1
|
Caramês ETS, de Moraes-Neto VF, Bertozzi BG, da Silva LP, Villa JEL, Pallone JAL, Rocha LO, Correa B. Identification of Fusarium sambucinum species complex by surface-enhanced Raman spectroscopy and XGBoost algorithm. Food Chem 2025; 480:143848. [PMID: 40117817 DOI: 10.1016/j.foodchem.2025.143848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/01/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Rapid and reliable identification of Fusarium fungi is crucial, due to their role in food spoilage and potential toxicity. Traditional identification methods are often time-consuming and resource-intensive. This study explores the use of surface-enhanced Raman spectroscopy (SERS) to identify four species from the Fusarium sambucinum species complex isolated from barley. SERS spectra from 60 samples was acquired using gold nanoparticles for signal enhancement and the eXtreme Gradient Boosting (XGBoost) algorithm was applied for classification. The method achieved 100 % precision, recall, accuracy, and F1-score, thereby demonstrating excellent performance. Regarding the chemical interpretability, key spectral features at 495, 546, 764, 1228, 1274, and 1605 cm-1 were revealed by XGBoost and correlated to the differences in chemical composition of fungi; particularly related to chitin, metabolites, and protein content. Therefore, SERS and XGBoost have great potential to classify a wide variety of fungi and other microorganisms.
Collapse
Affiliation(s)
- Elem T S Caramês
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Venancio F de Moraes-Neto
- Department of Food Science, School of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Bruno G Bertozzi
- Department of Food Science, School of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Leandro P da Silva
- Institute of Chemistry, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Javier E L Villa
- Institute of Chemistry, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil.
| | - Juliana A L Pallone
- Department of Food Science, School of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Benedito Correa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil.
| |
Collapse
|
2
|
Shaizadinova A, Amanzholova M, Rukavitsina I, Abeldenov S, Zhumakayev AR. CRISPR/Cas12a-based method coupled with isothermal amplification to identify Alternaria spp. isolated from wheat grain samples. Front Microbiol 2025; 15:1468336. [PMID: 39881979 PMCID: PMC11775006 DOI: 10.3389/fmicb.2024.1468336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Alternaria fungal species are considered major plant pathogens, infecting various crops and resulting in significant agricultural losses. Additionally, these species can contaminate grain with multiple mycotoxins that are harmful to humans and animals. Efficient pest management relies on timely detection and identification of phytopathogens in plant and grain samples, facilitating prompt selection of a crop protection strategy. Conventional identification tools, such as morphological characterization and identification based on polymerase chain reaction (PCR)-based methods, are time-consuming and laboratory-bound, limiting their implementation for on-site diagnostics essential in the agricultural industry. Isothermal amplification methods, including nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA), enable nucleic acid amplification at constant temperatures, making them ideal for point-of-care diagnostics without the need for thermal cycling equipment. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a)-based identification, coupled with such isothermal amplification methods, represents an emerging nucleic acid-based technology for detecting plant pathogens at high accuracy and sensitivity. This study aimed to develop a CRISPR/Cas12a-based method integrated with RPA amplification for specific detection of Alternaria spp. isolated from wheat grain samples. The developed method targeted the β-tubulin gene was successfully identified Alternaria strains within a 20-min RPA amplification followed by a 30-min CRISPR/Cas12a reaction and visualization of results. Specificity test included pathogenic fungal species commonly hosted wheat grain, such as Fusarium spp. Bipolaris sorokiniana, and Nigrospora oryzae revealed high specificity of the method for Alternaria species. Furthermore, the method exhibited high sensitivity, detecting Alternaria DNA down to 100 copies, validated by real-time fluorescence readout. A fluorescence assay was employed to visualize the results of RPA and CRISPR/Cas12a reaction, demonstrating substantial implementation potential of the method in point-of-care detection of Alternaria spp. In conclusion, we present the CRISPR/Cas12a-based method as a potentially sustainable approach for the rapid, precise, and specific nucleic-acid-based identification of Alternaria species in grain samples.
Collapse
Affiliation(s)
- Aisha Shaizadinova
- Laboratory of Molecular Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Meruyert Amanzholova
- Laboratory of Molecular Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Irina Rukavitsina
- Laboratory of Microbiology, A.I. Barayev Research and Production Centre for Grain Farming, Shortandy-1, Kazakhstan
| | - Sailau Abeldenov
- Laboratory of Molecular Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | | |
Collapse
|
3
|
Costa M, Sandoval-Denis M, Moreira G, Kandemir H, Kermode A, Buddie A, Ryan M, Becker Y, Yurkov A, Maier W, Groenewald J, Pfenning L, Crous P. Known from trees and the tropics: new insights into the Fusarium lateritium species complex. Stud Mycol 2024; 109:403-450. [PMID: 39717659 PMCID: PMC11663422 DOI: 10.3114/sim.2024.109.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/25/2024] [Indexed: 12/25/2024] Open
Abstract
The Fusarium lateritium species complex (FLSC) currently comprises 11 phylogenetic species, including accepted names such as F. lateritium, F. sarcochroum, and F. stilboides, which have mostly been reported in association with citrus and coffee. Many varieties were documented by Wollenweber & Reinking (1935), which is indicative of a wider diversity of species within this group. The lack of type material in some cases, especially for the older names, means that definition by molecular phylogeny is very difficult. In the present study, we examined 179 strains related to F. lateritium from different countries and substrates. Historic reference material, including representative strains from the Wollenweber & Reinking (1935) varieties were included in this study, DNA sequences were generated for comparison, and the morphology correlated with original descriptions to enable the correct application of older names. Strains were characterized by multi-gene phylogenetic analyses based on fragments of the β-tubulin (tub2), calmodulin (CaM), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1) genes, evaluation of morphological characters and host-substrate preferences. The biological species concept was tested by crossings in vitro. Strains previously identified as F. lateritium, F. stilboides, or one of their varieties based on morphology, were found to belong to 16 species in the FLSC, but also to species from six other species complexes (SC), including the F. citricola SC, F. heterosporum SC, F. incarnatum-equiseti SC, F. redolens SC, F. sambucinum SC, and the F. tricinctum SC. Eleven new phylogenetic and two biological species are described in the FLSC, and emended descriptions are provided for four previously described species. An epitype is designated for F. lateritium, and F. lateritium var. longum, a former variety within the FLSC, is lecto- and epitypified, and elevated to species level with a replacement name. Taxonomic novelties: New species: F. aurantii M.M. Costa, Sand.-Den. & Crous, F. chlamydocopiosum M.M. Costa, Sand.-Den. & Crous, F. citri-sinensis L. Zhao & J.X. Deng, F. coffeibaccae M.M. Costa, L.H. Pfenning, Sand.-Den. & Crous, F. crocatum M.M. Costa, Sand.-Den. & Crous, F. malawiense M.M. Costa, Sand.-Den. & Crous, F. microcyclum M.M. Costa, Sand.-Den. & Crous, F. oliniae M.M. Costa, Sand.-Den. & Crous; F. rufum M.M. Costa, Sand.-Den. & Crous, F. stramineum M.M. Costa, Sand.-Den. & Crous, F. velutinum M.M. Costa, Sand.-Den. & Crous, F. verruculosum M.M. Costa, Sand.-Den. & Crous; Replacement name: F. hanswilhelmii M.M. Costa, Sand.-Den. & Crous; Epitype (basionym): F. lateritium Nees, F. lateritium var. longum Wollenw.; Lectotype (basionym): F. lateritium var. longum Wollenw. Citation: Costa MM, Sandoval-Denis M, Moreira GM, Kandemir H, Kermode A, Buddie AG, Ryan MJ, Becker Y, Yurkov A, Maier W, Groenewald JZ, Pfenning LH, Crous PW (2024). Known from trees and the tropics: new insights into the Fusarium lateritium species complex. Studies in Mycology 109: 403-450. doi: 10.3114/sim.2024.109.06.
Collapse
Affiliation(s)
- M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - G.M. Moreira
- Department of Plant Pathology, Universidade Federal de Lavras, 37200-900, Lavras MG, Brazil
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - A. Kermode
- CAB International (CABI), Bakeham Lane, TW20 9TY Egham, Surrey, United Kingdom
| | - A.G. Buddie
- CAB International (CABI), Bakeham Lane, TW20 9TY Egham, Surrey, United Kingdom
| | - M.J. Ryan
- CAB International (CABI), Bakeham Lane, TW20 9TY Egham, Surrey, United Kingdom
| | - Y. Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11–12, 38104 Braunschweig, Germany
| | - A. Yurkov
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - W. Maier
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11–12, 38104 Braunschweig, Germany
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - L.H. Pfenning
- Department of Plant Pathology, Universidade Federal de Lavras, 37200-900, Lavras MG, Brazil
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| |
Collapse
|
4
|
Zimowska B, Ludwiczuk A, Manganiello G, Wojtanowski K, Kot I, Staropoli A, Vinale F, Nicoletti R. Fusarium and Hazelnut: A Story of Twists and Turns. AGRICULTURE 2024; 14:1080. [DOI: 10.3390/agriculture14071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In recent years, the number of reports of Fusarium in association with hazelnut (Corylus avellana) has been increasing worldwide, related to both pathogenic aptitude and endophytic occurrence. However, the assessment of the real ecological role and relevance to plant health of these fungi has been impaired by uncertainty in species identification, deriving from both the evolving taxonomic structure of the genus and an inaccurate use of molecular markers. In this paper, the characterization of two hazelnut endophytic strains isolated in Poland is reported with reference to their secondary metabolite profiles and interactions with pests and pathogens. Our results are indicative of a possible role of these strains in defensive mutualism which could be related to the production of several bioactive compounds, especially cyclohexadepsipeptides of the enniatin family. At the same time, these biochemical properties create some concern for the possible mycotoxin contamination of hazelnut products.
Collapse
Affiliation(s)
- Beata Zimowska
- Department of Plant Protection, University of Life Sciences, 20-400 Lublin, Poland
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-439 Lublin, Poland
| | - Gelsomina Manganiello
- Department of Agricultural Sciences, University of Naples ‘Federico II’, 80055 Portici, Italy
| | - Krzysztof Wojtanowski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-439 Lublin, Poland
| | - Izabela Kot
- Department of Plant Protection, University of Life Sciences, 20-400 Lublin, Poland
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples ‘Federico II’, 80055 Portici, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, 80138 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples ‘Federico II’, 80055 Portici, Italy
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
5
|
Yu H, Chang KF, Fredua-Agyeman R, Hwang SF, Strelkov SE. Diversity and Pathogenicity of Fusarium Root Rot Fungi from Canola ( Brassica napus) in Alberta, Canada. Int J Mol Sci 2024; 25:6244. [PMID: 38892432 PMCID: PMC11172839 DOI: 10.3390/ijms25116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Root rot disease poses a significant threat to canola (Brassica napus), underscoring the need for a comprehensive understanding of its causal agents for more effective disease mitigation. The composition and diversity of fungal pathogens associated with root rot of canola in Alberta, Canada, were evaluated from plant tissue samples collected in 2021 and 2022. The study revealed Fusarium spp. as the predominant pathogens found in almost all surveyed fields. Fusarium avenaceum, F. redolens, and F. solani were among the most frequently recovered species. Greenhouse trials confirmed their pathogenicity, with F. avenaceum and F. sporotrichioides found to be particularly aggressive. Additionally, F. sporotrichioides and F. commune were identified for the first time as canola root rot pathogens. Inoculation with isolates of most species resulted in significant reductions in seedling emergence, plant height, and shoot and root dry weights. Analysis of translation elongation factor 1-α (TEF-1α) and internal transcribed spacer (ITS) sequences confirmed the identity of the Fusarium spp., while concatenating the ITS and TEF-1α sequences enabled improved species differentiation. Geographic and year effects did not influence fungal diversity or aggressiveness, as determined by principal component analysis. This study emphasized the high diversity and impact of Fusarium spp. in causing canola root rot.
Collapse
Affiliation(s)
- Haitian Yu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.); (R.F.-A.)
- Institute of Food Crops, Yunnan Academy of Agricultural Science, Kunming 650205, China
| | - Kan-Fa Chang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.); (R.F.-A.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.); (R.F.-A.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.); (R.F.-A.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.Y.); (K.-F.C.); (R.F.-A.)
| |
Collapse
|
6
|
Chen YJ, Chen HJ, Chung WH. Endophytic Fungal Diversity in Cirsium kawakamii from Taiwan. J Fungi (Basel) 2023; 9:1076. [PMID: 37998881 PMCID: PMC10671896 DOI: 10.3390/jof9111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The endophytic fungal diversity of Cirsium kawakamii, a herb indigenous to Taiwan, was analyzed in this study. In addition, some fungal isolates were evaluated for the risk they pose as plant pathogens. In total, 1836 endophytic fungi were isolated from C. kawakamii from Hehuanjian, Puli Township, and Tatachia. They were classified into 2 phyla, 8 classes, 40 families, and 68 genera. Colletotrichum, Fusarium, Phomopsis, and Xylaria, (Ascomycota, Sordariomycetes) were the dominant genera. The genus accumulation curve (based on the bootstrap estimator) was non-asymptotic, with estimated richness significantly exceeding the richness captured by our sampling to date. Considering the collection time, the data indicated significant differences in the proportions of the C. kawakamii endophyte genus from Hehuanjan, Puli Township (across two seasons), and Tatachia. The Shannon and Gini-Simpson indices revealed variations in diversity, with C. kawakamii endophytes (Puli Township in winter) significantly reducing alpha diversity compared with other seasons and locations. Meanwhile, the Gini-Simpson index suggested that there were no significant differences in richness among the four sampling sites. The PCA results unveiled distinct community structures across different locations and seasons, explaining 46.73% of the total variation in fungal community composition significantly affected diversity and richness. In addition, a considerable number of Fusarium isolates exhibited harmful properties towards wheat, potatoes, and apples. It is postulated that these fungi belong to the Fusarium tricinctum species complex (FTSC).
Collapse
Affiliation(s)
- Yi-Jeng Chen
- Department of Plant Medicine, National Chiayi University, Chiayi 600, Taiwan;
| | - Hui-Juan Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
- Master Program in Plant Medicine and Good Agricultural Practice, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
7
|
Luis JM, Mehl HL, Plewa D, Kleczewski NM. Is Microdochium maydis Associated with Necrotic Lesions in the Tar Spot Disease Complex? A Culture-Based Survey of Maize in Mexico and the Midwestern United States. PHYTOPATHOLOGY 2023; 113:1890-1897. [PMID: 37294212 DOI: 10.1094/phyto-04-23-0109-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tar spot, caused by Phyllachora maydis, is an emerging disease of corn in the United States. Stromata of P. maydis are sometimes surrounded by necrotic lesions known as fisheyes and were previously reported to be caused by the fungus Microdochium maydis. The association of M. maydis with fisheye lesions has not been well documented outside of initial descriptions from the early 1980s. The objective of this work was to assess and identify Microdochium-like fungi associated with necrotic lesions surrounding P. maydis stromata using a culture-based method. In 2018, corn leaf samples with fisheye lesions associated with tar spot stromata were collected from 31 production fields across Mexico, Illinois, and Wisconsin. Cultures of pure isolates collected from Mexico believed to be M. maydis were included in the study. A total of 101 Microdochium/Fusarium-like isolates were obtained from the necrotic lesions, and 91% were identified as Fusarium spp., based on initial ITS sequence data. Multi-gene (ITS, TEF1-α, RPB1, and RPB2) phylogenies were constructed for a subset of 55 isolates; Microdochium, Cryptostroma, and Fusarium reference sequences were obtained from GenBank. All the necrotic lesion isolates clustered within Fusarium lineages and were phylogenetically distinct from the Microdochium clade. All Fusarium isolates from Mexico belonged to the F. incarnatum-equiseti species complex, whereas >85% of the U.S. isolates grouped within the F. sambucinum species complex. Our study suggests that initial reports of M. maydis were misidentifications of resident Fusarium spp. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jane Marian Luis
- Tidewater Agricultural Research and Extension Center, Virginia Tech, Suffolk, VA 23437
| | - Hillary L Mehl
- Tidewater Agricultural Research and Extension Center, Virginia Tech, Suffolk, VA 23437
- Current address: United States Department of Agriculture, Agricultural Research Service, Arid-Land Agricultural Research Center, Tucson, AZ 85701
| | - Dianne Plewa
- Department of Crop Science, University of Illinois, Urbana, IL 61801
| | | |
Collapse
|
8
|
Gavrilova OP, Gagkaeva TY, Orina AS, Gogina NN. Diversity of Fusarium Species and Their Mycotoxins in Cereal Crops from the Asian Territory of Russia. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:9-19. [PMID: 37186044 DOI: 10.1134/s0012496622700156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 05/17/2023]
Abstract
Up-to-date information on the occurrence of Fusarium fungi and their mycotoxins in the grain of wheat, barley and oats grown in the Urals and West Siberia in 2018‒2019 is presented. Mycological analysis of grain revealed at least 16 species of Fusarium fungi. The F. sporotrichioides, F. avenaceum, F. poae, and F. anguioides were predominant, and the proportions of these species among all Fusarium fungi found in the grain were 31, 20, 19, and 13%, respectively. Fusarium graminearum and its mycotoxin deoxynivalenol (DON) are often occurred in grain mycobiota of cereal crops on the territory of both the Urals and West Siberia. New records of fungal species that are rare in the Asian territory of Russia were detected: F. langsethiae and F. sibiricum, which are mainly producers of type A trichothecene mycotoxins, were found in the Kurgan and Kemerovo regions, respectively. In addition, F. globosum that is able to produce fumonisins was detected in Altai Krai and Omsk region. The diversity of Fusarium species was higher in wheat and barley grain samples than in oats. The HPLC-MS/MS method was used to analyse the content of 19 mycotoxins produced by Fusarium fungi. The highest diversity of mycotoxins was found in wheat grain (maximum 12), compared with oats (9) and barley (8). The T-2 and HT-2 toxins, DON, nivalenol, moniliformin (MON) and beauvericin (BEA) occurred more often in the grain samples, compared with other mycotoxins, but their amounts varied significantly, depending on the weather conditions in sampling year and the plant species. The average content of DON (maximum amount was 375 µg/kg) in wheat grain was 5 times higher than its average content in barley grain, and this mycotoxin was not detected in oat grain. The contamination with T-2 and HT-toxins (maximum amounts were 2652 μg/kg and 481 μg/kg, respectively), as well as with BEA (maximum amount was 49 μg/kg) was typical for barley and oat grain samples. The content of MON (maximum amount was 50 μg/kg) in the grain of three different small grain cereals was similar.
Collapse
Affiliation(s)
- O P Gavrilova
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - T Yu Gagkaeva
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - A S Orina
- All-Russian Institute of Plant Protection, St. Petersburg, Russia
| | - N N Gogina
- All-Russian Research and Technological Poultry Institute, Sergiev Posad, Moscow oblast, Russia
| |
Collapse
|
9
|
Akhmetova GK, Knapp DG, Özer G, O'Donnell K, Laraba I, Kiyas A, Zabolotskich V, Kovács GM, Molnár O. Multilocus molecular phylogenetic-led discovery and formal recognition of four novel root-colonizing Fusarium species from northern Kazakhstan and the phylogenetically divergent Fusarium steppicola lineage. Mycologia 2023; 115:16-31. [PMID: 36441982 DOI: 10.1080/00275514.2022.2119761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, DNA sequence data were used to characterize 290 Fusarium strains isolated during a survey of root-colonizing endophytic fungi of agricultural and nonagricultural plants in northern Kazakhstan. The Fusarium collection was screened for species identity using partial translation elongation factor 1-α (TEF1) gene sequences. Altogether, 16 different Fusarium species were identified, including eight known and four novel species, as well as the discovery of the phylogenetically divergent F. steppicola lineage. Isolates of the four putatively novel fusaria were further analyzed phylogenetically with a multilocus data set comprising partial sequences of TEF1, RNA polymerase II largest (RPB1) and second-largest (RPB2) subunits, and calmodulin (CaM) to assess their genealogical exclusivity. Based on the molecular phylogenetic and comprehensive morphological analyses, four new species are formally described herein: F. campestre, F. kazakhstanicum, F. rhizicola, and F. steppicola.
Collapse
Affiliation(s)
- Galiya K Akhmetova
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Soil and Crop Management, A.I. Barayev Research and Production Center for Grain Farming, 021601 Shortandy, Kazakhstan
| | - Dániel G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 1022 Budapest, Hungary
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, Peoria, Illinois 61604
| | - Imane Laraba
- Oak Ridge Institute for Science and Education (ORISE), Peoria, Illinois 61604
| | - Aldabergen Kiyas
- Department of Soil and Crop Management, A.I. Barayev Research and Production Center for Grain Farming, 021601 Shortandy, Kazakhstan
| | - Vladimir Zabolotskich
- Department of Soil and Crop Management, A.I. Barayev Research and Production Center for Grain Farming, 021601 Shortandy, Kazakhstan
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 1022 Budapest, Hungary
| | - Orsolya Molnár
- Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 1022 Budapest, Hungary
| |
Collapse
|
10
|
Xu J, Jiao B, Xia H, Dai T. First Report of Fusarium acuminatum Causing Dianthus chinensis root rot and foliage blight in China. PLANT DISEASE 2022; 107:2254. [PMID: 36410018 DOI: 10.1094/pdis-11-22-2519-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dianthus chinensis is a popular ornamental plant that is widely cultivated in China. In May 2020, a disease was found at several landscape sites in Xuanwu District, Nanjing, China, causing symptoms of foliage blight and root discoloration on approximately 52% of one-year old D. chinensis plants. To recover the causal pathogen, samples of infected roots and leaves were cut into 5×5 mm2 pieces, surface-disinfected in 75% ethanol for 30 sec, followed by 1% NaClO for 90 sec, rinsed with sterile water three times and placed on potato dextrose agar (PDA) with 0.1 mg/mL of ampicillin at 25 ⁰C. Hyphae growing on PDA were visible from both root and leaf tissues after three days. Individual hyphal tips were transferred to new PDA plates to obtain pure isolates. Three representative isolates were deposited in the China Forestry Culture Collection Center (CFCC 57545,57546, 57547). The hyphae grew radially, densely, and the aerial hyphae were velvety, white, yellow-white, or pink-white. Representative isolate Facu-DCY5 produced three types of conidia (microconidia, macroconidia, and chlamydospores). Macroconidia were sickle-shaped, measuring 25.7-55.4 µm × 3.2-4.6 µm (n=50). Microconidia were numerous, oval or kidney-shaped, measuring 6.8-11.9 µm × 3.5-4.8 µm (n=50). Conidia produced in the aerial mycelium were 16-34 × 2.2-5.3 µm (n=50). The ITS region, TEF1, calmodulin (CMDA), and RNA polymerase II second largest subunit (RPB2) were amplified with primers ITS1/ITS4, EF1/EF2, CL1/CL2A and 5F2/7CR , respectively and sequenced at Sangon Biotech (Nanjing, China). The ITS sequence of isolate Facu-DCY5 (GenBank No. ON307073.1) was identical to HQ165938.1, ON306850.1, OM964482.1. TEF1 (ON331997.1) was identical to LC546967.1, HQ165866.1, MZ158155.1. CMDA (ON331996.1) was identical to HQ412345.1, MZ921595.1 and MZ921597.1. RPB2 (ON331995.1) was identical to MZ997370.1. Maximum parsimony and maximum likelihood phylogenies of the Facu-DCY5 multilocus sequence data and those of several species within the F. tricinctum species complex identified the isolate from D. chinensis as F. acuminatum . Pathogenicity tests were performed using a conidial suspension (104 conidia/mL). Each plant (approx. 0.3 m in -height) was inoculated with 1 mL of the conidial suspension by mixing it into the potting soil (500 g). Control plants were treated with sterile distilled water. All inoculated plants (n=9) in three repeats of the assay exhibited foliage blight and root rot after 15 days, whereas all control plants (n=9) remained asymptomatic. Fusarium isolates with identical morphological features and molecular marker sequences to those of Facu-DCY5 were recovered from foliage blight and root tissues of all the inoculated plants. In China, F. acuminatum has been reported as a pathogen of Cucurbita maxima, Actinidia arguta, Polygonatum odoratumand Schisandra chinensis. This is the first report of F. acuminatum on D. chinensis in China. Considering the importance of D. chinensis to both ornamental nurseries and landscaping industries, we recommend that diseased plants be removed to prevent the spread of F. acuminatum, and that identification of the infecting isolates from D. chinensis at other sites and landscape locations be performed.
Collapse
Affiliation(s)
- Jieying Xu
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China, Nanjing, Jiangsu, China;
| | - Binbin Jiao
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China, Nanjing, Jiangsu, China
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai 201204, China, NANJING, China;
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China, Nanjing, jiangsu, China;
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China, NANJING, jiangsu, China;
| |
Collapse
|
11
|
Fusarium abutilonis and F. guadeloupense, two novel species in the Fusarium buharicum clade supported by multilocus molecular phylogenetic analyses. Mycologia 2022; 114:682-696. [PMID: 35679164 DOI: 10.1080/00275514.2022.2071563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was conducted to elucidate evolutionary relationships and species diversity within the Fusarium buharicum species complex (FBSC). We also evaluate the potential of these species to produce mycotoxins and other bioactive secondary metabolites. Maximum likelihood and maximum parsimony analyses of sequences from portions of four marker loci (ITS rDNA, TEF1, RPB1, and RPB2) and the combined 4495 bp data set support recognition of seven genealogically exclusive species within the FBSC. Two of the three newly discovered species are formally described as F. abutilonis and F. guadeloupense based on concordance of gene genealogies and morphological data. Fusarium abutilonis induces leaf, stem, and root lesions on several weedy Malvaceae (Abution theophrasti, Anoda cristata, Sida spinosa) and a fabaceous host (Senna obtusifolia) in North America and also was recovered from soil in New Caledonia. Fusarium abutilonis, together with its unnamed sister, Fusarium sp. ex common marsh mallow (Hibiscus moscheutos) from Washington state, and F. buharicum pathogenic to cotton and kenaf in Russia and Iran, respectively, were strongly supported as a clade of malvaceous pathogens. The four other species of the FBSC are not known to be phytopathogenic; however, F. guadeloupense was isolated from human blood in Texas and soil in Guadeloupe. The former isolate is unique because it represents the only known case of a fusarial infection disseminated hematogenously by a species lacking microconidia and the only documented fusariosis caused by a member of the FBSC. Whole genome sequence data and extracts of cracked maize kernel cultures were analyzed to assess the potential of FBSC isolates to produce mycotoxins, pigments, and phytohormones.
Collapse
|
12
|
O'Donnell K, Whitaker BK, Laraba I, Proctor RH, Brown DW, Broders K, Kim HS, McCormick SP, Busman M, Aoki T, Torres-Cruz TJ, Geiser DM. DNA Sequence-Based Identification of Fusarium: A Work in Progress. PLANT DISEASE 2022; 106:1597-1609. [PMID: 34907805 DOI: 10.1094/pdis-09-21-2035-sr] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate species-level identification of an etiological agent is crucial for disease diagnosis and management because knowing the agent's identity connects it with what is known about its host range, geographic distribution, and toxin production potential. This is particularly true in publishing peer-reviewed disease reports, where imprecise and/or incorrect identifications weaken the public knowledge base. This can be a daunting task for phytopathologists and other applied biologists that need to identify Fusarium in particular, because published and ongoing multilocus molecular systematic studies have highlighted several confounding issues. Paramount among these are: (i) this agriculturally and clinically important genus is currently estimated to comprise more than 400 phylogenetically distinct species (i.e., phylospecies), with more than 80% of these discovered within the past 25 years; (ii) approximately one-third of the phylospecies have not been formally described; (iii) morphology alone is inadequate to distinguish most of these species from one another; and (iv) the current rapid discovery of novel fusaria from pathogen surveys and accompanying impact on the taxonomic landscape is expected to continue well into the foreseeable future. To address the critical need for accurate pathogen identification, our research groups are focused on populating two web-accessible databases (FUSARIUM-ID v.3.0 and the nonredundant National Center for Biotechnology Information nucleotide collection that includes GenBank) with portions of three phylogenetically informative genes (i.e., TEF1, RPB1, and RPB2) that resolve at or near the species level in every Fusarium species. The objectives of this Special Report, and its companion in this issue (Torres-Cruz et al. 2022), are to provide a progress report on our efforts to populate these databases and to outline a set of best practices for DNA sequence-based identification of fusaria.
Collapse
Affiliation(s)
- Kerry O'Donnell
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Briana K Whitaker
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Imane Laraba
- Oak Ridge Institute for Science and Education Fellow, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, U.S.A
| | - Robert H Proctor
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Daren W Brown
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Kirk Broders
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Hye-Seon Kim
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Susan P McCormick
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Mark Busman
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Takayuki Aoki
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Terry J Torres-Cruz
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|