1
|
Ghaffari S, Karimi J, Cheniany M, Seifi A, Loverodge J, Butt TM. Endophytic entomopathogenic fungi enhance plant immune responses against tomato leafminer. J Invertebr Pathol 2025; 209:108270. [PMID: 39800113 DOI: 10.1016/j.jip.2025.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Plants employ various defense mechanisms to protect themselves from invaders such as microorganisms and herbivores. By recognizing these threats, plants can trigger a cascade of responses throughout their tissues, effectively priming their defenses and enhancing their resistance to future attacks. In this study, we examined the indirect effects of the entomopathogenic fungi Beauveria bassiana strain GHA and Metarhizium anisopliae strain F01 on tomato growth, expression of selected plant genes, production of secondary metabolites, and preference and performance of the tomato leafminer (Tuta absoluta). Both B. bassiana and M. anisopliae colonized tomato endophytically. Plants treated with B. bassiana had greater biomass than the untreated control and M. anisopliae treated plants. Oviposition was lower on plants treated with B. bassiana and M. anisopliae than on untreated controls in both choice and no-choice studies, and both endophytic EPF also affected the development of leafminer larvae. Gene expression analysis of tomato leaves inoculated with endophytic EPF provided evidence of triggering plant immune response genes, and of priming genes for herbivore attack, making plants more resistant to herbivory. These findings provide important insights into the mechanisms by which B. bassiana and M. anisopliae promote tomato plant growth and rapidly respond to T. absoluta infestation by priming the immune system. This knowledge could improve the development of entomopathogenic fungi for use in plant-protection strategies.
Collapse
Affiliation(s)
- Sepideh Ghaffari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Alireza Seifi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Joel Loverodge
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
2
|
Tang Y, Chen W, He F, Liu T, Hu Q, Weng Q, Zhang K. Herbicidal fungal strain isolated from soil in Xinjiang, China. Microbiol Spectr 2024; 12:e0158924. [PMID: 39417649 PMCID: PMC11619413 DOI: 10.1128/spectrum.01589-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Weeds pose a significant threat to agricultural productivity, emphasizing the urgent need for developing innovative biological herbicides. Soil is a rich reservoir of fungi with potential herbicidal properties. The Xinjiang region of China, characterized by unique biodiversity shaped by geographical and climatic factors, is likely to harbor distinctive fungal resources that remain understudied. This study investigated the herbicidal potential of soil fungi by collecting 123 soil samples from 33 diverse habitats in Xinjiang and isolating 114 fungal strains. Morphological characteristics and ITS sequence analysis identified these strains as 24 species belonging to 12 genera. Subsequently, 24 representative strains underwent phytotoxicity assays using detached weed leaves. Strain Tapu14C02 demonstrated significant herbicidal activity against 11 weeds, including Amaranthus retroflexus, Bidens pilosa, and Celosia argentea. Further identification confirmed the strain as Talaromyces purpureogenus. Pot experiments were conducted to evaluate the herbicidal potential of the strain. The spore suspension at a concentration of 1.0 × 108 spores/mL inhibited barnyard grass (Echinochloa crus-galli) seedling root length by 93.07%. Among the crude extracts from the fermentation broth, the ethyl acetate fraction exhibited the strongest herbicidal activity, causing complete inhibition of root growth at concentrations of 1000 µg/mL and 500 µg/mL. This study provides novel insights into the herbicidal potential of soil fungi in the Xinjiang region of China. IMPORTANCE Weeds pose significant challenges by causing agricultural losses and ecological harm. Over the past decades, many weed species have developed high resistance to chemical herbicides, underscoring the urgent need for new biological herbicide alternatives. In this study, we isolated and screened herbicidal fungi from soil samples in Xinjiang with unique conditions of extreme arid. Notably, we discovered the T. purpureogenus strain Tapu14C02, which shows promising potential as a myco-herbicide. Both its conidia and fermentation broth exhibit broad-spectrum effectiveness against weeds. This research highlights the potential of fungal resources for sustainable agriculture.
Collapse
Affiliation(s)
- Yanhong Tang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fengting He
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tongyi Liu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qiongbo Hu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qunfang Weng
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ke Zhang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Reingold V, Faigenboim A, Matveev S, Haviv S, Belausov E, Vilcinskas A, Ment D. Transcriptional reprogramming in the entomopathogenic fungus Metarhizium brunneum and its aphid host Myzus persicae during the switch between saprophytic and parasitic lifestyles. BMC Genomics 2024; 25:917. [PMID: 39358701 PMCID: PMC11446092 DOI: 10.1186/s12864-024-10824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The fungus Metarhizium brunneum has evolved a remarkable ability to switch between different lifestyles. It develops as a saprophyte, an endophyte establishing mutualistic relationships with plants, or a parasite, enabling its use for the control of insect pests such as the aphid Myzus persicae. We tested our hypothesis that switches between lifestyles must be accompanied by fundamental transcriptional reprogramming, reflecting adaptations to different environmental settings. RESULTS We combined high throughput RNA sequencing of M. brunneum in vitro and at different stages of pathogenesis to validate the modulation of genes in the fungus and its host during the course of infection. In agreement with our hypothesis, we observed transcriptional reprogramming in M. brunneum following conidial attachment, germination on the cuticle, and early-stage growth within the host. This involved the upregulation of genes encoding degrading enzymes and gene clusters involved in synthesis of secondary metabolites that act as virulence factors. The transcriptional response of the aphid host included the upregulation of genes potentially involved in antifungal activity, but antifungal peptides were not induced. We also observed the induction of a host flightin gene, which may be involved in wing formation and flight muscle development. CONCLUSIONS The switch from saprophytic to parasitic development in M. brunneum is accompanied by fundamental transcriptional reprogramming during the course of the infection. The aphid host responds to fungal infection with its own transcriptional reprogramming, reflecting its inability to express antifungal peptides but featuring the induction of genes involved in winged morphs that may enable offspring to avoid the contaminated environment.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Sabrina Haviv
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Eduard Belausov
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig Universität Giessen, Giessen, 35392, Germany
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, 35392, Germany
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
4
|
Xing P, Mao R, Zhang G, Li Y, Zhou W, Diao H, Ma R. Secondary metabolites in Cordyceps javanica with insecticidal potential. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106076. [PMID: 39277389 DOI: 10.1016/j.pestbp.2024.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Cordyceps javanica has been registered as a fungal insecticide in several countries. However, little is known about whether metabolic toxins are involved in the insecticidal process. In this research, we assessed the insecticidal activity of the fermentation broth of C. javanica. Myzus persicae mortality differed when exposed to the metabolized C. javanica broths at 3 days post fermentation (DPF) and 5 DPF. Comparison of the metabolic fluid at 3 DPF and 5 DPF revealed a key alkaloid, heteratisine, which was found to have insecticidal activity and acetylcholinesterase (AChE) inhibitory activity. Heteratisine has high insecticidal activity against adult M. persicae, the absolute 50% lethal concentration (LC50) was only 0.2272 mg/L. Heteratisine showed high inhibitory activity on AChE with the 50% maximal inhibitory concentration (IC50) of 76.69 μM. Molecular docking and dynamic simulations showed that heteratisine conjugation occurs at the peripheral anionic site (PAS) of the AChE of M. persicae, leading to suppression of enzyme activity. Heteratisine was rarely found in fungal metabolites, which helps us to understand the complex and elaborate insecticidal mechanism of C. javanica.
Collapse
Affiliation(s)
- Peixiang Xing
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Ruixia Mao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Guisen Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yihua Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Wenwen Zhou
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Hongliang Diao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
5
|
Papantzikos V, Mantzoukas S, Eliopoulos PA, Servis D, Bitivanos S, Patakioutas G. Evaluation of Various Inoculation Methods on the Effect of Beauveria bassiana on the Plant Growth of Kiwi and on Halyomorpha halys Infestation: A Two-Year Field Study. BIOLOGY 2024; 13:470. [PMID: 39056665 PMCID: PMC11273441 DOI: 10.3390/biology13070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In this study, the bioinsecticidal action of a commercial formulation with Beauveria bassiana was evaluated on the new sucking pest in Greece: Halyomorpha halys, of the kiwifruit. Additionally, the biostimulant potential of the same formulation was studied on kiwi growth. The application was performed in three different ways in a commercial field of kiwi crop A. deliciosa "Hayward" field in Arta, Greece: (i) trunk spray, (ii) root injection, and (iii) trunk inoculation. During the 2 years seasons of the experiment, weekly measurements of the H. halys population were determined. The insect is sucking plants nutrients; therefore, the total chlorophyll content in the leaves of the treatments was recorded weekly. In addition, the percentage of infested kiwifruits was estimated at the end of the experiment. Moreover, to study the biostimulant potential of the formulation, growth measurements on stems and leaves were performed during the experiment. Finally, at the kiwi harvest point, the fruit biomass, dimensions, and weight were obtained, and the leaves' proline content was evaluated. The results encourage us to further study this EPF formulation as the bioinsecticidal effect was noted by the reduction in H. halys population, and biostimulant action was perceived by the higher plant biomass.
Collapse
Affiliation(s)
- Vasileios Papantzikos
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| | - Spiridon Mantzoukas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| | - Panagiotis A. Eliopoulos
- Laboratory of Plant Health Management, Department of Agrotechnology, University of Thessaly, Geopolis, 41500 Larissa, Greece;
| | | | | | - George Patakioutas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| |
Collapse
|
6
|
Shams A, Fischer A, Bodnar A, Kliegman M. Perspectives on Genetically Engineered Microorganisms and Their Regulation in the United States. ACS Synth Biol 2024; 13:1412-1423. [PMID: 38669097 PMCID: PMC11106772 DOI: 10.1021/acssynbio.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Genetically engineered microorganisms (GEMs) represent a new paradigm in our ability to address the needs of a growing, changing world. GEMs are being used in agriculture, food production and additives, manufacturing, commodity and noncommodity products, environmental remediation, etc., with even more applications in the pipeline. Along with modern advances in genome-manipulating technologies, new manufacturing processes, markets, and attitudes are driving a boom in more products that contain or are derived from GEMs. Consequentially, researchers and developers are poised to interact with biotechnology regulatory policies that have been in effect for decades, but which are out of pace with rapidly changing scientific advances and knowledge. In the United States, biotechnology is regulated by multiple agencies with overlapping responsibilities. This poses a challenge for both developers and regulators to simultaneously allow new innovation and products into the market while also ensuring their safety and efficacy for the public and environment. This article attempts to highlight the various factors that interact between regulatory policy and development of GEMs in the United States, with perspectives from both regulators and developers. We present insights from a 2022 workshop hosted at the University of California, Berkeley that convened regulators from U.S. regulatory agencies and industry developers of various GEMs and GEM-derived products. We highlight several new biotechnologies and applications that are driving innovation in this space, and how regulatory agencies evaluate and assess these products according to current policies. Additionally, we describe recent updates to regulations that incorporate new technology and knowledge and how they can adapt further to effectively continue regulating for the future.
Collapse
Affiliation(s)
- Arik Shams
- Kavli
Center for Ethics, Science, and the Public, University of California—Berkeley, Berkeley, California 94720, United States
| | - Alexandria Fischer
- United
States Department of Agriculture, Washington, D.C. 20250, United States
| | - Anastasia Bodnar
- United
States Department of Agriculture, Washington, D.C. 20250, United States
| | - Melinda Kliegman
- Innovative
Genomics Institute, University of California—Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Buirs L, Punja ZK. Integrated Management of Pathogens and Microbes in Cannabis sativa L. (Cannabis) under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:786. [PMID: 38592798 PMCID: PMC10974757 DOI: 10.3390/plants13060786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The increased cultivation of high THC-containing Cannabis sativa L. (cannabis), particularly in greenhouses, has resulted in a greater incidence of diseases and molds that can negatively affect the growth and quality of the crop. Among them, the most important diseases are root rots (Fusarium and Pythium spp.), bud rot (Botrytis cinerea), powdery mildew (Golovinomyces ambrosiae), cannabis stunt disease (caused by hop latent viroid), and a range of microbes that reduce post-harvest quality. An integrated management approach to reduce the impact of these diseases/microbes requires combining different approaches that target the reproduction, spread, and survival of the associated pathogens, many of which can occur on the same plant simultaneously. These approaches will be discussed in the context of developing an integrated plan to manage the important pathogens of greenhouse-grown cannabis at different stages of plant development. These stages include the maintenance of stock plants, propagation through cuttings, vegetative growth of plants, and flowering. The cultivation of cannabis genotypes with tolerance or resistance to various pathogens is a very important approach, as well as the maintenance of pathogen-free stock plants. When combined with cultural approaches (sanitation, management of irrigation, and monitoring for diseases) and environmental approaches (greenhouse climate modification), a significant reduction in pathogen development and spread can be achieved. The use of preventive applications of microbial biological control agents and reduced-risk biorational products can also reduce disease development at all stages of production in jurisdictions where they are registered for use. The combined use of promising strategies for integrated disease management in cannabis plants during greenhouse production will be reviewed. Future areas for research are identified.
Collapse
Affiliation(s)
- Liam Buirs
- Pure Sunfarms Corp., Delta, BC V4K 3N3, Canada;
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
8
|
Zhang Z, Tian Y, Sui L, Lu Y, Cheng K, Zhao Y, Li Q, Shi W. First record of Aspergillus nomiae as a broad-spectrum entomopathogenic fungus that provides resistance against phytopathogens and insect pests by colonization of plants. Front Microbiol 2024; 14:1284276. [PMID: 38260878 PMCID: PMC10801167 DOI: 10.3389/fmicb.2023.1284276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Aspergillus nomiae is known as a pathogenic fungus that infects humans and plants but has never been reported as an entomophagous fungus (EPF) that can provide other functions as an endotype. Methods A strain of EPF was isolated and identified from diseased larvae of Spodoptera litura in a soybean field and designated AnS1Gzl-1. Pathogenicity of the strain toward various insect pests was evaluated, especially the ability to colonize plants and induce resistance against phytopathogens and insect pests. Results The isolated EPF strain AnS1Gzl-1 was identified as A. nomiae; it showed strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of Sclerotinia sclerotiorum in vitro, a causal agent of soil-borne plant disease. It colonized plants as an endophyte via root irrigation with a high colonization rate of 90%, thereby inducing plant resistance against phytopathogen infection, and disrupting the feeding selectivity of S. litura larvae. Discussion This is the first record of a natural infection of A. nomiae on insects. A. nomiae has the potential to be used as a dual biocontrol EPF because of its ability to not only kill a broad spectrum of insect pests directly but also induce resistance against phytopathogens via plant colonization.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yifan Tian
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Ke Cheng
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Key Laboratory of Agricultural Microbiology, Changchun, China
- Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Mesquita E, Hu S, Lima TB, Golo PS, Bidochka MJ. Utilization of Metarhizium as an insect biocontrol agent and a plant bioinoculant with special reference to Brazil. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1276287. [PMID: 38186633 PMCID: PMC10768067 DOI: 10.3389/ffunb.2023.1276287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Brazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus Metarhizium. This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent. This fungus is also a root symbiont, and in this capacity, it is a plant growth promoter. However, this feature (i.e., as a plant symbiont) has yet to be fully explored and implemented in Brazil, although the number of reports demonstrating Metarhizium's utility as a plant bioinoculant is increasing. The Brazilian bioproduct industry targets agricultural pests, and is limited to two Metarhizium species represented by four fungal isolates as active ingredients. Entomopathogenic fungi have also been successful in controlling arthropods of public health concern, as shown in their control of mosquitoes, which are vectors of diseases. The isolation of new indigenous Metarhizium isolates from a variety of substrates such as soil, insects, and plants shows the wide genetic diversity within this fungal genus. In this review, we emphasize the significance of Metarhizium spp. for the biological control of insects in Brazil. We also suggest that the experience and success of biological control with fungi in Brazil is an important resource for developing integrated pest management and sustainable strategies for pest control worldwide. Moreover, the future implementation prospects of species of Metarhizium being used as bioinoculants and possible new advances in the utility of this fungus are discussed.
Collapse
Affiliation(s)
- Emily Mesquita
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Shasha Hu
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Tais B. Lima
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Patricia Silva Golo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
| | - Michael J. Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
10
|
Basso V, Pinheiro Dillon AJ, Toldi M, Gonçalves Kramer C, Vicenço Bonato C. Beauveria bassiana submerged spores for control of two-spotted spider mite (Tetranychus urticae Koch (Acari: Tetranychidae)): production, stability, and virulence. Arch Microbiol 2023; 206:23. [PMID: 38103058 DOI: 10.1007/s00203-023-03759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023]
Abstract
In this study, IBCB 66, IBCB 868, and CBMAI 1306 isolates of Beauveria bassiana were grown in liquid culture for 4 days, leading to elevated submerged spores (SS) levels. The influence of the addition of different glycerol concentrations (0, 3, and 6%) (v/v) in the liquid culture was investigated regarding the stability (at 4 and 27 °C) of dried formulations. The virulence of SS was compared with aerial spores (AS) against Tetranychus urticae (Koch) (Acari: Tetranychidae). The results demonstrate the potential of using SS to control T. urticae. CBMAI 1306 and IBCB 868 isolates caused T. urticae mortality rates of 91.11% and 88.89% 5 days after treatment, respectively, when applied at concentrations of 1 × 108 SS mL-1. The median Lethal Time (LT50) values for these strains were 2.64 and 2.61 days, respectively. The dried formulations showed potential acaricidal activity. Higher glycerol concentrations in the liquid culture medium reduced formulation stability at 27 °C.
Collapse
Affiliation(s)
- Vanessa Basso
- University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, 95070-560, Caxias do Sul, Rio Grande do Sul, Brazil.
- Dillon Biotecnologia LTDA, Estrada Municipal Olimpio Miotto, 95062-600, Caxias do Sul, Rio Grande do Sul, Brazil.
| | - Aldo José Pinheiro Dillon
- University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, 95070-560, Caxias do Sul, Rio Grande do Sul, Brazil
- Dillon Biotecnologia LTDA, Estrada Municipal Olimpio Miotto, 95062-600, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Maicon Toldi
- University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, 95070-560, Caxias do Sul, Rio Grande do Sul, Brazil
- Dillon Biotecnologia LTDA, Estrada Municipal Olimpio Miotto, 95062-600, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Clarissa Gonçalves Kramer
- University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, 95070-560, Caxias do Sul, Rio Grande do Sul, Brazil
- Dillon Biotecnologia LTDA, Estrada Municipal Olimpio Miotto, 95062-600, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Camila Vicenço Bonato
- University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, 95070-560, Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Yarmus I, Gelbart D, Shemesh-Mayer E, Teper DD, Ment D, Faigenboim A, Peters R, Kamenetsky-Goldstein R. Pathogen Eradication in Garlic in the Phytobiome Context: Should We Aim for Complete Cleaning? PLANTS (BASEL, SWITZERLAND) 2023; 12:4125. [PMID: 38140452 PMCID: PMC10747685 DOI: 10.3390/plants12244125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Global food production is challenged by plant pathogens that cause significant crop losses. Fungi, bacteria, and viruses have long threatened sustainable and profitable agriculture. The danger is even higher in vegetatively propagated horticultural crops, such as garlic. Currently, quarantine, rouging infected plants, and control of natural vectors are used as the main means of disease and pest control in garlic crops. Agricultural biotechnology, meristem-tip culture, and cryotherapy offer solutions for virus eradication and for the multiplication of 'clean stocks', but at the same time, impact the symbiotic and beneficial components of the garlic microbiome. Our research involves the first metatranscriptomic analysis of the microbiome of garlic bulb tissue, PCR analyses, and a biological assay of endophytes and pathogens. We have demonstrated that in vitro sanitation methods, such as shoot tip culture or cryotherapy can alter the garlic microbiome. Shoot tip culture proved ineffective in virus elimination, but reduced bacterial load and eliminated fungal infections. Conversely, cryotherapy was efficient in virus eradication but demolished other components of the garlic microbiome. Garlic plants sanitized by cryotherapy exhibited a lower survival rate, and a longer in vitro regeneration period. The question arises whether total eradication of viruses, at the expense of other microflora, is necessary, or if a partial reduction in the pathogenic load would suffice for sanitized garlic production. We explore this question from both scientific and commercial perspectives.
Collapse
Affiliation(s)
- Itay Yarmus
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Dana Gelbart
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Einat Shemesh-Mayer
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Doron Dov Teper
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Dana Ment
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Adi Faigenboim
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Ross Peters
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Rina Kamenetsky-Goldstein
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| |
Collapse
|
12
|
Mani K, Vitenberg T, Khatib S, Opatovsky I. Effect of entomopathogenic fungus Beauveria bassiana on the growth characteristics and metabolism of black soldier fly larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105684. [PMID: 38072541 DOI: 10.1016/j.pestbp.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Beauveria bassiana is an entomopathogenic fungus widely used in agriculture to reduce populations of various pests. However, when agricultural waste is utilized for organic recycling, B. bassiana has the potential to impact recycling performance, by affecting the survival, and body mass of decomposing organisms (such as insect's larvae). Additionally, in natural conditions where decayed organic matter contains a high load of different entomopathogenic organisms, larval growth may be affected when consumed or in contact. In a laboratory study, we aimed to comprehend the effects of B. bassiana on the growth characteristics and larval metabolism of the black soldier fly larvae, which is a known decomposing insect. The experiments used both feeding (mixing the spores with the diet, hereafter BF) and contact treatments (by dipping the larva in the spores solution, hereafter BD), and were compared to a water-treated control group. The BF treatment significantly reduced larval body weight, adult emergence, and adult weight compared to both the control and the BD treatment. Furthermore, an analysis of hemolymph metabolites, categorized by class, indicated a higher accumulation of metabolites belonging to the purine and purine derivative classes, as well as carboxylic acids and their derivatives, including peptides and oligopeptides, indicating potential disruption of protein synthesis or degradation caused by the BF treatment. Pathway enrichment analysis showed significant alterations in purine metabolism and D-Arginine and D-ornithine metabolism compared to the control. Taurine and hypotaurine metabolism were significantly altered in the BD treatment compared to the control but not significantly enriched in the BF treatment. Our results suggest that the BF treatment impairs protein synthesis or degradation, affecting larval growth characteristics. Future studies should explore innate immunity-related gene expression and antimicrobial peptide production in BSF larvae to understand their immunity to pathogens.
Collapse
Affiliation(s)
- Kannan Mani
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Tzach Vitenberg
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Soliman Khatib
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel
| | - Itai Opatovsky
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel.
| |
Collapse
|
13
|
Leibman-Markus M, Schneider A, Gupta R, Marash I, Rav-David D, Carmeli-Weissberg M, Elad Y, Bar M. Immunity priming uncouples the growth-defense trade-off in tomato. Development 2023; 150:dev201158. [PMID: 37882831 DOI: 10.1242/dev.201158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, but can come at the expense of plant growth, leading to the 'growth-defense trade-off' phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming via systemic acquired resistance (SAR), or induced systemic resistance (ISR), affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development, and that defense priming and growth trade-offs can be uncoupled. Cytokinin response was activated during induced resistance, and found to be required for the observed growth and disease resistance resulting from ISR activation. ISR was found to have a stronger effect than SAR on plant development. Our results suggest that growth promotion and induced resistance can be co-dependent, and that, in certain cases, defense priming can drive developmental processes and promote plant yield.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Mira Carmeli-Weissberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| |
Collapse
|
14
|
Quesada-Moraga E, Garrido-Jurado I, González-Mas N, Yousef-Yousef M. Ecosystem services of entomopathogenic ascomycetes. J Invertebr Pathol 2023; 201:108015. [PMID: 37924859 DOI: 10.1016/j.jip.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Entomopathogenic ascomycetes (EA) are an important part of the microbiota in most terrestrial ecosystems, where they can be found regulating natural populations of arthropod pests in both epigeous and hypogeous habitats while also establishing unique relationships with plants. These fungi offer direct benefits to agriculture and human welfare. In the present work, we conducted a systematic review to comprehensively assess the range of ecosystem services provided by EA, including direct and indirect pest biocontrol, plant growth promotion, plant defense against other biotic and abiotic stresses, nutrient cycling, and the production of new bioactive compounds with agricultural, pharmaceutical and medical importance. Moreover, EA are compatible with the ecosystem services provided by other microbial and macrobial biocontrol agents. This systematic review identified the need for future research to focus on evaluating the economic value of the ecological services provided by EA with a special emphasis on hypocrealean fungi. This evaluation is essential not only for the conservation but also for better regulation and exploitation of the benefits of EA in promoting agricultural sustainability, reducing the use of chemicals that enter the environment, and minimizing the negative impacts of crop protection on the carbon footprint and human health.
Collapse
Affiliation(s)
- Enrique Quesada-Moraga
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain.
| | - Inmaculada Garrido-Jurado
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Natalia González-Mas
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| | - Meelad Yousef-Yousef
- Department of Agronomy, Maria de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Edificio C4 Celestino Mutis, Campus de Rabanales, 14071 Cordoba, Spain
| |
Collapse
|
15
|
Wang X, Yan G, Liu W, Chen H, Yuan Q, Wang Z, Liu H. Endophytic Beauveria bassiana of Tomato Resisted the Damage from Whitefly Bemisia tabaci by Mediating the Accumulation of Plant-Specialized Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13244-13254. [PMID: 37646319 PMCID: PMC10510379 DOI: 10.1021/acs.jafc.3c03679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Beauveria bassiana acts as an endophytic fungus that controls herbivorous pests by stimulating plant defenses and inducing systemic resistance. Through multiomics analysis, 325 differential metabolites and 1739 differential expressed genes were observed in tomatoes treated with B. bassiana by root irrigation; meanwhile, 152 differential metabolites and 1002 differential genes were observed in tomatoes treated by local leaf spraying. Among the upregulated metabolites were α-solanine, 5-O-caffeoylshikimic acid, clerodendrin A, and peucedanin, which demonstrated anti-insect activity. These differential metabolites were primarily associated with alkaloid biosynthesis, flavonoid biosynthesis, and tryptophan metabolism pathways. Furthermore, the gene silencing of UDP-glucose:sterol glucosyltransferase, a gene involved in α-solanine synthesis, indicated that B. bassiana could inhibit the reproduction of whiteflies by regulating α-solanine. This study highlighted the ability of B. bassiana to modulate plant secondary metabolites and emphasized the significance of understanding and harnessing multitrophic interactions of endophytic B. bassiana for sustainable agriculture.
Collapse
Affiliation(s)
- Xian Wang
- Key Laboratory of Agricultural Biosafety
and Green Production of Upper Yangtze River, Key Laboratory of Entomology
and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, People’s Republic of China
| | - Ganwei Yan
- Key Laboratory of Agricultural Biosafety
and Green Production of Upper Yangtze River, Key Laboratory of Entomology
and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, People’s Republic of China
| | - Wenjie Liu
- Key Laboratory of Agricultural Biosafety
and Green Production of Upper Yangtze River, Key Laboratory of Entomology
and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, People’s Republic of China
| | - Haolin Chen
- Key Laboratory of Agricultural Biosafety
and Green Production of Upper Yangtze River, Key Laboratory of Entomology
and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, People’s Republic of China
| | - Qian Yuan
- Key Laboratory of Agricultural Biosafety
and Green Production of Upper Yangtze River, Key Laboratory of Entomology
and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, People’s Republic of China
| | - Ziying Wang
- Key Laboratory of Agricultural Biosafety
and Green Production of Upper Yangtze River, Key Laboratory of Entomology
and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, People’s Republic of China
| | - Huai Liu
- Key Laboratory of Agricultural Biosafety
and Green Production of Upper Yangtze River, Key Laboratory of Entomology
and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, People’s Republic of China
| |
Collapse
|
16
|
Posada-Vergara C, Vidal S, Rostás M. Local Competition and Enhanced Defense: How Metarhizium brunneum Inhibits Verticillium longisporum in Oilseed Rape Plants. J Fungi (Basel) 2023; 9:796. [PMID: 37623567 PMCID: PMC10455689 DOI: 10.3390/jof9080796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Metarhizium brunneum is a soil-borne fungal entomopathogen that can be associated with plant roots. Previous studies have demonstrated that root colonization by beneficial fungi can directly affect soil-borne pathogens through competition and antibiosis and can activate a systemic response in plants, resulting in a primed state for a faster and/or stronger response to stressors. However, the mechanisms by which Metarhizium inoculation ameliorates symptoms caused by plant pathogens are not well known. This study evaluated the ability of M. brunneum to protect oilseed rape (Brassica napus L.) plants against the soil-borne pathogen Verticillium longisporum and investigated whether the observed effects are a result of direct interaction and/or plant-mediated effects. In vitro and greenhouse experiments were conducted to measure fungal colonization of the rhizosphere and plant tissues, and targeted gene expression analysis was used to evaluate the plant response. The results show that M. brunneum delayed pathogen colonization of plant root tissues, resulting in decreased disease symptoms. Direct competition and antibiosis were found to be part of the mechanisms, as M. brunneum growth was stimulated by the pathogen and inhibited the in vitro growth of V. longisporum. Additionally, M. brunneum changed the plant response to the pathogen by locally activating key defense hormones in the salicylic acid (SA) and abscisic acid (ABA) pathways. Using a split-root setup, it was demonstrated that there is a plant-mediated effect, as improved plant growth and decreased disease symptoms were observed when M. brunneum was in the systemic compartment. Moreover, a stronger systemic induction of the gene PR1 suggested a priming effect, involving the SA pathway. Overall, this study sheds light on the mechanisms underlying the protective effects of M. brunneum against soil-borne pathogens in oilseed rape plants, highlighting the potential of this fungal entomopathogen as a biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Catalina Posada-Vergara
- Agricultural Entomology, Department of Crop Sciences, University of Goettingen, Grisebachstr 6, 37077 Goettingen, Germany;
| | | | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Goettingen, Grisebachstr 6, 37077 Goettingen, Germany;
| |
Collapse
|
17
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
18
|
Zhang X, Peng X, Yang G, Chen Q, Jin D. The Colonization and Effect of Isaria cateinannulata on Buckwheat Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010145. [PMID: 36616274 PMCID: PMC9824485 DOI: 10.3390/plants12010145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 05/17/2023]
Abstract
The use of entomogenous fungi as endophytes is currently an area of active research. Isaria cateniannulata is an important entomogenous fungus that has been employed for the active control of a range of pests in agricultural and forestry settings, but its direct impact on plants remains to be evaluated. Herein, we assessed the ability of I. cateniannulata to colonize buckwheat, Fagopyrum esculentum and F. tataricum, and its impact on buckwheat defense enzyme activity and physiological indexes. The majority of fungal submerge condia was able to enter into leaves through stomata and veins, and this was followed by conidial attachment, lytic enzyme secretion, conidial deformation, and enhanced defensive enzyme activity within buckwheat, followed by the repair of damaged tissue structures. I. cateniannulata populations on buckwheat leaf surfaces (in CFU/g) reached the minimum values at 24 h after inoculation. At this time, the blast analysis revealed that the sequence identity values were 100%, which was consistent with the sequence of I. cateniannula. The number of I. cateniannulata submerge conidia colonized in the buckwheat leaves gradually rose to peak levels on 7 d post-inoculation, and then gradually declined until 10 d, at which time the buckwheat plant growth index values increased. This study provided novel evidence that I. cateniannulata could be leveraged as an endophytic fungus capable of colonizing buckwheat plants and promoting their growth.
Collapse
Affiliation(s)
- Xiaona Zhang
- The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Xue Peng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Guimin Yang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Daochao Jin
- The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-139-8403-0739
| |
Collapse
|
19
|
Li M, Song Z, Li Z, Qiao R, Zhang P, Ding C, Xie J, Chen Y, Guo H. Populus root exudates are associated with rhizosphere microbial communities and symbiotic patterns. Front Microbiol 2022; 13:1042944. [PMID: 36619999 PMCID: PMC9812961 DOI: 10.3389/fmicb.2022.1042944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Microbial communities in the plant rhizosphere are critical for nutrient cycling and ecosystem stability. However, how root exudates and soil physicochemical characteristics affect microbial community composition in Populus rhizosphere is not well understood. Methods This study measured soil physiochemistry properties and root exudates in a representative forest consists of four Populus species. The composition of rhizosphere bacterial and fungal communities was determined by metabolomics and high-throughput sequencing. Results Luvangetin, salicylic acid, gentisic acid, oleuropein, strigol, chrysin, and linoleic acid were the differential root exudates extracted in the rhizosphere of four Populus species, which explained 48.40, 82.80, 48.73, and 59.64% of the variance for the dominant and key bacterial or fungal communities, respectively. Data showed that differential root exudates were the main drivers of the changes in the rhizosphere microbial communities. Nitrosospira, Microvirga, Trichoderma, Cortinarius, and Beauveria were the keystone taxa in the rhizosphere microbial communities, and are thus important for maintaining a stable Populus microbial rhizosphere. The differential root exudates had strong impact on key bacteria than dominant bacteria, key fungi, and dominant fungi. Moreover, strigol had positively effects with bacteria, whereas phenolic compounds and chrysin were negatively correlated with rhizosphere microorganisms. The assembly process of the community structure (keystone taxa and bacterial dominant taxa) was mostly determined by stochastic processes. Discussion This study showed the association of rhizosphere microorganisms (dominant and keystone taxa) with differential root exudates in the rhizosphere of Populus plants, and revealed the assembly process of the dominant and keystone taxa. It provides a theoretical basis for the identification and utilization of beneficial microorganisms in Populus rhizosphere.
Collapse
Affiliation(s)
- Mengjie Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanbiao Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongye Qiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pingdong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianbo Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, UWA Institute of Agriculture, Perth, WA, Australia
| | - Hui Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China,National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing, China,*Correspondence: Hui Guo,
| |
Collapse
|
20
|
Mantzoukas S, Daskalaki E, Kitsiou F, Papantzikos V, Servis D, Bitivanos S, Patakioutas G, Eliopoulos PA. Dual Action of Beauveria bassiana (Hypocreales; Cordycipitaceae) Endophytic Stains as Biocontrol Agents against Sucking Pests and Plant Growth Biostimulants on Melon and Strawberry Field Plants. Microorganisms 2022; 10:2306. [PMID: 36422376 PMCID: PMC9692842 DOI: 10.3390/microorganisms10112306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 08/27/2023] Open
Abstract
Entomopathogenic fungi (EPF) can colonize plant tissues and serve crops not only as biopesticides but also as biostimulants that promote plant growth and trigger defense mechanisms. In this context, field trials were conducted evaluating two commercial strains of the entomopathogen Beauveria bassiana (Hypocreales: Cordycipitaceae), GHA (Botanigard) and PPRI 5339 (Velifer® ES) and a wild strain (AP0101) isolated from Achaia, Greece. The three strains were investigated in the field for their endophytic effects on melon Cucumis melo (Cucurbitales: Cucurbitaceae) and strawberry Fragaria sp. (Rosales: Rosaceae) plants and in particular for their ability to colonize plant tissues, control infestations of sucking insects Aphis gossypii (Hemiptera: Aphididae), Chaetosiphon fragaefolii (Hemiptera: Aphididae) and Frankliniella occidentalis (Thysanoptera: Thripidae), and improve plant growth parameters (plant height, number of flowers and fruits). All experimental fungal strains successfully colonized both plants. A significant decrease in the aphid and thrip populations was observed in the treated plants compared to the untreated control. As for plant growth, the number of flowers and fruits was significantly increased in plants treated with B. bassiana strains AP0101 and PPRI 5339. Our results clearly indicate that fungal endophytes can efficiently act as dual action agents demonstrating both insecticidal and growth-promoting effects.
Collapse
Affiliation(s)
- Spiridon Mantzoukas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | - Eufrosini Daskalaki
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | - Foteini Kitsiou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Vasileios Papantzikos
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | | | | | - George Patakioutas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece
| | - Panagiotis A. Eliopoulos
- Laboratory of Plant Health Management, Department of Agrotechnology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| |
Collapse
|
21
|
Elucidating the Effect of Endophytic Entomopathogenic Fungi on Bread Wheat Growth through Signaling of Immune Response-Related Hormones. Appl Environ Microbiol 2022; 88:e0088222. [PMID: 36036583 PMCID: PMC9499012 DOI: 10.1128/aem.00882-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Entomopathogenic fungi (EF) provide a potent biocontrol tool; also, their endophytic behavior has broadened their contribution to integrated pest management (IPM) and crop production. In this work, Beauveria bassiana and Metarhizium brunneum were applied to bread wheat (Triticum aestivum) seedlings to elucidate how fungal colonization influences plant growth and the relative expression of 24 genes involved in hormonal syntheses and plant immune mechanisms. A preliminary assay was used to determine the time needed for fungal colonization and assess its effect on wheat growth. Then, plant material collected at various times after inoculation (viz., 2, 8, 20, and 36 h and 9 and 15 days) was used to investigate gene expression by quantitative reverse transcription PCR (RT-qPCR). During the colonization time, B. bassiana and M. brunneum caused strong downregulation of most genes associated with plant immunity and the synthesis of hormones like auxin, cytokinin, and gibberellin. This effect was concomitant with a slowdown of endophytic-colonization-related plant growth until 19 days postinoculation (dpi). However, the wheat started to recover at 15 dpi, simultaneously with upregulation of auxin- and gibberellin-related genes. The results suggest that the EF trigger induced systemic resistance rather than acquired systemic resistance during early plant-microbe cross talk in wheat. Also, they confirm that the hormone and immune responses of wheat triggered by EF inoculation influenced plant growth, which can be useful with a view to optimizing management of these microorganisms for sustainable agriculture. IMPORTANCE Microbial control of insect and mite pests is a key tool to develop integrated pest management (IPM) and sustainable agriculture. Entomopathogenic fungi (EF) may have associations with the plants, playing additional ecological roles in the rhizosphere, in the phylloplane, and as plant endophytes. Beauveria bassiana 04/01TIP and Metarhizium brunneum 01/58Su are two strains that showed very good results either in pest control or plant growth promotion and would be good candidates to develop mycoinsecticides as an alternative to pesticides. However, deep knowledge about their interaction with the plant would let farmers optimize their use and understand the plant response, enhancing and promoting their broader contribution to IPM and crop production.
Collapse
|
22
|
Al-Ani LKT, Soares FEDF, Sharma A, de los Santos-Villalobos S, Valdivia-Padilla AV, Aguilar-Marcelino L. Strategy of Nematophagous Fungi in Determining the Activity of Plant Parasitic Nematodes and Their Prospective Role in Sustainable Agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:863198. [PMID: 37746161 PMCID: PMC10512347 DOI: 10.3389/ffunb.2022.863198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/01/2022] [Indexed: 09/22/2023]
Abstract
In this review, we supply a framework for the importance of nematophagous fungi (nematophagous fungi [NF]) and their role in agricultural ecosystems. We characterize the taxonomy, diversity, ecology, and type of NF, depending on their interaction with plant-parasitic nematodes (PPNs). We described potential mechanisms of NF in the control of PPNs, the efficiency and methods of utilization, and the use of nematicides in sustainable agriculture. We explain the utilization of NF in nanotechnology as a new approach. NF are significant in the soil for having the effective potential for use in sustainable agriculture. These types of fungi belong to wide taxa groups, such as Ascomycota, Basidiomycota, and other groups. Diverse NF are available in different kinds of soil, especially in soils that contain high densities of nematodes. There is a relationship between the environment of nematodes and NF. NF can be divided into two types according to the mechanisms that affect nematodes. These types are divided into direct or indirect effects. The direct effects include the following: ectoparasites, endoparasites, cyst, or egg parasites producing toxins, and attack tools as special devices. However, the indirect effect comprises two groups: paralyzing toxins and the effect on the life cycle of nematodes. We explained the molecular mechanisms for determining the suitable conditions in brief and clarified the potential for increasing the efficacy of NF to highly impact sustainable agriculture in two ways: directly and indirectly.
Collapse
Affiliation(s)
- Laith Khalil Tawfeeq Al-Ani
- Department of Plant Protection, College of Agriculture, University of Baghdad, Baghdad, Iraq
- School of Biology Science, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | | | | | - Liliana Aguilar-Marcelino
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Jiutepec, Mexico
| |
Collapse
|
23
|
González-Pérez E, Ortega-Amaro MA, Bautista E, Delgado-Sánchez P, Jiménez-Bremont JF. The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:34-43. [PMID: 35217328 DOI: 10.1016/j.plaphy.2022.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 05/28/2023]
Abstract
Species of the entomopathogenic fungi Metarhizium are used worldwide as biocontrol agents. Recently, other lifestyles have been associated with some Metarhizium species, which include their role as saprophytes, endophytes, and plant growth promoters. Herein, the effect of three Metarhizium anisopliae strains on the growth of Arabidopsis thaliana plantlets was evaluated using an in vitro split system. Arabidopsis fresh weight and total chlorophyll content significantly increased 7 days post-inoculation with the three Metarhizium anisopliae strains evaluated. The primary root length was promoted by all fungal strains without physical contact, whereas in direct contact primary root growth was inhibited. Volatile organic compounds identification revealed that during the interaction of Arabidopsis with Ma-20 and Ma-25 strains only β-caryophyllene was produced, whereas in the Arabidopsis-Ma-28 interaction o-cymene was mainly emitted. The plant growth promoting effect induced by Metarhizium anisopliae strains was also achieved in Arabidopsis, tomato and maize plants grown in soil pots. Our results showed that three Metarhizium anisopliae strains were able to increase plant fresh weight, opening promising perspectives for field production, with the advantages of insect biocontrol and plant growth promotion induced by this species of fungus.
Collapse
Affiliation(s)
- Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico; Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, México
| | - Elihú Bautista
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - Pablo Delgado-Sánchez
- Laboratorio de Biotecnología, Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico.
| |
Collapse
|
24
|
Root-Associated Entomopathogenic Fungi Modulate Their Host Plant's Photosystem II Photochemistry and Response to Herbivorous Insects. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010207. [PMID: 35011439 PMCID: PMC8746981 DOI: 10.3390/molecules27010207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
The escalating food demand and loss to herbivores has led to increasing interest in using resistance-inducing microbes for pest control. Here, we evaluated whether root-inoculation with fungi that are otherwise known as entomopathogens improves tomato (Solanum lycopersicum) leaflets' reaction to herbivory by Spodoptera exigua (beet armyworm) larvae using chlorophyll fluorescence imaging. Plants were inoculated with Metarhizium brunneum or Beauveria bassiana, and photosystem II reactions were evaluated before and after larval feeding. Before herbivory, the fraction of absorbed light energy used for photochemistry (ΦPSII) was lower in M. brunneum-inoculated than in control plants, but not in B. bassiana-inoculated plants. After herbivory, however, ΦPSII increased in the fungal-inoculated plants compared with that before herbivory, similar to the reaction of control plants. At the same time, the fraction of energy dissipated as heat (ΦNPQ) decreased in the inoculated plants, resulting in an increased fraction of nonregulated energy loss (ΦNO) in M. brunneum. This indicates an increased singlet oxygen (1O2) formation not detected in B. bassiana-inoculated plants, showing that the two entomopathogenic fungi differentially modulate the leaflets' response to herbivory. Overall, our results show that M. brunneum inoculation had a negative effect on the photosynthetic efficiency before herbivory, while B. bassiana inoculation had no significant effect. However, S. exigua leaf biting activated the same compensatory PSII response mechanism in tomato plants of both fungal-inoculated treatments as in control plants.
Collapse
|