1
|
Grecco KD, Santos KR, Aragão FB, Galter IN, Lascola MB, Dos Santos SN, Trindade JL, Silva EZM, Fernandes MN, Matsumoto ST. Toxicogenetic, biochemical, and physiological effects of azoxystrobin and carbendazim fungicides over Lactuca sativa L. and Phaseolus vulgaris L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44036-44048. [PMID: 38922465 DOI: 10.1007/s11356-024-34013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.
Collapse
Affiliation(s)
- Kalia Dável Grecco
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Kristian Rodolfo Santos
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil.
| | - Francielen Barroso Aragão
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Iasmini Nicoli Galter
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Mylena Boeque Lascola
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Sara Nascimento Dos Santos
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Juliana Lima Trindade
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Enzo Zini Moreira Silva
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Center for Biological and Health Sciences, Federal University of São Carlos, Rodovia Washington Luiz, Km 235 Monjolinho, São Carlos, São Paulo, SP, 13565-905, Brazil
| | - Silvia Tamie Matsumoto
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Av. Fernando Ferrari, 514 Goiabeiras, Vitoria, ES, 29075-910, Brazil
| |
Collapse
|
2
|
Zhu Y, Ma M, Li H. Functional Roles of Two β-Tubulin Isotypes in Regulation of Sensitivity of Colletotrichum fructicola to Carbendazim. PHYTOPATHOLOGY 2024; 114:690-699. [PMID: 37942861 DOI: 10.1094/phyto-08-23-0285-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Colletotrichum fructicola is the major pathogen of anthracnose in tea-oil trees in China. Control of anthracnose in tea-oil trees mainly depends on the application of chemical fungicides such as carbendazim. However, the current sensitivity of C. fructicola isolates in tea-oil trees to carbendazim has not been reported. Here, we tested the sensitivity of 121 C. fructicola isolates collected from Guangdong, Guangxi, Guizhou, Hainan, Hunan, Jiangsu, and Jiangxi provinces in China to carbendazim. One hundred and ten isolates were sensitive to carbendazim, and 11 isolates were highly resistant to carbendazim. The growth rates, morphology, and pathogenicity of three resistant isolates were identical to those of three sensitive isolates, which indicates that these resistant isolates could form a resistant population under carbendazim application. These results suggest that carbendazim should not be the sole fungicide in control of anthracnose in tea-oil trees; other fungicides with different mechanisms of action or mixtures of fungicides could be considered. In addition, bioinformatics analysis identified two β-tubulin isotypes in C. fructicola: Cfβ1tub and Cfβ2tub. E198A mutation was discovered in the Cfβ2tub of three carbendazim-resistant isolates. We also investigated the functional roles of two β-tubulin isotypes. CfΔβ1tub exhibited slightly increased sensitivity to carbendazim and normal phenotypes. Surprisingly, CfΔβ2tub was highly resistant to carbendazim and showed a seriously decreased growth rate, conidial production, pathogenicity, and abnormal hyphae morphology. Promoter replacement mutant CfΔβ2-2×β1 showed partly restored phenotypes, but it was still highly resistant to carbendazim, which suggests that Cfβ1tub and Cfβ2tub are functionally interchangeable to a certain degree.
Collapse
Affiliation(s)
- Yuanye Zhu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Mengting Ma
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| |
Collapse
|
3
|
Parada J, Tortella G, Seabra AB, Fincheira P, Rubilar O. Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics (Basel) 2024; 13:215. [PMID: 38534650 DOI: 10.3390/antibiotics13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L-1 NCuO + 1.56 mg L-1 TEB, and 40 mg L-1 NCuO + 12 µg L-1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L-1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.
Collapse
Affiliation(s)
- Javiera Parada
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Paola Fincheira
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
4
|
Shi D, Wang J, Cao Y, Zhang Z, Li X, Mbadianya JI, Chen C. Overexpression of FgPtp3 Is Involved in Fludioxonil Resistance in Fusarium graminearum by Inhibiting the Phosphorylation of FgHog1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12807-12818. [PMID: 37585613 DOI: 10.1021/acs.jafc.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB), a destructive disease in cereal crops worldwide. Resistance to fludioxonil has been reported in F. graminearum in the field, but its underlying mechanisms remain elusive. In this study, 152 fludioxonil-resistant (FR) mutants of F. graminearum were obtained by selection in vitro. The FR strains exhibited dramatically impaired fitness, but only 7 of the 13 analyzed strains possessed mutations in genes previously reported to underlie fludioxonil resistance. Comparison between the FR-132 strain and its parental strain PH-1 using whole genome sequencing revealed no mutations between them, but transcriptome analysis, after the strains were treated with 0.5 μg/mL fludioxonil, revealed 2778 differently expressed genes (DEGs) mapped to 96 KEGG pathways. Investigation of DEGs in the MAPK pathway showed that overexpression of the tyrosine protein phosphatase FgPtp3, but not FgPtp2, enhanced fludioxonil resistance. Further analysis found that FgPtp3 interacted directly with FgHog1 to regulate the phosphorylation of Hog1, and overexpressed FgPtp3 in PH-1 could significantly suppress the phosphorylation of FgHog1 and hinder signal transmission of the HOG-MAPK pathway. Overall, FgPtp3 plays a significant role in regulating fludioxonil resistance in F. graminearum.
Collapse
Affiliation(s)
- Dongya Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Cao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jane Ifunanya Mbadianya
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Zhu Y, Ma M, Zhang S, Li H. Baseline Sensitivity and Resistance Mechanism of Colletotrichum Isolates on Tea-Oil Trees of China to Tebuconazole. PHYTOPATHOLOGY 2023; 113:1022-1033. [PMID: 36576403 DOI: 10.1094/phyto-09-22-0325-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colletotrichum fungi could cause anthracnose, a destructive disease in tea-oil trees. The sterol demethylation inhibitor (DMI) tebuconazole has been widely used in controlling plant diseases for many years. However, the baseline sensitivity of Colletotrichum isolates on tea-oil trees to tebuconazole has not been determined. In this study, the sensitivity to tebuconazole of 117 Colletotrichum isolates from tea-oil trees of seven provinces in southern China was tested. The mean effective concentration resulted in 50% mycelial growth inhibition (EC50), 0.7625 μg/ml. The EC50 values of 100 isolates (83%) were lower than 1 μg/ml, and those of 20 isolates (17%) were higher than 1 μg/ml, which implied that resistance has already occurred in Colletotrichum isolates on tea-oil trees. The EC50 values of the most resistant and sensitive isolates (named Ca-R and Cc-S1, respectively) were 1.8848 and 0.1561 μg/ml, respectively. The resistance mechanism was also investigated in this study. A gene replacement experiment indicated that the CYP51A/B gene of resistant isolates Ca-R and Cf-R1 cannot confer Cc-S1 full resistance to DMI fungicides, although three single point mutants, Cc-S1CYP51A-T306A and Cc-S1CYP51A-R478K, exhibited decreased sensitivity to DMI fungicides. This result suggested that resistance of Colletotrichum isolates was partly caused by mutations in CYP51A. Moreover, the expression level of CYP51A/B was almost identical among Ca-R, Cf-R1, Cc-S1, and Cc-S1CYP51A point mutants, which indicated that the resistance was irrelevant to the expression level of CYP51A, and other nontarget-based resistance mechanisms may exist. Our results could help to guide the application of DMI fungicides and be useful for investigating the mechanism of resistance.
Collapse
Affiliation(s)
- Yuanye Zhu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Mengting Ma
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| |
Collapse
|
6
|
Wu L, Wu Z, Zhao F, Hahn M, Zhou M, Hou Y. Activity and cell toxicology of fluazinam on Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105253. [PMID: 36464359 DOI: 10.1016/j.pestbp.2022.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Fusarium graminearum is an important plant pathogen and the causal agent of Fusarium head blight (FHB). At present, the principal method of controlling FHB is through fungicides. Fluazinam is an agent with strong broad-spectrum antifungal activity and has been used to control many diseases. However, there are no reported uses of fluazinam for controlling FHB. This study reports the activity and cell toxicology mechanisms of fluazinam on the filamentous fungus F. graminearum and its effect on fungal growth and development. The activity of fluazinam was tested for 95 wild-type field strains of F. graminearum. The EC50 values (the 50% effective concentration) of fluazinam for inhibition of mycelial growth and spore germination ranged from 0.037 μg/ml to 0.179 μg/ml and from 0.039 μg/ml to 0.506 μg/ml, respectively. The fluazinam sensitivity of these strains varied in 4.9 and 13.0 folds, implying that the target of the fungicide remained unchanged. After treatment with 0.3 μg/ml (≈EC90) fluazinam, the production of conidia was reduced, and the cell wall and cell membrane had shrunked; the cell nucleus and septum morphology, cell membrane permeability, and sexual development were not affected. When treated with 0.1 μg/ml (≈EC50) or 0.3 μg/ml fluazinam, the mycelial respiration and deoxynivalenol (DON) synthesis of F. graminearum were decreased. Confocal images showed that the formation of toxisomes was disturbed after fluazinam treatment, suggesting that fluazinam reduces DON synthesis by inhibiting toxisome formation. Infection of wheat coleoptiles revealed that fluazinam had a strong protective activity against F. graminearum. At 250 μg/ml fluazinam the control efficacy of protective treatments reached 100% and controlled strains resistant to carbendazim. These results contribute to the understanding of the mode of action of fluazinam and its application.
Collapse
Affiliation(s)
- Luoyu Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province 210095, China
| | - Zhiwen Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province 210095, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province 210095, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, Germany
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province 210095, China.
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province 210095, China.
| |
Collapse
|
7
|
Mao Y, Zhao B, Cao Z, Shen J, Xu S, Wu J, Li T, Wang J, Statsyuk N, Shcherbakova L, Zhou M, Duan Y. Risk assessment and molecular mechanism of Fusarium incarnatum resistance to phenamacril. PEST MANAGEMENT SCIENCE 2022; 78:3394-3403. [PMID: 35514230 DOI: 10.1002/ps.6967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/03/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cucumber fruit rot (CFR) caused by Fusarium incarnatum is a devastating fungal disease in cucumber. In recent years, CFR has occurred frequently, resulting in serious yield and quality losses in China. Phenamacril exhibits a specific antifungal activity against Fusarium species. However, no data for phenamacril against F. incarnatum is available. RESULTS The sensitivity of 80 F. incarnatum strains to phenamacril was determined. The half maximal effective concentration (EC50 ) values ranged from 0.1134 to 0.3261 μg mL-1 with a mean EC50 value of 0.2170 ± 0.0496 μg mL-1 . A total of seven resistant mutants were obtained from 450 mycelial plugs by phenamacril-taming on potato dextrose agar (PDA) plates with 10 μg mL-1 of phenamacril, and the resistant frequency was 1.56%. Phenamacril-resistant mutants showed decreased mycelial growth, conidiation and virulence as compared with the corresponding wild-type strains, indicating that phenamacril resistance suffered a fitness penalty in F. incarnatum. In addition, using sequence analysis, the point mutations of S217P or I424S were discovered in Fimyosin-5 (the target of phenamacril). The site-directed mutagenesis of the S217P, P217S, I424S and S424I substitutions were constructed to reveal the relationship between the point mutations and phenamacril resistance. The results strongly demonstrated that the mutations of S217P and I424S in Fimyosin-5 conferred phenamacril-resistance in F. incarnatum. CONCLUSION Phenamacril-resistant mutants were easily induced and their resistance level was high. The S217P or I424S substitutions in Fimyosin-5 conferring phenamacril resistance were detected and futherly verified by transformation assay with site-directed mutagenesis. Thus, we proposed that the resistance development of F. incarnatum to phenamacril is high risk. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoquan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Cao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jinghan Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shaohua Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian Wu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Natalia Statsyuk
- All-Russian Research Institute of Phytopathology, Moscow, Russia
| | | | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Raorane CJ, Raj V, Lee JH, Lee J. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches. Int J Food Microbiol 2022; 362:109492. [PMID: 34861563 DOI: 10.1016/j.ijfoodmicro.2021.109492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022]
Abstract
Botrytis cinerea is a common necrotrophic fungal pathogen, leading cause of gray mold diseases in plants and fruit. Several benzimidazoles are used for controlling B. cinerea-associated infection in fruit and vegetables, but benzimidazoles resistance restricts its further uses. Therefore, it is a need for alternative drugs that control B. cinerea. Indoles are multi-faceted compounds and their structural similarities with antifungal benzimidazoles make them a choice for further investigation. Thus, the main objective of the study was to investigate the antifungal potencies of indoles against B. cinerea and to decipher the molecular mechanism involved. We conducted in vitro antifungal assays, fruit assays, and computational studies of interactions between indoles and fungal microtubule polymerase. Of the 16 halogenated indoles examined, 4-fluoroindole, 5-fluoroindole, and 7-fluoroindole (MIC range 2-5 mg/L) were found to be more potent than the fungicides fluconazole and natamycin. Fluoroindoles inhibited or eradicated B. cinerea infections in tangerines and strawberries. Molecular dynamic simulation and density functional theory showed that these fluoroindoles stably interacted with microtubule polymerase. Quantitative structure-activity relationship analyses of halogenated indoles revealed that the presence of a fluoro group in the indole moiety is essential for anti-Botrytis activity. The plausibility of the underlying antifungal mechanism was confirmed by in vitro tubulin polymerization. Collective outcomes of this study indicates that fluoroindoles could be used as alternative fungicidal agents against B. cinerea.
Collapse
Affiliation(s)
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
9
|
Raj V, Raorane CJ, Lee JH, Lee J. Appraisal of Chitosan-Gum Arabic-Coated Bipolymeric Nanocarriers for Efficient Dye Removal and Eradication of the Plant Pathogen Botrytis cinerea. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47354-47370. [PMID: 34596375 DOI: 10.1021/acsami.1c12617] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The treatment of textile wastewater comprising many dyes as contaminants endures an essential task for environmental remediation. In addition, combating antifungal multidrug resistance (MDR) is an intimidating task, specifically owing to the limited options of alternative drugs with multitarget drug mechanisms. Incorporating natural polymeric biomaterials for drug delivery provides desirable properties for drug molecules, effectively eradicating MDR fungal growth. The current study fabricated the bipolymeric drug delivery system using chitosan-gum arabic-coated liposome 5ID nanoparticles (CS-GA-5ID-LP-NPs). This study focused on improving the solubility and sustained release profile of 5I-1H-indole (5ID). These NPs were characterized and tested mechanically as a dye adsorbent as well as their antifungal potencies against the plant pathogen, Botrytis cinerea. CS-GA-5ID-LP-NPs showed 71.23% congo red dye removal compared to crystal violet and phenol red from water and effectively had an antifungal effect on B. cinerea at 25 μg/mL MIC concentrations. The mechanism of the inhibition of B. cinerea via CS-GA-5ID-LP-NPs was attributed to stabilized microtubule polymerization in silico and in vitro. This study opens a new avenue for designing polymeric NPs as adsorbents and antifungal agents for environmental and agriculture remediation.
Collapse
Affiliation(s)
- Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Functional roles of α 1-, α 2-, β 1-, β 2-tubulin in vegetative growth, microtubule assembly and sexual reproduction of Fusarium graminearum. Appl Environ Microbiol 2021; 87:e0096721. [PMID: 34378994 DOI: 10.1128/aem.00967-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plant pathogen Fusarium graminearum contains two α-tubulin (α1 and α2) isotypes and two β-tubulin isotypes (β1 and β2). The functional roles of these tubulins in microtubule assembly are not clear. Previous studies showed that α1- and β2-tubulin deletion mutants showed severe growth defects and hypersensitivity to carbendazim, which have not been well explained. Here, we investigated the interaction between α- and β-tubulin of F. graminearum. Co-localization experiments demonstrated that β1- and β2-tubulin are co-localized. Co-immunoprecipitation experiment suggested that β1-tubulin binds to both α1- and α2-tubulin and β2-tubulin can also bind to α1- or α2-tubulin. Interestingly, deletion of α1-tubulin increased the interaction between β2-tubulin and α2-tubulin. Microtubule observation assays showed that deletion of α1-tubulin completely disrupted β1-tubulin-containing microtubules and significantly decreased β2-tubulin-containing microtubules. Deletion of α2-, β1- or β2-tubulin respectively had no obvious effect on the microtubule cytoskeleton. However, microtubules in α1- and β2-tubulin deletion mutants were easily depolymerized in the presence of carbendazim. The sexual reproduction assay indicates that α1- and β1-tubulin deletion mutants could not produce asci and ascospores. These results implied that α1-tubulin may be essential for the microtubule cytoskeleton. However, our Δα1-2×α2 mutant (α1-tubulin deletion mutant containing two copies of α2-tubulin) exhibited a normal microtubule network, growth and sexual reproduction. Interestingly, the Δα1-2×α2 mutant was still hypersensitive to carbendazim. In addition, both β1-tubulin and β2-tubulin were found to bind the mitochondrial outer membrane voltage-dependent anion channel (VDAC), indicating they could regulate the function of VDAC. Importance: In this study, we found that F. graminearum contains four different α-/β-tubulin heterodimers (α1-β1, α1-β2, α2-β1 and α2-β2) and they assemble together into a single microtubule. Moreover, α1-, α2-tubulins are functionally interchangeable in microtubule assembly, vegetative growth and sexual reproduction. These results provide more insights into functional roles of different tubulins of F. graminearum which could be helpful for purification of tubulin heterodimers and developing new tubulin-binding agents.
Collapse
|
11
|
Zhao Y, Chi M, Sun H, Qian H, Yang J, Huang J. The FgCYP51B Y123H Mutation Confers Reduced Sensitivity to Prochloraz and Is Important for Conidiation and Ascospore Development in Fusarium graminearum. PHYTOPATHOLOGY 2021; 111:1420-1427. [PMID: 33399013 DOI: 10.1094/phyto-09-20-0431-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium graminearum is one of the most important causal agents of Fusarium head blight disease and is controlled mainly by chemicals such as demethylation inhibitor (DMI) fungicides. FgCYP51B is one of the DMI targets in F. graminearum, and Tyrosine123 (Y123) is an important amino acid in F. graminearum CYP51B, located in one of predicted substrate binding pockets based on the binding mode between DMIs and CYP51B. Previous studies suggest that resistance to DMI fungicides is attributed primarily to point mutations in the CYP51 gene and that the Y123H mutation in F. verticillioides CYP51 confers prochloraz resistance in the laboratory. To investigate the function of FgCYP51B Y123 residue in the growth and development, pathogenicity, and DMI resistance, we generated and analyzed the FgCYP51B Y123H mutant. Results revealed that the Y123H mutation led to reduced conidial sporulation and affected ascospore development; moreover, the mutation conferred reduced sensitivity to prochloraz. Quantitative PCR and molecular docking were performed to investigate the resistance mechanism. Results indicated that Y123H mutation changed the target gene expression and decreased the binding affinity of FgCYP51 to prochloraz. These results will attract more attention to the potential DMI-resistant mutation of F. graminearum and increase our understanding of the DMI resistance mechanism.
Collapse
Affiliation(s)
- Yanxiang Zhao
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengyu Chi
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Hunlin Sun
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Hengwei Qian
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jinguang Huang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
12
|
Zhu Y, Zhang Y, Liu N, Ren W, Hou Y, Duan Y, Song X, Zhou M. The Dis1/Stu2/XMAP215 Family Gene FgStu2 Is Involved in Vegetative Growth, Morphology, Sexual and Asexual Reproduction, Pathogenicity and DON Production of Fusarium graminearum. Front Microbiol 2020; 11:545015. [PMID: 33329417 PMCID: PMC7714731 DOI: 10.3389/fmicb.2020.545015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Abstract
The conserved Dis1/Stu2/XMAP215 microtubule association proteins (MAPs) family plays an important role in microtubule dynamics, nucleation, and kinetochore-microtubule attachments. However, function of Dis1/Stu2/XMAP215 homolog in plant pathogenic fungi has not been determined. Here, we identified and investigated the Dis1/Stu2/XMAP215 homolog (FGSG_10528) in Fusarium graminearum (FgStu2p). Co-localization experiment and co-immunoprecipitation (Co-IP) assay demonstrated that FgStu2p is a microtubule associated protein. Besides, FgStu2 could also interact with Fgγ-tubulin and presumed FgNdc80, which suggested that the FgStu2 gene might associate with microtubule nucleation and kinetochore-microtubule attachments like Dis1/Stu2/XMAP215 homologs in other species. Moreover, the FgStu2 promoter replacement mutants (FgStu2-Si mutants) produced twisted hyphae and decreased growth rate. Microscope examination further showed that the microtubule polymerization was reduced in FgStu2-Si mutants, which could account for the aberrant morphology. Although the microtubule polymerization was affected in FgStu2-Si mutants, the FgStu2-Si mutants didn't show highly increased sensitivity to anti-microtubule fungicide carbendazim (methyl benzimidazol-2-ylcarbamate [MBC]). In addition, the FgStu2-Si mutants exhibited curved conidia, decreased number of conidial production, blocked ability of perithecia production, decreased pathogenicity and deoxynivalenol (DON) production. Taken together, these results indicate that the FgStu2 gene plays a crucial role in vegetative growth, morphology, sexual reproduction, asexual reproduction, virulence and deoxynivalenol (DON) production of F. graminearum, which brings new insights into the functions of Dis1/Stu2/XMAP215 homolog in plant pathogenic fungi.
Collapse
Affiliation(s)
- Yuanye Zhu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanshuai Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Weichao Ren
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiushi Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Song XS, Xiao XM, Gu KX, Gao J, Ding SC, Zhou MG. The ASK1 gene regulates the sensitivity of Fusarium graminearum to carbendazim, conidiation and sexual production by combining with β 2-tubulin. Curr Genet 2020; 67:165-176. [PMID: 33130939 DOI: 10.1007/s00294-020-01120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022]
Abstract
β-tubulin, a component of microtubules, is involved in a wide variety of roles in cell shape, motility, intracellular trafficking and regulating intracellular metabolism. It has been an important fungicide target to control plant pathogen, for example, Fusarium. However, the regulation of fungicide sensitivity by β-tubulin-interacting proteins is still unclear. Here, ASK1 was identified as a β-tubulin interacting protein. The ASK1 regulated the sensitivity of Fusarium to carbendazim (a benzimidazole carbamate fungicide), and multiple cellular processes, such as chromatin separation, conidiation and sexual production. Further, we found the point mutations at 50th and 198th of β2-tubulin which caused carbendazim resistance decreased the binding between β2-tubulin and ASK1, resulting in the deactivation of ASK1. ASK1, on the other hand, competed with carbendazim to bind to β2-tubulin. The point mutation F167Y in β2-tubulin broke the intermolecular H-bonds and salt bridges between β2-tubulin and ASK1, which reduced the competitive effect of ASK1 to carbendazim and resulted in the similar carbendazim sensitivities in F167Y-ΔASK1 and F167Y. These findings have powerful implications for efforts to understand the interaction among β2-tubulin, its interacting proteins and fungicide, as well as to discover and develop new fungicide against Fusarium.
Collapse
Affiliation(s)
- Xiu-Shi Song
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Mei Xiao
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Kai-Xin Gu
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Jing Gao
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Shao-Chen Ding
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China
| | - Ming-Guo Zhou
- Key Laboratory of Pesticides, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing, 210095, China. .,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Genome-Wide Identification and Characterization of Fusarium graminearum-Responsive lncRNAs in Triticum aestivum. Genes (Basel) 2020; 11:genes11101135. [PMID: 32992604 PMCID: PMC7601646 DOI: 10.3390/genes11101135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/24/2023] Open
Abstract
Although the war between wheat and Fusarium has been widely investigated for years, long noncoding RNAs (lncRNAs), which have been proven to regulate important processes in the development and stress responses of plants, are still poorly known in wheat against Fusarium. Herein, we systematically reveal the roles of wheat lncRNAs in the process of Fusarium graminearum infection by high-throughput RNA sequencing. Well over 4130 of the total 4276 differentially expressed lncRNAs were already specifically expressed at 12 h postinoculation (hpi), but only 89 of these were specifically expressed at 24 hpi, indicating that the initial stage was the crucial stage for lncRNA-mediated gene regulation of wheat defense against F. graminearum. Target analysis showed the lncRNAs participated in various biological stress processes and had exclusive regulation models at different infection stages. Further H2O2 accumulation and protein ubiquitination assays supported this idea. Moreover, two lncRNAs (XLOC_302848 and XLOC_321638) were identified as Fusarium seedling blight resistance candidates by lncRNA-target expression pattern validation, and two lncRNAs (XLOC_113815, XLOC_123624) were Fusarium head blight resistance potential regulators by cross-validating the RNAseq data with the refined meta-QTL of wheat FHB resistance. These findings extend our knowledge on wheat lncRNAs response to F. graminearum attack and provide new insights for the functional and molecular research of future interactions between wheat and Fusarium.
Collapse
|
15
|
Zhu Y, Zhang Y, He Z, Duan Y, Li Y, Wang J, Zhou M. Detrimental Effects of Multiple Mutations in Position 240 of Fusarium graminearum β 2-Tubulin. PHYTOPATHOLOGY 2020; 110:1522-1529. [PMID: 32352861 DOI: 10.1094/phyto-11-19-0409-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium graminearum causes Fusarium head blight (FHB), a destructive disease of cereal crops worldwide. Carbendazim (methylbenzimidazol-2-ylcarbamate [MBC]) is widely used for controlling FHB. A previous study showed that the F240L mutation in the β2-tubulin of F. graminearum (Fgβ2-tubulin) confers hypersensitivity to MBC. Whether the substitution of phenylalanine by other amino acids in position 240 of the Fgβ2-tubulin gene also confers hypersensitivity to MBC is unknown. Moreover, the biological fitness of these mutants is poorly understood. In this study, we substituted position 240 of Fgβ2-tubulin with other amino acids. We found that the F240A, F240E, F240I, and F240Y mutations in Fgβ2-tubulin could also confer F. graminearum hypersensitivity to MBC, although the effective concentration resulting in 50% inhibition (EC50) differed among the mutations. The F240G mutation, in contrast, decreased the sensitivity to MBC. In addition, a molecular docking assay indicated that the binding affinity between Fgβ2-tubulin and MBC were increased by the F240A, F240E, F240I, and F240Y mutations but decreased by the F240G mutation. All mutants had normal conidial morphology, but the growth rates and pathogenicity of the F240A, F240E, F240G, F240I, and F240Y mutants were significantly decreased. Moreover, the F240A and F240G mutants produced twisted hyphae. In addition, microtubules were sparse and rarely observed in β2F240A-EGFP, β2F240E-EGFP, and β2F240G-EGFP. These results indicate that position 240 (phenylalanine) is not only vital to the function of Fgβ2-tubulin but also plays an important role in regulating the sensitivity of F. graminearum to MBC. Any mutation in this site would be detrimental to survival.
Collapse
Affiliation(s)
- Yuanye Zhu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Yuanshuai Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Zongzhe He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Yanjun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; and State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| |
Collapse
|
16
|
Liu S, Fu L, Wang S, Chen J, Jiang J, Che Z, Tian Y, Chen G. Carbendazim Resistance of Fusarium graminearum From Henan Wheat. PLANT DISEASE 2019; 103:2536-2540. [PMID: 31424998 DOI: 10.1094/pdis-02-19-0391-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium head blight, also called scab, is caused by Fusarium graminearum and is one of the most important destructive diseases of wheat. The frequency of carbendazim resistance in 1,132 isolates of F. graminearum recovered from fields in different regions of Henan Province in 2016, 2017, and 2018 was determined. A total of 31 F. graminearum isolates resistant to carbendazim were detected, including 30 moderately resistant isolates and one highly resistant isolate. The frequency of resistance of F. graminearum isolates to carbendazim was 2.7%. The range of effective concentration (EC50) values of 1,101 sensitive isolates and 30 moderately resistant isolates was 0.08 to 0.98 μg ml-1 and 2.73 to 13.28 μg ml-1, respectively. The mean ± SD EC50 value was 0.55 ± 0.13 μg ml-1 and 5.61 ± 2.58 μg ml-1, respectively. The EC50 value of the highly resistant isolate was 21.12 μg ml-1. Point mutation types of the carbendazim-resistant isolates were characterized by cloning the β2-tubulin gene of 31 resistant isolates. Three point mutation types at amino acids F167Y, E198Q, and E198L in the β2-tubulin gene of resistant isolates were identified. Among 31 resistant isolates, the frequency of point mutation types in F167Y, E198Q, and E198L of the β2-tubulin gene was 71.0, 25.8, and 3.2%, respectively. The data indicate that F. graminearum has developed resistance to carbendazim in Henan Province, and single point mutations at amino acid F167Y were the predominant type of mutation detected.
Collapse
Affiliation(s)
- Shengming Liu
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Liuyuan Fu
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuan Wang
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Jinpeng Chen
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Jia Jiang
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiping Che
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuee Tian
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Genqiang Chen
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
17
|
Intron-mediated regulation of β-tubulin genes expression affects the sensitivity to carbendazim in Fusarium graminearum. Curr Genet 2019; 65:1057-1069. [DOI: 10.1007/s00294-019-00960-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
|
18
|
Chen D, Wu C, Hao C, Huang P, Liu H, Bian Z, Xu JR. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum. Environ Microbiol 2018; 20:4009-4021. [PMID: 30307105 DOI: 10.1111/1462-2920.14441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022]
Abstract
The wheat head blight fungus Fusarium graminearum has two highly similar beta-tubulin genes with overlapping functions during vegetative growth but only TUB1 is important for sexual reproduction. To better understand their functional divergence during ascosporogenesis, in this study we characterized the sequence elements important for stage-specific functions of TUB1. Deletion of TUB1 blocked the late but not initial stages of perithecium formation. Perithecia formed by tub1 mutant had limited ascogenous hyphae and failed to develop asci. Silencing of TUB1 by MSUD also resulted in defects in ascospore formation. Interestingly, the 3'-UTR of TUB1 was dispensable for growth but essential for its function during sexual reproduction. RIP mutations that specifically affected Tub1 functions during sexual reproduction also were identified in two ascospore progeny. Furthermore, site-directed mutagenesis showed that whereas the non-editable mutations at three A-to-I RNA editing sites had no effects, the N347D (not T362D or I368V) edited mutation affected ascospore development. In addition, the F167Y, but not E198K or F200Y, mutation in TUB1 conferred tolerance to carbendazim and caused a minor defect in sexual reproduction. Taken together, our data indicate TUB1 plays an essential role in ascosporogenesis and sexual-specific functions of TUB1 require stage-specific RNA processing and Tub1 expression.
Collapse
Affiliation(s)
- Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|