1
|
Cao X, Han Q, Xiao Y, He J, Chuan X, Jiang G, West JS, Xu X. Population Genetic Structure of the Rubber Tree Powdery Mildew Pathogen ( Erysiphe quercicola) from China. PLANT DISEASE 2024; 108:62-70. [PMID: 37467126 DOI: 10.1094/pdis-03-23-0575-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In order to manage agricultural pathogens, it is crucial to understand the population structure underlying epidemics. Rubber tree powdery mildew, caused by Erysiphe quercicola, is a serious threat to rubber plantations worldwide, especially in subtropical environments including all rubber tree-growing regions in China. However, the population structure of the pathogen is uncertain. In this study, 16 polymorphic microsatellite markers were used to genotype powdery mildew samples from the main rubber tree-growing regions including Yunnan (YN), Hainan (HN), western Guangdong (WG), and eastern Guangdong (EG). YN had higher genotypic diversity (Simpson's indices), genotypic evenness, Nei's gene diversity, allelic richness, and private allelic richness than the other regions. Cluster analysis, discriminant analysis of principal components, pairwise divergence, and shared multilocus genotype analyses all showed that YN differed significantly from the other regions. The genetic differentiation was small among the other three regions (HN, WG, and EG). Analysis of molecular variance indicated that the variability among regions accounted for 22.37% of the total variability. Genetic differentiation was significantly positively correlated (Rxy = 0.772, P = 0.001) with geographic distance. Linkage equilibrium analysis suggested possible occurrence of sexual recombination although asexual reproduction predominates in E. quercicola. The results suggested that although significant genetic differentiation of E. quercicola occurred between YN and the other regions, pathogen populations from the other three regions lacked genetic differentiation.
Collapse
Affiliation(s)
- Xueren Cao
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qiaohui Han
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University, Guiyang 550025, China
| | - Ying Xiao
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun He
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524031, China
| | - Xiangxian Chuan
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, China
| | - Guizhi Jiang
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | | | | |
Collapse
|
2
|
Pintye A, Németh MZ, Molnár O, Horváth ÁN, Matolcsi F, Bókony V, Spitzmüller Z, Pálfi X, Váczy KZ, Kovács GM. Comprehensive analyses of the occurrence of a fungicide resistance marker and the genetic structure in Erysiphe necator populations. Sci Rep 2023; 13:15172. [PMID: 37704655 PMCID: PMC10499922 DOI: 10.1038/s41598-023-41454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
Genetically distinct groups of Erysiphe necator, the fungus causing grapevine powdery mildew infect grapevine in Europe, yet the processes sustaining stable genetic differences between those groups are less understood. Genotyping of over 2000 field samples from six wine regions in Hungary collected between 2017 and 2019 was conducted to reveal E. necator genotypes and their possible differentiation. The demethylase inhibitor (DMI) fungicide resistance marker A495T was detected in all wine regions, in 16% of the samples. Its occurrence differed significantly among wine regions and grape cultivars, and sampling years, but it did not differ between DMI-treated and untreated fields. Multilocus sequence analyses of field samples and 59 in vitro maintained isolates revealed significant genetic differences among populations from distinct wine regions. We identified 14 E. necator genotypes, of which eight were previously unknown. In contrast to the previous concept of A and B groups, European E. necator populations should be considered genetically more complex. Isolation by geographic distance, growing season, and host variety influence the genetic structuring of E. necator, which should be considered both during diagnoses and when effective treatments are planned.
Collapse
Affiliation(s)
- Alexandra Pintye
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Márk Z Németh
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary.
| | - Orsolya Molnár
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Áron N Horváth
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Fruzsina Matolcsi
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Bókony
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zsolt Spitzmüller
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Xénia Pálfi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Z Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Gábor M Kovács
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
3
|
Mahaffee WF, Margairaz F, Ulmer L, Bailey BN, Stoll R. Catching Spores: Linking Epidemiology, Pathogen Biology, and Physics to Ground-Based Airborne Inoculum Monitoring. PLANT DISEASE 2023; 107:13-33. [PMID: 35679849 DOI: 10.1094/pdis-11-21-2570-fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring airborne inoculum is gaining interest as a potential means of giving growers an earlier warning of disease risk in a management unit or region. This information is sought by growers to aid in adapting to changes in the management tools at their disposal and the market-driven need to reduce the use of fungicides and cost of production. To effectively use inoculum monitoring as a decision aid, there is an increasing need to understand the physics of particle transport in managed and natural plant canopies to effectively deploy and use near-ground aerial inoculum data. This understanding, combined with the nuances of pathogen-specific biology and disease epidemiology, can serve as a guide to designing improved monitoring approaches. The complexity of any pathosystem and local environment are such that there is not a generalized approach to near-ground air sampler placement, but there is a conceptual framework to arrive at a "semi-optimal" solution based on available resources. This review is intended as a brief synopsis of the linkages among pathogen biology, disease epidemiology, and the physics of the aerial dispersion of pathogen inoculum and what to consider when deciding where to locate ground-based air samplers. We leverage prior work in developing airborne monitoring tools for hops, grapes, spinach, and turf, and research into the fluid mechanics governing particle transport in sparse canopies and urban and forest environments. We present simulation studies to demonstrate how particles move in the complex environments of agricultural fields and to illustrate the limited sampling area of common air samplers.
Collapse
Affiliation(s)
- Walter F Mahaffee
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Corvallis, OR 97330
| | - Fabien Margairaz
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Lucas Ulmer
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Brian N Bailey
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616
| | - Rob Stoll
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
4
|
High Genetic Diversity in Predominantly Clonal Populations of the Powdery Mildew Fungus Podosphaera leucotricha from U.S. Apple Orchards. Appl Environ Microbiol 2021; 87:e0046921. [PMID: 34020938 DOI: 10.1128/aem.00469-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apple powdery mildew (APM), caused by Podosphaera leucotricha, is a constant threat to apple production worldwide. Very little is known about the biology and population structure of this pathogen in the United States and other growing regions, which affects APM management. A total of 253 P. leucotricha isolates, sampled from 10 apple orchards in Washington, New York, and Virginia, were genetically characterized with novel single sequence repeat and mating type markers. Eighty-three multilocus genotypes (MLGs) were identified, most of which were unique to a given orchard. Each isolate carried either a MAT1-1 or a MAT1-2 idiomorph at the mating type locus, indicating that P. leucotricha is heterothallic. Virulence tests on detached apple leaves showed that the 10 most frequent P. leucotricha MLGs were avirulent on a line containing a major resistance gene. Analysis of molecular variance showed significant differentiation (P < 0.001) among populations, a result supported by principal coordinate analysis revealing three genetic groups, each represented by nonoverlapping MLGs from Washington, New York, and Virginia. A Bayesian cluster analysis showed genetic heterogeneity between Washington populations, and a relative migration analysis indicated substantial gene flow among neighboring orchards. Random mating tests indicated that APM epidemics during the active cycle were dominated by clonal reproduction. However, the presence of sexual structures in orchards, the likelihood that five repeated MLGs resulted from sexual reproduction, and high genotypic diversity observed in some populations suggest that sexual spores play some role in APM epidemics. IMPORTANCE Understanding the population biology and epidemiology of plant pathogens is essential to develop effective strategies for controlling plant diseases. Herein, we gathered insights into the population biology of P. leucotricha populations from conventional and organic apple orchards in the United States. We showed genetic heterogeneity between P. leucotricha populations in Washington and structure between populations from different U.S. regions, suggesting that short-distance spore dispersal plays an important role in the disease's epidemiology. We presented evidence that P. leucotricha is heterothallic and that populations likely result from a mixed (i.e., sexual and asexual) reproductive system, revealing that the sexual stage contributes to apple powdery mildew epidemics. We showed that the major resistance gene Pl-1 is valuable for apple breeding because virulent isolates have most likely not emerged yet in U.S. commercial orchards. These results will be important to achieve sustainability of disease management strategies and maintenance of plant health in apple orchards.
Collapse
|
5
|
Gur L, Reuveni M, Cohen Y, Cadle-Davidson L, Kisselstein B, Ovadia S, Frenkel O. Population structure of Erysiphe necator on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environ Microbiol 2021; 23:6019-6037. [PMID: 33459475 DOI: 10.1111/1462-2920.15401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Plant pathogens usually originate and diversify in geographical regions where hosts and pathogens co-evolve. Erysiphe necator, the causal agent of grape powdery mildew, is a destructive pathogen of grapevines worldwide. Although Eastern US is considered the centre of origin and diversity of E. necator, previous reports on resistant native wild and domesticated Asian grapevines suggest Asia as another possible origin of the pathogen. By using multi-locus sequencing, microsatellites and a novel application of amplicon sequencing (AmpSeq), we show that the population of E. necator in Israel is composed of three genetic groups: Groups A and B that are common worldwide, and a new group IL, which is genetically differentiated from any known group in Europe and Eastern US. Group IL showed distinguished ecological characteristics: it was dominant on wild and traditional vines (95%); its abundance increased along the season; and was more aggressive than A and B isolates on both wild and domesticated vines. The low genetic diversity within group IL suggests that it has invaded Israel from another origin. Therefore, we suggest that the Israeli E. necator population was founded by at least two invasions, of which one could be from a non-East American source, possibly from Asian origin.
Collapse
Affiliation(s)
- Lior Gur
- Shamir Research Institute, University of Haifa, Katzrin, Israel.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| | - Moshe Reuveni
- Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Lance Cadle-Davidson
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | - Breanne Kisselstein
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | | | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
6
|
Lelwala RV, Scott JB, Ades PK, Taylor PWJ. Population Structure of Colletotrichum tanaceti in Australian Pyrethrum Reveals High Evolutionary Potential. PHYTOPATHOLOGY 2019; 109:1779-1792. [PMID: 31179858 DOI: 10.1094/phyto-03-19-0091-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colletotrichum tanaceti, the causal agent of anthracnose, is an emerging pathogen of commercially grown pyrethrum (Tanacetum cinerariifolium) in Australia. A microsatellite marker library was developed to understand the spatio-genetic structure over three sampled years and across two regions where pyrethrum is cultivated in Australia. Results indicated that C. tanaceti was highly diverse with a mixed reproductive mode; comprising both sexual and clonal reproduction. Sexual reproduction of C. tanaceti was more prevalent in Tasmania than in Victoria. Little differentiation was observed among field populations likely due to isolation by colonization but most of the genetic variation was occurring within populations. C. tanaceti was likely to have had a long-distance gene and genotype flow among distant populations within a state and between states. Anthropogenic transmission of propagules and wind dispersal of ascospores are the most probable mechanisms of long-distance dispersal of C. tanaceti. Evaluation of putative population histories suggested that C. tanaceti most likely originated in Tasmania and expanded from an unidentified host onto pyrethrum. Victoria was later invaded by the Tasmanian population. With the mixed mode of reproduction and possible long-distance gene flow, C. tanaceti is likely to have a high evolutionary potential and thereby has ability to adapt to management practices in the future.
Collapse
Affiliation(s)
- Ruvini V Lelwala
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia 3010
| | - Jason B Scott
- Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania, Australia 7320
| | - Peter K Ades
- School of Ecosystem and Forest Sciences, University of Melbourne, Victoria, Australia 3010
| | - Paul W J Taylor
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia 3010
| |
Collapse
|
7
|
Ennos RA, Hu XS. Estimating the number of sexual events per generation in a facultatively sexual haploid population. Heredity (Edinb) 2019; 122:729-741. [PMID: 30531814 PMCID: PMC6781114 DOI: 10.1038/s41437-018-0171-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/18/2022] Open
Abstract
In populations of facultatively sexual organisms, the proportion of sexually produced offspring contributed to each generation is a critical determinant of their evolutionary potential. However, estimating this parameter in natural populations has proved difficult. Here we develop a population genetic model for estimating the number of sexual events occurring per generation for facultatively sexual haploids possessing a biallelic mating-type locus (e.g., Chlamydomonas, ascomycete fungi). Our model treats the population as two subpopulations possessing opposite mating-type alleles, which exchange genes only when a sexual event takes place. Where mating types are equally abundant, we show that, for a neutral genetic marker, genetic differentiation between mating-type subpopulations is a simple function of the effective population size, the frequency of sexual reproduction, and the recombination fraction between the genetic marker and the mating-type locus. We employ simulations to examine the effects of linkage of markers to the mating-type locus, inequality of mating-type frequencies, mutation rate, and selection on this relationship. Finally, we apply our model to estimate the number of sexual reproduction events per generation in populations of four species of facultatively sexual ascomycete fungi, which have been jointly scored for mating type and a range of polymorphic molecular markers. Relative estimates are in line with expectations based on the known reproductive biology of these species.
Collapse
Affiliation(s)
- Richard A Ennos
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Building, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Xin-Sheng Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, 510642, Guangdong, China.
- College of Forestry and Landscape Architecture, South China Agricultural University, 510642, Guangdong, China.
| |
Collapse
|
8
|
Pearce TL, Scott JB, Pilkington SJ, Pethybridge SJ, Hay FS. Evidence for Sexual Recombination in Didymella tanaceti Populations, and Their Evolution Over Spring Production in Australian Pyrethrum Fields. PHYTOPATHOLOGY 2019; 109:155-168. [PMID: 29989847 DOI: 10.1094/phyto-08-17-0280-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tan spot, caused by Didymella tanaceti, is one of the most important foliar diseases affecting pyrethrum in Tasmania, Australia. Population dynamics, including mating-type ratios and genetic diversity of D. tanaceti, was characterized within four geographically separated fields in both late winter and spring 2012. A set of 10 microsatellite markers was developed and used to genotype 774 D. tanaceti isolates. Isolates were genotypically diverse, with 123 multilocus genotypes (MLG) identified across the four fields. Fifty-eight MLG contained single isolates and Psex analysis estimated that, within many of the recurrent MLG, there were multiple clonal lineages derived from recombination. Isolates of both mating types were at a 1:1 ratio following clone correction in each field at each sampling period, which was suggestive of sexual recombination. No evidence of genetic divergence of isolates of each mating type was identified, indicating admixture within the population. Linkage equilibrium in two of the four field populations sampled in late winter could not be discounted following clone correction. Evaluation of temporal changes in gene and genotypic diversity identified that they were both similar for the two sampling periods despite an increased D. tanaceti isolation frequency in spring. Genetic differentiation was similar in populations sampled between the two sampling periods within fields or between fields. These results indicated that sexual reproduction may have contributed to tan spot epidemics within Australian pyrethrum fields and has contributed to a genetically diverse D. tanaceti population.
Collapse
Affiliation(s)
- Tamieka L Pearce
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Jason B Scott
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Stacey J Pilkington
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Frank S Hay
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
9
|
Burchhardt KM, Miller ME, Cline WO, Cubeta MA. Fine-Scale Genetic Structure and Reproductive Biology of the Blueberry Pathogen Monilinia vaccinii-corymbosi. PHYTOPATHOLOGY 2017; 107:231-239. [PMID: 27775501 DOI: 10.1094/phyto-02-16-0093-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fungus Monilinia vaccinii-corymbosi, a pathogen of Vaccinium spp., requires asexual and sexual spore production to complete its life cycle. A recent study found population structuring of M. vaccinii-corymbosi over a broad spatial scale in the United States. In this study, we examined fine-scale genetic structuring, temporal dynamics, and reproductive biology within a 125-by-132-m blueberry plot from 2010 to 2012. In total, 395 isolates of M. vaccinii-corymbosi were sampled from infected shoots and fruit to examine their multilocus haplotype (MLH) using microsatellite markers. The MLH of 190 single-ascospore isolates from 21 apothecia was also determined. Little to no genetic differentiation and unrestricted gene flow were detected among four sampled time points and between infected tissue types. Discriminant analysis of principal components suggested genetic structuring within the field, with at least K = 3 genetically distinct clusters maintained over four sampled time points. Single-ascospore progeny from eight apothecia had identical MLH and at least two distinct MLH were detected from 13 apothecia. Tests for linkage disequilibrium suggested that genetically diverse ascospore progeny were the product of recombination. This study supports the idea that the fine-scale dynamics of M. vaccinii-corymbosi may be complex, with genetic structuring, inbreeding, and outcrossing detected in the study area.
Collapse
Affiliation(s)
| | - Megan E Miller
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - William O Cline
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Marc A Cubeta
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
10
|
Laloi G, Montarry J, Guibert M, Andrivon D, Michot D, Le May C. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons. Appl Environ Microbiol 2016; 82:4330-4339. [PMID: 27208102 PMCID: PMC4959184 DOI: 10.1128/aem.00480-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. IMPORTANCE Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic.
Collapse
Affiliation(s)
- G Laloi
- INRA, UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, Le Rheu, France
| | - J Montarry
- INRA, UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, Le Rheu, France
| | - M Guibert
- INRA, UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, Le Rheu, France
| | - D Andrivon
- INRA, UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, Le Rheu, France
| | - D Michot
- Agrocampus-Ouest, Laboratoire Ecologie et Santé des Plantes (ESP), Rennes, France
- INRA, UMR1069 Sol Agro et Hydrosystème Spatialisation (SAS), Rennes, France
| | - C Le May
- INRA, UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, Le Rheu, France
- Agrocampus-Ouest, Laboratoire Ecologie et Santé des Plantes (ESP), Rennes, France
| |
Collapse
|
11
|
Mahaffee WF, Stoll R. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions. PHYTOPATHOLOGY 2016; 106:420-431. [PMID: 27003505 DOI: 10.1094/phyto-02-16-0060-rvw] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between.
Collapse
Affiliation(s)
- Walter F Mahaffee
- First author: U.S. Department of Agriculture-Agricultural Research Service, Horticulture Crops Research Unit, Corvallis, OR 97330; and second author: Department of Mechanical Engineering, University of Utah, Salt Lake City 84112
| | - Rob Stoll
- First author: U.S. Department of Agriculture-Agricultural Research Service, Horticulture Crops Research Unit, Corvallis, OR 97330; and second author: Department of Mechanical Engineering, University of Utah, Salt Lake City 84112
| |
Collapse
|
12
|
Cowger C, Parks R, Kosman E. Structure and Migration in U.S. Blumeria graminis f. sp. tritici Populations. PHYTOPATHOLOGY 2016; 106:295-304. [PMID: 26623997 DOI: 10.1094/phyto-03-15-0066-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
While wheat powdery mildew occurs throughout the south-central and eastern United States, epidemics are especially damaging in the Mid-Atlantic states. The structure of the U.S. Blumeria graminis f. sp. tritici population was assessed based on a sample of 238 single-spored isolates. The isolates were collected from 16 locations in 12 states (18 site-years) as chasmothecial samples in 2003 or 2005, or as conidial samples in 2007 or 2010. DNA was evaluated using nine single nucleotide polymorphism (SNP) markers in four housekeeping genes, and 10 simple sequence repeat (SSR) markers. The SSR markers were variably polymorphic, with allele numbers ranging from 3 to 39 per locus. Genotypic diversity was high (210 haplotypes) and in eight of the site-years, every isolate had a different SSR genotype. SNP haplotypic diversity was lower; although 15 haplotypes were identified, the majority of isolates possessed one of two haplotypes. The chasmothecial samples showed no evidence of linkage disequilibrium (P = 0.36), while the conidial samples did (P = 0.001), but the two groups had nearly identical mean levels of genetic diversity, which was moderate. There was a weakly positive relationship between genetic distance and geographic distance (R(2) = 0.25, P = 0.001), indicating modest isolation by distance. Most locations in the Mid-Atlantic and Great Lakes regions clustered together genetically, while Southeast locations formed a distinct but adjacent cluster; all of these were genetically separated from Southern Plains locations and an intermediate location in Kentucky. One-way migration was detected at a rate of approximately five individuals per generation from populations west of the Appalachian Mountains to those to the east, despite the fact that the Atlantic states experience more frequent and damaging wheat mildew epidemics. Overall, the evidence argues for a large-scale mosaic of overlapping populations that re-establish themselves from local sources, rather than continental-scale extinction and re-establishment, and a low rate of long-distance dispersal roughly from west to east, consistent with prevailing wind directions.
Collapse
Affiliation(s)
- Christina Cowger
- First and second author: U.S. Department of Agriculture-Agricultural Research Service, CB7616, Department of Plant Pathology, North Carolina State University, Raleigh 27695; and third author: Faculty of Life Sciences, Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ryan Parks
- First and second author: U.S. Department of Agriculture-Agricultural Research Service, CB7616, Department of Plant Pathology, North Carolina State University, Raleigh 27695; and third author: Faculty of Life Sciences, Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evsey Kosman
- First and second author: U.S. Department of Agriculture-Agricultural Research Service, CB7616, Department of Plant Pathology, North Carolina State University, Raleigh 27695; and third author: Faculty of Life Sciences, Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Brewer MT, Rath M, Li HX. Genetic Diversity and Population Structure of Cucurbit Gummy Stem Blight Fungi Based on Microsatellite Markers. PHYTOPATHOLOGY 2015; 105:815-824. [PMID: 25710205 DOI: 10.1094/phyto-10-14-0282-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Combining population genetics with epidemiology provides insight into the population biology of pathogens, which could lead to improved management of plant diseases. Gummy stem blight, caused by three closely related species of Stagonosporopsis-Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae-is a devastating disease of cucurbits worldwide. Sources of inoculum for epidemics, mechanisms of dispersal, and the mating system of these species are not well understood. To improve our knowledge of gummy stem blight epidemiology, we developed 18 polymorphic microsatellite markers by combining microsatellite motif enrichment with next-generation sequencing. When tested on 46 isolates from diverse cucurbit hosts and regions, the markers were robust for the dominant and widely distributed S. citrulli. Within this species, we found no population structure based on broad-scale geographic region or host of origin. Using the microsatellites, a rapid polymerase chain reaction-based method was developed to distinguish the three morphologically similar species causing gummy stem blight. To better understand dispersal, reproduction, and fine-scale genetic diversity of S. citrulli within and among watermelon fields, 155 isolates from two field populations in Georgia, United States were genotyped with the 18 microsatellite loci. Although dominant and widespread clones were detected, we found relatively high genotypic diversity and recombinant genotypes consistent with outcrossing. Significant population genetic structure between the two field populations demonstrated that there is regional geographic structure and limited dispersal among fields. This study provides insight into the fine-scale genetic diversity and reproductive biology of the gummy stem blight pathogen S. citrulli in the field.
Collapse
Affiliation(s)
| | - Manisha Rath
- Department of Plant Pathology, University of Georgia, Athens
| | - Hao-Xi Li
- Department of Plant Pathology, University of Georgia, Athens
| |
Collapse
|
14
|
Frenkel O, Cadle-Davidson L, Wilcox WF, Milgroom MG. Mechanisms of Resistance to an Azole Fungicide in the Grapevine Powdery Mildew Fungus, Erysiphe necator. PHYTOPATHOLOGY 2015; 105:370-7. [PMID: 25271353 DOI: 10.1094/phyto-07-14-0202-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We studied the mechanisms of azole resistance in Erysiphe necator by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern United States and 12 from Chile. From each isolate, we sequenced the gene for sterol 14α-demethylase (CYP51), and measured the expression of CYP51 and homologs of four putative efflux transporter genes, which we identified in the E. necator transcriptome. Sequence variation in CYP51 was relatively low, with sequences of 40 U.S. isolates identical to the reference sequence. Nine U.S. isolates and five from Chile carried a previously identified A to T nucleotide substitution in position 495 (A495T), which results in an amino acid substitution in codon 136 (Y136F) and correlates with high levels of azole resistance. We also found a nucleotide substitution in position 1119 (A1119C) in 15 U.S. isolates, whose mean EC50 value was equivalent to that for the Y136F isolates. Isolates carrying mutation A1119C had significantly greater CYP51 expression, even though A1119C does not affect the CYP51 amino acid sequence. Regression analysis showed no significant effects of the expression of efflux transporter genes on EC50. Both the Y136F mutation in CYP51 and increased CYP51 expression appear responsible for azole resistance in eastern U.S. populations of E. necator.
Collapse
|
15
|
Strehlow B, de Mol F, Struck C. History of oilseed rape cropping and geographic origin affect the genetic structure of Plasmodiophora brassicae populations. PHYTOPATHOLOGY 2014; 104:532-8. [PMID: 24261407 DOI: 10.1094/phyto-07-13-0210-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The soilborne pathogen Plasmodiophora brassicae causes clubroot on Brassica crops, a common disease in many oilseed rape growing regions. Here, we investigate genetic diversity and geographic differentiation of P. brassicae populations from different regions in Germany. We compared three regions that differ in oilseed rape cropping history, oilseed rape acreage, and incidence of clubroot. These regions were either spatially separated or separated by the former inner German border. Plasmodiophora isolates were collected from 59 fields (29, 17, and 13 fields per region, respectively) and 174 amplified fragment length polymorphism (AFLP) markers were analyzed. Every field isolate showed a unique genotype pattern; that is, no genotype was shared among the regions and different fields. The mean gene diversity was 0.27, suggesting that P. brassicae is a genetically diverse species. The comparison of indexes (gene diversity, genotypic diversity, and linkage disequilibrium) between the regions does not support our hypotheses that cropping history, oilseed rape acreage, and incidence of clubroot affect these estimates. Principal component analysis (PCA), fixation index (FST), and generalized linear model (GLM) were suitable to specify regional differences. PCA revealed two clusters of isolates based on the geographic origin of the isolates and FST showed that these clusters were highly differentiated. Hypotheses about association of genotypes with different spatial scales were tested with GLM: the region, reflecting the cropping history, and the individual field had a significant effect on the AFLP pattern. We propose that individual field isolates represent a discrete population and that geographic differentiation results from low levels of gene flow due to the limited dispersal of this soilborne pathogen and from localized selection pressure as unifying force on the genotypes.
Collapse
|