. [DOI: 10.1111/1462-2920.14395] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Adrien Biessy
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| | - Martin Filion
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| |
Collapse
|
13
|
Zhang B, Wang Y, Miao J, Lu Y, Lu R, Sun X, Luo W, Chi X, Feng Z, Ge Y. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05. J Basic Microbiol 2018; 58:793-805. [PMID: 29995319 DOI: 10.1002/jobm.201800206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 11/09/2022]
Abstract
In previous studies with Pseudomonas chlororaphis G05, two operons (phzABCDEFG and prnABCD) were confirmed to respectively encode enzymes for biosynthesis of phenazine-1-carboxylic acid and pyrrolnitrin that mainly contributed to suppression of some fungal phytopathogens. Although some regulators were identified to govern their expression, it is not known how two operons coordinately interact. By constructing the phz- or/and prn- deletion mutants, we found that in comparison with the wild-type strain G05, phenazine-1-carboxylic acid production in the mutant G05Δprn obviously decreased in GA broth in the absence of prn, and pyrrolnitrin production in the mutant G05Δphz remarkably declined in the absence of phz. By generating the phzA and prnA transcriptional and translational fusions with a truncated lacZ on shuttle vector or on the chromosome, we found that expression of the phz or prn operon was correspondingly increased in the presence of the prn or phz operon at the post-transcriptional level, not at the transcriptional level. These results indicated that the presence of one operon would promote the expression of the other one operon between the phz and prn. This reciprocal enhancement would keep the strain G05 producing more different antifungal compounds coordinately and living better with growth suppression of other microorganisms.
Collapse
Affiliation(s)
- Baoshen Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Jing Miao
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Ruiyang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoqiang Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Wangtai Luo
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
14
|
Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 2018; 215:55-64. [PMID: 30172309 DOI: 10.1016/j.micres.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/16/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022]
Abstract
Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) disease in cereal crops worldwide. Infection with this fungal phytopathogen can regularly cause severe yield and quality losses and mycotoxin contamination in grains. In previous other studies, one research group reported that pyrrolnitrin had an ability to suppress of mycelial growth of F. graminearum. Other groups revealed that phenazine-1-carboxamide, a derivative of phenazine-1-carboxylic acid, could also inhibit the growth of F. graminearum and showed great potentials in the bioprotection of crops from FHB disease. In our recent work with Pseudomonas chlororaphis strain G05, however, we found that although the phz operon (phenazine biosynthetic gene cluster) was knocked out, the phenazine-deficient mutant G05Δphz still exhibited effective inhibition of the mycelial growth of some fungal phytopathogens in pathogen inhibition assay, especially including F. graminearum, Colletotrichum gloeosporioides, Botrytis cinerea. With our further investigations, including deletion and complementation of the prn operon (pyrrolnitrin biosynthetic gene cluster), purification and identification of fungal compounds, we first verified that not phenazines but pyrrolnitrin biosynthesized in P. chlororaphis G05 plays an essential role in growth suppression of F. graminearum and the bioprotection of cereal crops against FHB disease.
Collapse
Affiliation(s)
- Run Huang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoqiang Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Baoshen Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ruiyang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Wangtai Luo
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jing Miao
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
15
|
Mavrodi DV, Mavrodi OV, Elbourne LDH, Tetu S, Bonsall RF, Parejko J, Yang M, Paulsen IT, Weller DM, Thomashow LS. Long-Term Irrigation Affects the Dynamics and Activity of the Wheat Rhizosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2018; 9:345. [PMID: 29619036 PMCID: PMC5871930 DOI: 10.3389/fpls.2018.00345] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/28/2018] [Indexed: 05/24/2023]
Abstract
The Inland Pacific Northwest (IPNW) encompasses 1. 6 million cropland hectares and is a major wheat-producing area in the western United States. The climate throughout the region is semi-arid, making the availability of water a significant challenge for IPNW agriculture. Much attention has been given to uncovering the effects of water stress on the physiology of wheat and the dynamics of its soilborne diseases. In contrast, the impact of soil moisture on the establishment and activity of microbial communities in the rhizosphere of dryland wheat remains poorly understood. We addressed this gap by conducting a three-year field study involving wheat grown in adjacent irrigated and dryland (rainfed) plots established in Lind, Washington State. We used deep amplicon sequencing of the V4 region of the 16S rRNA to characterize the responses of the wheat rhizosphere microbiome to overhead irrigation. We also characterized the population dynamics and activity of indigenous Phz+ rhizobacteria that produce the antibiotic phenazine-1-carboxylic acid (PCA) and contribute to the natural suppression of soilborne pathogens of wheat. Results of the study revealed that irrigation affected the Phz+ rhizobacteria adversely, which was evident from the significantly reduced plant colonization frequency, population size and levels of PCA in the field. The observed differences between irrigated and dryland plots were reproducible and amplified over the course of the study, thus identifying soil moisture as a critical abiotic factor that influences the dynamics, and activity of indigenous Phz+ communities. The three seasons of irrigation had a slight effect on the overall diversity within the rhizosphere microbiome but led to significant differences in the relative abundances of specific OTUs. In particular, irrigation differentially affected multiple groups of Bacteroidetes and Proteobacteria, including taxa with known plant growth-promoting activity. Analysis of environmental variables revealed that the separation between irrigated and dryland treatments was due to changes in the water potential (Ψm) and pH. In contrast, the temporal changes in the composition of the rhizosphere microbiome correlated with temperature and precipitation. In summary, our long-term study provides insights into how the availability of water in a semi-arid agroecosystem shapes the belowground wheat microbiome.
Collapse
Affiliation(s)
- Dmitri V. Mavrodi
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga V. Mavrodi
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Liam D. H. Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert F. Bonsall
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - James Parejko
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Mingming Yang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - David M. Weller
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, WA, United States
| | - Linda S. Thomashow
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
16
|
Zengerer V, Schmid M, Bieri M, Müller DC, Remus-Emsermann MNP, Ahrens CH, Pelludat C. Pseudomonas orientalis F9: A Potent Antagonist against Phytopathogens with Phytotoxic Effect in the Apple Flower. Front Microbiol 2018; 9:145. [PMID: 29479340 PMCID: PMC5811506 DOI: 10.3389/fmicb.2018.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
In light of public concerns over the use of pesticides and antibiotics in plant protection and the subsequent selection for spread of resistant bacteria in the environment, it is inevitable to broaden our knowledge about viable alternatives, such as natural antagonists and their mode of action. The genus Pseudomonas is known for its metabolic versatility and genetic plasticity, encompassing pathogens as well as antagonists. We characterized strain Pseudomonas orientalis F9, an isolate from apple flowers in a Swiss orchard, and determined its antagonistic activity against several phytopathogenic bacteria, in particular Erwinia amylovora, the causal agent of fire blight. P. orientalis F9 displayed antagonistic activity against a broad suite of phytopathogenic bacteria in the in vitro tests. The promising results from this analysis led to an ex vivo assay with E. amylovora CFBP1430Rif and P. orientalis F9 infected detached apple flowers. F9 diminished the fire blight pathogen in the flowers but also revealed phytotoxic traits. The experimental results were discussed in light of the complete genome sequence of F9, which revealed the strain to carry phenazine genes. Phenazines are known to contribute to antagonistic activity of bacterial strains against soil pathogens. When tested in the cress assay with Pythium ultimum as pathogen, F9 showed results comparable to the known antagonist P. protegens CHA0.
Collapse
Affiliation(s)
| | - Michael Schmid
- Competence Division Methods Development, Analytics and SIB Swiss Institute of Bioinformatics, Agroscope, Zurich, Switzerland
| | - Marco Bieri
- Plant Protection Research Division, Agroscope, Zurich, Switzerland
| | - Denise C. Müller
- Plant Protection Research Division, Agroscope, Zurich, Switzerland
| | - Mitja N. P. Remus-Emsermann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Christian H. Ahrens
- Competence Division Methods Development, Analytics and SIB Swiss Institute of Bioinformatics, Agroscope, Zurich, Switzerland
| | - Cosima Pelludat
- Plant Protection Research Division, Agroscope, Zurich, Switzerland
| |
Collapse
|
17
|
Ankyrin-Like Protein AnkB Interacts with CatB, Affects Catalase Activity, and Enhances Resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to Phenazine-1-Carboxylic Acid. Appl Environ Microbiol 2018; 84:AEM.02145-17. [PMID: 29180371 DOI: 10.1128/aem.02145-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae, which causes rice bacterial leaf blight, and Xanthomonas oryzae pv. oryzicola, which causes rice bacterial leaf streak, are important plant-pathogenic bacteria. A member of the adaptor protein family, ankyrin protein, has been investigated largely in humans but rarely in plant-pathogenic bacteria. In this study, a novel ankyrin-like protein, AnkB, was identified in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. The expression of ankB was significantly upregulated when these bacteria were treated with phenazine-1-carboxylic acid (PCA). ankB is located 58 bp downstream of the gene catB (which encodes a catalase) in both bacteria, and the gene expression of catB and catalase activity were reduced following ankB deletion in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Furthermore, we demonstrated that AnkB directly interacts with CatB by glutathione S-transferase (GST) pulldown assays. Deletion of ankB increased the sensitivity of X. oryzae pv. oryzae and X. oryzae pv. oryzicola to H2O2 and PCA, decreased bacterial biofilm formation, swimming ability, and exopolysaccharide (EPS) production, and also reduced virulence on rice. Together our results indicate that the ankyrin-like protein AnkB has important and conserved roles in antioxidant systems and pathogenicity in X. oryzae pv. oryzae and X. oryzae pv. oryzicola.IMPORTANCE This study demonstrates that the ankyrin protein AnkB directly interacts with catalase CatB in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Ankyrin protein AnkB can affect the gene expression of catB, catalase activity, and sensitivity to H2O2 In Xanthomonas spp., the locations of genes ankB and catB and the amino acid sequence of AnkB are highly conserved. It is suggested that in prokaryotes, AnkB plays a conserved role in the defense against oxidative stress.
Collapse
|
18
|
Complete Genome Sequence of Pseudomonas Parafulva PRS09-11288, a Biocontrol Strain Produces the Antibiotic Phenazine-1-carboxylic Acid. Curr Microbiol 2018; 76:1087-1091. [PMID: 29356878 DOI: 10.1007/s00284-018-1441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
Rhizoctonia solani is a plant pathogenic fungus, which can infect a wide range of economic crops including rice. In this case, biological control of this pathogen is one of the fundmental way to effectively control this pathogen. The Pseudomonas parafulva strain PRS09-11288 was isolated from rice rhizosphere and shows biocontrol ability against R. solani. Here, we analyzed the P. parafulva genome, which is ~ 4.7 Mb, with 4310 coding sequences, 76 tRNAs, and 7 rRNAs. Genome analysis identified a phenazine biosynthetic pathway, which can produce antibiotic phenazine-1-carboxylic acid (PCA). This compound is responsible for biocontrol ability against R. solani Kühn, which is one of the most serious fungus disease on rice. Analysis of the phenazine biosynthesis gene mutant, ΔphzF, which is very important in this pathway, confirmed the relationship between the pathway and PCA production using LC-MS profiles. The annotated full genome sequence of this strain sheds light on the role of P. parafulva PRS09-11288 as a biocontrol bacterium.
Collapse
|