1
|
Brochu AS, Dumonceaux TJ, Valenzuela M, Bélanger R, Pérez-López E. A New Multiplex TaqMan qPCR for Precise Detection and Quantification of Clavibacter michiganensis in Seeds and Plant Tissue. PLANT DISEASE 2024; 108:2272-2282. [PMID: 38381965 DOI: 10.1094/pdis-06-23-1194-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, what makes Cm an even more dangerous pathogen is its ability to infect seeds and plants without causing symptoms. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection, and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- L'Institute EDS, Université Laval, Québec City, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Dr. Daniel Alkalay Lowitt, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123, Chile
| | - Richard Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Edel Pérez-López
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
2
|
Zhang H, Liu J, Dong Y, Hu J, Lamour K, Yang Z. A one-step multiplex PCR assay for the detection and differentiation of four species of Clarireedia causing dollar spot on turfgrass. PEST MANAGEMENT SCIENCE 2023; 79:1069-1077. [PMID: 36334001 DOI: 10.1002/ps.7276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dollar spot (DS) is one of the most destructive and economically important diseases of cool- and warm-season turfgrasses worldwide. A total of six species causing DS disease in the genus Clarireedia have been described, and four of them have been reported to be distributed countrywide in China. Identification of different species of Clarireedia is a prerequisite for the effective management of DS disease. RESULTS Here we report a novel polymerase chain reaction (PCR)-based method for the detection and differentiation of the four species of Clarireedia associated with DS on turfgrass in China: C. jacksonii, C. paspali, C. monteithiana and C. hainanense. Species-specific genes were identified for each species by comparative genomics analysis. Four primer pairs were designed and mixed to amplify species-specific PCR fragments with differential sizes for the four species of Clarireedia in a single multiplex PCR assay. No PCR products were generated from the DNA templates of other common fungal pathogens associated with multiple turfgrass diseases. The multiplex PCR method developed can be used for the rapid and accurate detection and differentiation of the four species of Clarireedia from pure cultures as well as from infected turfgrass blades with DS symptoms. CONCLUSION The study developed a one-step multiplex PCR assay for the detection and differentiation of four species of Clarireedia causing DS on turfgrass in China, which will have important implications for DS management in China and worldwide. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yinglu Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Rapid detection of 5 fungal diseases in sunflower (Helianthus annuus) using dual priming oligonucleotide system-based multiplex PCR and capillary electrophoresis. SLAS Technol 2022; 27:253-260. [DOI: 10.1016/j.slast.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
|
4
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
5
|
Peritore-Galve FC, Tancos MA, Smart CD. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. PLANT DISEASE 2021; 105:1581-1595. [PMID: 33107795 DOI: 10.1094/pdis-08-20-1732-fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gram-positive actinobacterium Clavibacter michiganensis is the causal agent of bacterial canker of tomato, an economically impactful disease with a worldwide distribution. This seedborne pathogen systemically colonizes tomato xylem leading to unilateral leaflet wilt, marginal leaf necrosis, stem and petiole cankers, and plant death. Additionally, splash dispersal of the bacterium onto fruit exteriors causes bird's-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through xylem and through penetration of fruit tissues from the exterior. There are currently no commercially available resistant cultivars, and bactericidal sprays have limited efficacy for managing the disease once the pathogen is in the vascular system. In this review, we summarize research on epidemiology, host colonization, the bacterial genetics underlying virulence, and management of bacterial canker. Finally, we highlight important areas of research into this pathosystem that have the potential to generate new strategies for prevention and mitigation of bacterial canker.
Collapse
Affiliation(s)
- F Christopher Peritore-Galve
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD 21702
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
6
|
Ramachandran S, Dobhal S, Alvarez AM, Arif M. Improved multiplex TaqMan qPCR assay with universal internal control offers reliable and accurate detection of Clavibacter michiganensis. J Appl Microbiol 2021; 131:1405-1416. [PMID: 33484618 DOI: 10.1111/jam.15017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
AIM Clavibacter michiganensis (Cm) is a seed-borne plant pathogen that significantly reduces tomato production worldwide. Due to repeated outbreaks and rapid spread of the disease, seeds/transplants need to be certified free of the pathogen before planting. To this end, we developed a multiplex TaqMan qPCR assay that can accurately detect Cm in infected samples. METHODS AND RESULTS A specific region of Cm (clvG gene) was selected for primer design using comparative genomics approach. A fully synthetic universal internal control (UIC) was also designed to detect PCR inhibitors and false-negative results in qPCRs. The Cm primers can be used alone or in a triplex TaqMan qPCR assay with UIC and previously described Clavibacter primers. The assay was specific for Cm and detected up to 10 fg of Cm DNA in sensitivity and spiked assays. Addition of the UIC did not change the specificity or sensitivity of the multiplex TaqMan qPCR assay. CONCLUSION The triplex TaqMan qPCR provides a specific and sensitive diagnostic assay for Cm. SIGNIFICANCE AND IMPACT OF THE STUDY This assay can be used for biosecurity surveillance, routine diagnostics, estimating bacterial titres in infected material and for epidemiological studies. The UIC is fully synthetic, efficiently amplified and multiplex compatible with any other qPCR assay.
Collapse
Affiliation(s)
- S Ramachandran
- Foreign Disease and Weed Science Research Unit, USDA-ARS, Fort Detrick, MD, USA.,ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - S Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - M Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|