1
|
Rosskopf E, Gioia FD, Vincent I, Hong J, Zhao X. Impacts of the Ban on the Soil-Applied Fumigant Methyl Bromide. PHYTOPATHOLOGY 2024; 114:1161-1175. [PMID: 38427594 DOI: 10.1094/phyto-09-23-0345-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The loss of the soil fumigant methyl bromide (MeBr) and adoption of soil fumigant alternatives has been challenging for farmers, particularly for those crops in which pathogens previously controlled by MeBr have emerged as significant problems, but it has resulted in some unanticipated benefits for the scientific community and the environment. Applauded as one of the most effective environmental agreements to date, the universally accepted Montreal Protocol on Ozone Depleting Substances has had a significant impact on the environment, reducing the release of halogenated compounds from anthropogenic sources enough to mitigate global warming by an estimated 1.1°C by 2021. The funding associated with various MeBr transition programs has increased collaboration across scientific disciplines, commodity groups, industry, and regulatory agencies. Chemical alternatives and improved application strategies, including the development of gas-retentive agricultural films, coupled with sound efficacy data and grower ingenuity have resulted in the sustained production of many of the impacted crops; although there has been some loss of acreage and value, particularly for Florida fumigated crops, for some, value has continued to increase, allowing production to continue. The loss of a single, broad-spectrum tool for pest control has led to a deeper understanding of the specific pest complexes impacting these at-risk crops, as well as the development of new, biologically based management tools for their control while increasing our understanding of the role of the soil microbiome in pest control and crop production.
Collapse
Affiliation(s)
- Erin Rosskopf
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802
| | - Isaac Vincent
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
| | - Jason Hong
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945
| | - Xin Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
| |
Collapse
|
2
|
Wang J, Zhang Y, Ding Y, Song H, Liu T, Zhang Y, Xu W, Shi Y. Comparing the indigenous microorganism system in typical petroleum-contaminated groundwater. CHEMOSPHERE 2023; 311:137173. [PMID: 36356804 DOI: 10.1016/j.chemosphere.2022.137173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The environmental conditions at a contaminated site will impact on the indigenous microbial communities, with implications for the removal of pollutants. An analysis of the characteristics of microbial communities in petroleum-contaminated groundwater can give insights into the relationships between microbial community and environmental factors, and provide guidance about how microbes can be used to remediate and regulate petroleum-contaminated groundwater. This study focuses on two petroleum-contaminated sites in northeast China, the physico-chemical-biological changes in petroleum-contaminated groundwater were analyzed, the response relationship between hydro-chemical indicators and microbial communities was characterized, and the bioindicator that can reflect the petroleum contamination status were established for environmental monitoring and management. The results showed that Proteobacteria was the dominant bacteria in petroleum-contaminated groundwater, with a relative abundance of 42.45%-91.19%. pH, TDS, DO, NO3-, NO2-, SO42-, NH4+, Al, and Mn have significant effects on microbial community. The effect of petroleum pollutants on microbial communities is not only related to the concentration and composition of the pollutants themselves, but also could indirectly affect microbial communities by changing the content of inorganic electron acceptor components such as iron, manganese, sulfate and nitrate in groundwater, and this indirect effect is significantly greater than the direct impact of pollutants on microbial communities. In petroleum-contaminated groundwater, the dominant genera (Polaromonas, Caulobacter) and microbial metabolic functions (methanol oxidation, methylotrophy, ureolysis, and reductive biosynthesis) of the indigenous microbial community can be used as bioindicators to indicate petroleum contamination status. The higher abundance of these bioindicators in petroleum-contaminated groundwater, the more serious petroleum pollution in groundwater.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
3
|
Castellano-Hinojosa A, Boyd NS, Strauss SL. Impact of fumigants on non-target soil microorganisms: a review. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128149. [PMID: 34999405 DOI: 10.1016/j.jhazmat.2021.128149] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Fumigants have been used for decades to control soil-borne pathogens of high-value crops, and increasing evidence indicates they can affect non-target soil microbial communities. Understanding the impacts of these products on soil microorganisms is of critical importance not only for evaluating their environmental safety, but also because soil microbial communities have a central role in soil quality and nutrient cycling, plant growth, and crop production. Thus, we conducted a systematic review and metanalysis study of fumigant impacts on non-target soil microorganisms. In general, we found that fumigation decreases the bacterial diversity and abundance of total bacteria and nitrogen-cycling genes by approximately 10-50% during the first four weeks after application compared to non-treated soils. These decreases appear transient and tend to diminish or disappear after four weeks. Increases in bacterial diversity and abundance can occur after fumigation but are less common. Fumigant application can also alter bacterial community composition during the first six weeks after treatment by significantly increasing and/or decreasing the relative abundance of bacterial taxa involved in key soil functions such as N-cycling and plant-growth promotion. Knowledge gaps and areas where future research efforts should be prioritized to improve our understanding of the impact of organic fumigants on non-target soil microorganisms are discussed.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Southwest Florida Research and Education Center, Department of Soil and Water Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29 N, Immokalee, FL 34142, USA
| | - Nathan S Boyd
- Gulf Coast Research and Education Center, Department of Horticulture, Institute of Food and Agricultural Sciences, University of Florida, 14625 C.R. 672, Wimauma, FL 33598, USA
| | - Sarah L Strauss
- Southwest Florida Research and Education Center, Department of Soil and Water Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29 N, Immokalee, FL 34142, USA.
| |
Collapse
|
4
|
Ajiboye TO, Ajiboye TT, Marzouki R, Onwudiwe DC. The Versatility in the Applications of Dithiocarbamates. Int J Mol Sci 2022; 23:1317. [PMID: 35163241 PMCID: PMC8836150 DOI: 10.3390/ijms23031317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Dithiocarbamate ligands have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. The complexes have also been used to synthesize other useful compounds. Here, the up-to-date applications of dithiocarbamate ligands and complexes are extensively discussed. Some of these are their use as enzyme inhibitor and treatment of HIV and other diseases. The application as anticancer, antimicrobial, medical imaging and anti-inflammatory agents is examined. Moreover, the application in the industry as vulcanization accelerator, froth flotation collector, antifouling, coatings, lubricant additives and sensors is discussed. The various ways in which they have been employed in synthesis of other compounds are highlighted. Finally, the agricultural uses and remediation of heavy metals via dithiocarbamate compounds are comprehensively discussed.
Collapse
Affiliation(s)
- Timothy O Ajiboye
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Titilope T Ajiboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
5
|
Khatri K, Vallad G, Peres N, Desaegaer J, Regmi H, Boyd N. Efficacy of metam potassium on Fusarium oxysporum, Macrophomina phaseolina, Meloidogyne javanica, and seven weed species in microcosm experiments. PEST MANAGEMENT SCIENCE 2021; 77:869-876. [PMID: 32946661 DOI: 10.1002/ps.6091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Metam potassium (metam-K) is a soil fumigant widely used to control plant pathogens, nematodes, and weeds in Florida plasticulture production. The objective of the study was to determine the efficacy of metam-K against Fusarium oxysporum, Macrophomina phaseolina, Meloidogyne javanica, and seven important weed species under controlled conditions. The optimal rates generated in this study provide insight into the efficacy of metam-K for field application. RESULTS F. oxysporum and M. phaseolina were similarly sensitive toward metam-K with a 90% effective concentration (EC90 ) of 478 and 493 μmol kg-1 soil, respectively. Meloidogyne javanica was the most sensitive pest with an EC90 of 25 μmol kg-1 which is similar to previous studies. Chenopodium album was the most sensitive weed seed with an EC90 of 260 μmol kg-1 . Geranium carolinianum and Medicago lupulina were the least sensitive weed species with EC90 values of 786 and 567 μmol kg-1 , respectively. CONCLUSION It is apparent from these results that metam-K can effectively control important pests in Florida plasticulture production systems with the correct application rate and adequate exposure of pest to the fumigant.
Collapse
Affiliation(s)
- Kshitij Khatri
- Horticulture Department, University of Florida, Wimauma, FL, USA
| | - Gary Vallad
- Plant Pathology Department, University of Florida, Wimauma, FL, USA
| | - Natalia Peres
- Plant Pathology Department, University of Florida, Wimauma, FL, USA
| | - Johan Desaegaer
- Entomology and Nematology Department, University of Florida, Wimauma, FL, USA
| | - Homan Regmi
- Entomology and Nematology Department, University of Florida, Wimauma, FL, USA
| | - Nathan Boyd
- Horticulture Department, University of Florida, Wimauma, FL, USA
| |
Collapse
|
6
|
Yin J, Wu B, Liu S, Hu S, Gong T, Cherr GN, Zhang XX, Ren H, Xian Q. Rapid and complete dehalogenation of halonitromethanes in simulated gastrointestinal tract and its influence on toxicity. CHEMOSPHERE 2018; 211:1147-1155. [PMID: 30223330 DOI: 10.1016/j.chemosphere.2018.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts in drinking water and wastewater are receiving attentions due to their high toxicity. This study applied a simulator of the human gastrointestinal tract to determine the dehalogenation processes of trichloronitromethane, bromonitromethane and bromochloronitromethane for the first time. Influence of digestion process of HNMs on gut microbiota and hepatotoxicity was further analyzed. Results showed that the three HNMs were rapidly and completely dehalogenated in the gastrointestinal tract, especially in the stomach (2 h retention Time) and small intestine (4 h retention Time). Mucin, cysteine, pancreatin and bile salts in the digestive juice played major roles in the dehalogenation process. HNMs and their dehalogenation products in the resulting fluids of stomach induced the highest toxicity followed by those in intestine and colon, exhibiting dose-dependent effects. Although most HNMs were degraded in the stomach and small intestine, residual HNMs entered into colon changed the microbial community. Abundance of several genera, such as Bacteroides, Lachnospiraceae_unassigned and Lactobacillus had high correlation with exposure concentration of HNMs. This study sheds new light on dehalogenation and toxic processes of HNMs by oral exposure, which provides basic data for their human health risk assessment.
Collapse
Affiliation(s)
- Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Gary N Cherr
- Bodega Marine Laboratory, Departments of Environmental Toxicology and Nutrition, University of California, Davis, CA, USA
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
7
|
López-Fernández O, Rial-Otero R, Simal-Gándara J, Boned J. Dissipation kinetics of pre-plant pesticides in greenhouse-devoted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:1-8. [PMID: 26575632 DOI: 10.1016/j.scitotenv.2015.10.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
This work was conducted to study the distribution of methyl isothiocyanate (MITC) in greenhouse soils treated with the fumigant dazomet (DZ) from the formulated product "Basamid Granular(®)", but also of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from the fumigant "Agrocelhone NE(®)". In order to achieve this aim, several methods for the determination of fumigants residues in soils, but also pepper fruits were optimized and characterized. With independence of the soil depth, no residues of MITC, 1,3-D and CP above the detection limits were observed in soils covered with a polyethylene (PE) film (0.04 mm thick) after 27, 13 and 8 days of treatment, respectively. Liberation and dissipation curves of MITC in soil in presence of a PE film (0.04 mm) used to limit volatilization losses were also obtained. According to the results, the rate of decomposition of DZ into MITC have a half-life of 3.7 days in the surface horizon (5-10 cm) of the soil while in the subsurface horizon (15-20 cm), MITC formation rate is slightly slow (half-life of 3.2 days). With respect to the dissipation process, half-lives lower than 1 day were obtained for both depths (0.8 and 0.9 for the surface and the subsurface horizon, respectively). In the case of 1,3-D and CP in soil, the dissipation half-life of 1,3-D on soils was a bit higher than for CP (2 days vs. 1). In addition, the presence of residues of the fumigants on green pepper fruits grown on the treated soils was not detected as expected.
Collapse
Affiliation(s)
- O López-Fernández
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - R Rial-Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - J Simal-Gándara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - J Boned
- Isagro España S.L, c/ Maldonado, No 63 Madrid, Spain
| |
Collapse
|
8
|
Triky-Dotan S, Ajwa HA. Dissipation of soil fumigants from soil following repeated applications. PEST MANAGEMENT SCIENCE 2014; 70:440-447. [PMID: 23744676 DOI: 10.1002/ps.3586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/12/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The dissipation of pesticides in soil and the occurrence of accelerated degradation following repeated applications are well-known phenomena with many pesticides, but much less so with soil fumigants. The fate of various soil fumigants was studied in different agricultural soils following repeated applications of chloropicrin. RESULTS Fumigant dissipation reflected by Σconcentration × time (ΣC × T) and half-life values varied widely among the tested soils. Methyl iodide (MI) had the slowest dissipation rate compared with other fumigants in all tested soils. Elimination of biotic agents by soil sterilization prior to MI application did not affect MI concentration in Oxnard soil. Clay content and fumigant dose (ΣC × T values) of chloropicrin, 1,3-dichloropropene and MI were significantly correlated. No significant correlations were found between soil properties and ΣC × T values following metam sodium and methyl bromide (MBr) application. CONCLUSION The fate of the tested soil fumigants is highly dependent on and specific to the fumigant, previous fumigant application and soil type. This study suggests that biotic factors are more essential in the dissipation of metam sodium and MBr than abiotic factors. By contrast, MI dissipation from the tested soils is affected more by abiotic factors than by biotic activities.
Collapse
Affiliation(s)
- Shachaf Triky-Dotan
- Department of Plant Sciences, University of California Davis, Salinas, CA, USA
| | | |
Collapse
|
9
|
Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One 2012; 7:e40117. [PMID: 22808103 PMCID: PMC3394795 DOI: 10.1371/journal.pone.0040117] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/01/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. METHODOLOGY/PRINCIPAL FINDINGS The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. CONCLUSIONS In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.
Collapse
Affiliation(s)
- Maya Ofek
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
10
|
Yang C, Wang M, Li J. Influence of rhizosphere microbial ecophysiological parameters from different plant species on butachlor degradation in a riparian soil. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:716-723. [PMID: 22565253 DOI: 10.2134/jeq2011.0223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biogeochemical processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. However, little research has been reported on the microbial process and degradation potential of herbicide in a riparian soil. Field sampling and incubation experiments were conducted to investigate differences in microbial parameters and butachlor degradation in the riparian soil from four plant communities in Chongming Island, China. The results suggested that the rhizosphere soil had significantly higher total organic C and water-soluble organic C relative to the nonrhizosphere soil. Differences in rhizosphere microbial community size and physiological parameters among vegetation types were significant. The rhizosphere soil from the mixed community of Phragmites australis and Acorus calamus had the highest microbial biomass and biochemical activity, followed by A. calamus, P. australis and Zizania aquatica. Microbial ATP, dehydrogenase activity (DHA), and basal soil respiration (BSR) in the rhizosphere of the mixed community of P. australis and A. calamus were 58, 72, and 62% higher, respectively, than in the pure P. australis community. Compared with the rhizosphere soil of the pure plant communities, the mixed community of P. australis and A. calamus displayed a significantly greater degradation rate of butachlor in the rhizosphere soil. Residual butachlor concentrations in rhizosphere soil of the mixed community of P. australis and A. calamus and were 48, 63, and 68% lower than three pure plant communities, respectively. Butachlor degradation rates were positively correlated to microbial ATP, DHA, and BSR, indicating that these microbial parameters may be useful in assessing butachlor degradation potential in the riparian soil.
Collapse
Affiliation(s)
- Changming Yang
- State Key Lab. of Pollution Control and Resource Reuse, Tongli Univ., Shanghai, China.
| | | | | |
Collapse
|
11
|
Yang C, Wang M, Chen H, Li J. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants. J Environ Sci (China) 2011; 23:1437-1444. [PMID: 22432278 DOI: 10.1016/s1001-0742(10)60604-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis, Zizania aquatica, and Acorus calamus. The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants. A. calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils, as compared with Z. aquatica and P. australis. Half-life time of butachlor degradation in the rhizospheric soils of P. australis, Z. aquatica, and A. calamus were 7.5, 9.8 and 5.4 days, respectively. Residual butachlor concentration in A. calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating that A. calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant. In general, microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition, despite the riparian plant types. However, rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P < 0.05) differed between riparian plant species. Compared to Z. aquatica and P. australis, A. calamus showed significantly larger microbial number, higher enzyme activities and soil respiration rates in the rhizosphere soils. The results indicated that A. calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution.
Collapse
Affiliation(s)
- Changming Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | | | | | | |
Collapse
|