1
|
Kang YC, Yeh SD, Chen TC. Leucine 127 of Cucurbit Chlorotic Yellows Virus P22 Is Crucial for Its RNA Silencing Suppression Activity and Pathogenicity. PHYTOPATHOLOGY 2024; 114:813-822. [PMID: 37913633 DOI: 10.1094/phyto-07-23-0227-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Plant viruses produce particular suppressors to antagonize the host defense response of RNA silencing to establish infection. Cucurbit chlorotic yellows virus (CCYV), a member of the genus Crinivirus of the family Closteroviridae, severely damages the production of economically essential cucurbits worldwide. Here, we used the attenuated zucchini yellow mosaic virus (ZYMV) vector ZAC to express individual coding sequences, including CP, CPm, P25, and P22, of a Taiwan CCYV isolate (CCYV-TW) to identify their possible roles as pathogenicity determinants. ZAC is an HC-Pro function mutant that lacks the ability of local lesion induction on Chenopodium quinoa leaves and induces mild mottling followed by recovery on its natural host zucchini squash plants. Only the recombinant expressing CCYV-TW P22 complemented the effect of ZAC HC-Pro dysfunction, causing more severe symptoms on zucchini squash plants and restoring lesion formation on C. quinoa leaves, with lesions forming faster than those generated by the wild-type ZYMV. This suggests that CCYV-TW P22 is a virulence enhancer. Sequence analysis of criniviral P22s revealed the presence of four conserved leucine residues (L10, L17, L84, and L127) and one conserved lysine residue (K185). The five P22 residues conserved among the CCYV isolates and the P22 orthologs of two other criniviruses were each substituted with alanine in CCYV-TW P22 to investigate its ability to suppress RNA silencing and pathogenicity. The results provide new insights into CCYV-P22, showing that the L127 residue of P22 is indispensable for maintaining its stability in RNA silencing suppression and essential for virulence enhancement.
Collapse
Affiliation(s)
- Ya-Chi Kang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tsung-Chi Chen
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
2
|
Gui M, Hu H, Jia Z, Gao X, Tao H, Li Y, Liu Y. Full-length RNA sequencing reveals the mechanisms by which an TSWV-HCRV complex suppresses plant basal resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1108552. [PMID: 37035074 PMCID: PMC10074851 DOI: 10.3389/fpls.2023.1108552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Viruses deploy numerous strategies to infect plants, typically by forming complexes with another virus, leading to more efficient infection. However, the detailed plant responses to viral infection and the underlying mechanisms of co-infection remain unclear. Previously, we found that tomato spotted wilt orthotospovirus (TSWV) and Hippeastrum chlorotic ringspot orthotospovirus (HCRV) could infect plants in the field by forming a complex. In this study, we found that TSWV infected tobacco (Nicotiana benthamiana) plants in cooperation with HCRV, leading to a more efficient infection rate of both viruses. We then used the in-depth full-length transcriptome to analyze the responses of N. benthamiana to complex infection by TSWV-HCRV (TH). We found that infection with individual TSWV and HCRV triggered plant defense responses, including the jasmonic acid signaling pathway, autophagy, and secondary metabolism. However, TH co-infection could not trigger and even suppress some genes that are involved in these basal resistance responses, suggesting that co-infection is advantageous for the virus and not for the plants. Typically, the TH complex inhibits NbPR1 expression to suppress tobacco resistance. Moreover, the TH complex could alter the expression of microRNAs (miRNAs), especially novel-m0782-3p and miR1992-3p, which directly interact with NbSAM and NbWRKY6 and suppress their expression in tobacco, leading to downregulation of NbPR1 and loss of resistance in tobacco to TSWV and HCRV viruses. Overall, our results elucidated the co-infection mechanisms of TH in tobacco by deploying the miRNA of plants to suppress plant basal resistance and contributed to developing a novel strategy to control crop disease caused by this virus complex.
Collapse
Affiliation(s)
- Min Gui
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Horticultural Research Institute, Yunnan Academy of Agricultural Science, Kunming, China
| | - Huaran Hu
- Horticultural Research Institute, Yunnan Academy of Agricultural Science, Kunming, China
| | - Zhiqiang Jia
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xue Gao
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Hongzheng Tao
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Yongzhong Li
- College of Tobacco, Yunnan Agricultural University, Kunming, China
| | - Yating Liu
- College of Tobacco, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Kahveci E, Devran Z, Özkaynak E, Hong Y, Studholme DJ, Tör M. Genomic-Assisted Marker Development Suitable for CsCvy-1 Selection in Cucumber Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:691576. [PMID: 34489994 PMCID: PMC8416629 DOI: 10.3389/fpls.2021.691576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
Cucumber is a widely grown vegetable crop plant and a host to many different plant pathogens. Cucumber vein yellowing virus (CVYV) causes economic losses on cucumber crops in Mediterranean countries and in some part of India such as West Bengal and in African countries such as Sudan. CVYV is an RNA potyvirus transmitted mechanically and by whitefly (Bemisia tabaci) in a semipersistent manner. Control of this virus is heavily dependent on the management of the insect vector and breeding virus-resistant lines. DNA markers have been used widely in conventional plant breeding programs via marker-assisted selection (MAS). However, very few resistance sources against CVYV in cucumber exist, and also the lack of tightly linked molecular markers to these sources restricts the rapid generation of resistant lines. In this work, we used genomics coupled with the bulked segregant analysis method and generated the MAS-friendly Kompetitive allele specific PCR (KASP) markers suitable for CsCvy-1 selection in cucumber breeding using a segregating F2 mapping population and commercial plant lines. Variant analysis was performed to generate single-nucleotide polymorphism (SNP)-based markers for mapping the population and genotyping the commercial lines. We fine-mapped the region by generating new markers down to 101 kb with eight genes. We provided SNP data for this interval, which could be useful for breeding programs and cloning the candidate genes.
Collapse
Affiliation(s)
- Erdem Kahveci
- M.Y. Genetik Tarim Tek. Lab. Tic. Ltd. Sti., Antalya, Turkey
| | - Zübeyir Devran
- Department of Plant Protection, Faculty of Agriculture, University of Akdeniz, Antalya, Turkey
| | | | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
4
|
Orfanidou C, Katsiani A, Papayiannis L, Katis NI, Maliogka VI. Interplay of Cucurbit Yellow Stunting Disorder Virus With Cucurbit Chlorotic Yellows Virus and Transmission Dynamics by Bemisia tabaci MED. PLANT DISEASE 2021; 105:416-424. [PMID: 32706325 DOI: 10.1094/pdis-03-20-0621-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder virus (CYSDV) are two closely related criniviruses that often coinfect cucurbits and are associated with cucurbit yellows disease. Both viruses are distributed worldwide and are transmitted in a semipersistent manner by the whitefly vectors Bemisia tabaci MED or MEAM1. The major goal of this study was to provide insight into the interaction of CCYV and CYSDV in cucumber and to study the effect on transmission by B. tabaci MED. The titers of both viruses were estimated in single- and dually infected cucumber plants via reverse transcription PCR assays. In mixed infections, the accumulation of both viruses was significantly decreased. When B. tabaci MED adults were placed on cucumber infected with both viruses, their simultaneous transmission efficiency was significantly higher, whereas transmission efficiency of each individual virus was low. Moreover, nonviruliferous whiteflies preferentially settled on crinivirus-infected cucumber plants, whereas viruliferous whiteflies were attracted by healthy cucumber plants. Finally, the titer of both viruses was calculated in five commercial cucumber hybrids, followed by subsequent transmission experiments. Our results show that although the titers of CYSDV and CCYV were significantly lower in mixed infections in cucumbers, their simultaneous transmission increased.
Collapse
Affiliation(s)
- Chrysoula Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Asimina Katsiani
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | | | - Nikolaos I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Varvara I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Gautam S, Gadhave KR, Buck JW, Dutta B, Coolong T, Adkins S, Srinivasan R. Virus-virus interactions in a plant host and in a hemipteran vector: Implications for vector fitness and virus epidemics. Virus Res 2020; 286:198069. [PMID: 32574679 DOI: 10.1016/j.virusres.2020.198069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Mixed virus infection in host plants can differentially alter the plant phenotype, influence vector fitness, and affect virus acquisition and inoculation by vectors than single-virus infection. Vector acquisition of multiple viruses from multiple host plants could also differentially affect vector fitness and virus inoculation than acquisition of one virus. Whitefly-virus pathosystems in the southern United States include both the above-stated facets. For the first facet, this study examined the effects of single and mixed infection of cucurbit leaf crumple virus (CuLCrV, a begomovirus) and cucurbit yellow stunting disorder virus (CYSDV, a crinivirus) infecting squash on whitefly (Bemisia tabaci Gennadius MEAM1) host preference and fitness. Mixed infection of CuLCrV and CYSDV in squash plants severely altered their phenotype than single infection. The CYSDV load was reduced in mixed-infected squash plants than in singly-infected plants. Consequently, whiteflies acquired reduced amounts of CYSDV from mixed-infected plants than singly-infected plants. No differences in CuLCrV load were found between singly- and mixed-infected squash plants, and acquisition of CuLCrV by whiteflies did not vary between singly- and mixed-infected squash plants. Both singly- and mixed-infected plants similarly affected whitefly preference, wherein non-viruliferous and viruliferous (CuLCrV and/or CYSDV) whiteflies preferred non-infected plants over infected plants. The fitness study involving viruliferous and non-viruliferous whiteflies revealed no differences in developmental time and fecundity. For the second facet, this study evaluated the effects of individual or combined acquisition of tomato-infecting tomato yellow leaf curl virus (TYLCV, a begomovirus) and squash-infecting CuLCrV on whitefly host preference and fitness. Whiteflies that acquired both CuLCrV and TYLCV had significantly lower CuLCrV load than whiteflies that acquired CuLCrV alone, whereas TYLCV load remained unaltered when acquired individually or in conjunction with CuLCrV. Whitefly preference was not affected following individual or combined virus acquisition. Viruliferous (CuLCrV and/or TYLCV) whiteflies preferred to settle on non-infected tomato and squash plants. The mere presence of CuLCrV and/or TYLCV in whiteflies did not affect their fitness. Taken together, these results indicate that mixed infection of viruses in host plants and acquisition of multiple viruses by the vector could have implications for virus accumulation, virus acquisition, vector preference, and epidemics that sometimes are different from single-virus infection or acquisition.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Kiran R Gadhave
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - James W Buck
- Department of Plant Pathology, University of Georgia, 1109 Experiment St., Griffin, GA, 30223, USA
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA, 31793, USA
| | - Tim Coolong
- Department of Horticulture, University of Georgia, 3250 Rainwater Road, Tifton, GA, 31793, USA
| | - Scott Adkins
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, 34945, USA
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
6
|
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P. Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res 2020; 106:145-169. [PMID: 32327147 DOI: 10.1016/bs.aivir.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mixed viral infections occur more commonly than would be expected by chance in nature. Virus-virus interactions may affect viral traits and leave a genetic signature in the population, and thus influence the prevalence and emergence of viral diseases. Understanding about how the interactions between viruses within a host shape the evolutionary dynamics of the viral populations is needed for viral disease prevention and management. Here, we first synthesize concepts implied in the occurrence of virus-virus interactions. Second, we consider the role of the within-host interactions of virus-virus and virus-other pathogenic microbes, on the composition and structure of viral populations. Third, we contemplate whether mixed viral infections can create opportunities for the generation and maintenance of viral genetic diversity. Fourth, we attempt to summarize the evolutionary response of viral populations to mixed infections to understand how they shape the spatio-temporal dynamics of viral populations at the individual plant and field scales. Finally, we anticipate the future research under the reconciliation of molecular epidemiology and evolutionary ecology, drawing attention to the need of adding more complexity to future research in order to gain a better understanding about the mechanisms operating in nature.
Collapse
Affiliation(s)
- Cristina Alcaide
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M Pilar Rabadán
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Manuel G Moreno-Pérez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
7
|
Senanayake DMJB, Mandal B. Expression of symptoms, viral coat protein and silencing suppressor gene during mixed infection of a N-Wi strain of potato virus Y and an asymptomatic strain of potato virus X. Virusdisease 2015; 25:314-21. [PMID: 25674598 DOI: 10.1007/s13337-014-0204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 02/07/2014] [Indexed: 11/26/2022] Open
Abstract
Potato virus Y (PVY) and potato virus X (PVX), the RNA viruses of two different genera results into synergistic interactions on mixed infection. In this study, a N-Wi strain of PVY and a PVX strain that is asymptomatic on potato were used to study their interactions during mixed infection in Nicotiana benthamiana and Nicotiana tabacum with reference to symptom expression, level of coat protein (CP) using ELISA and suppressor gene using real time PCR under high temperature (26-40 °C) and low temperature (5-25 °C) conditions. Both mixed and single infection caused severe necrosis and death of N. benthamiana plants. Single infection of these viruses in N. tabacum showed mild symptoms but mixed infection caused more severe symptoms. Synergistic symptoms were more pronounced under low temperature conditions than at high temperature. In low temperature conditions, the CP level of PVX in N. benthamiana was twofold higher than PVY and both the viruses reached at peak at 28 dpi in single virus infection. When PVY and PVX inoculated together, the CP levels of both the viruses increased and reached to the peak earlier (within 7-14 days) than that in the single virus inoculation. Although, the CP level of PVX was higher than PVY in mixed infection, at later stage (28 dpi) both the CP level declined to the similar level. The level of p25 suppressor gene was higher than HC-Pro in single inoculation. However, under mixed inoculation of PVY and PVX, expression of p25 was declined to the level of HC-Pro when the CP levels of both the virus also were observed to decline. The expression pattern of CP and suppressor gene was different in plants when mixed infection was created by inoculation of one virus followed by the other. This study showed the level of CP and suppressor gene of specific strain of PVY and PVX during their mixed infection in tobacco.
Collapse
Affiliation(s)
- D M J B Senanayake
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - B Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
8
|
Abrahamian PE, Abou-Jawdah Y. Whitefly-transmitted criniviruses of cucurbits: current status and future prospects. Virusdisease 2014; 25:26-38. [PMID: 24426308 PMCID: PMC3889241 DOI: 10.1007/s13337-013-0173-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022] Open
Abstract
In the past decade, crinviruses have gained interest due to their rapid widespread and destructive nature for cucurbit cultivation. Several members of the genus Crinivirus are considered emerging viruses. Currently, four criniviruses: Beet pseudo-yellows virus, Cucurbit chlorotic yellows virus, Cucurbit yellow stunting disorder virus and Lettuce infectious yellows virus have been reported to infect field- or greenhouse- grown cucurbits. Apart from their cucurbit hosts, criniviruses infect other cash crops and weeds. Criniviruses are exclusively transmitted by whiteflies. The virion titer and the vector genus or species complex are predominant factors affecting virus transmission. These criniviruses maintain genetic stability with limited intra-species variability. They share similar core genome structure and replication strategies with some variations in the non-core proteins and downstream replication processes. Management of the diseases induced by criniviruses relies on integrated disease management strategies and on resistant varieties, when available. This review will cover their epidemiology, molecular biology, detection and management.
Collapse
Affiliation(s)
- Peter E. Abrahamian
- Department of Agricultural Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, 1107 2020 Lebanon
| | - Yusuf Abou-Jawdah
- Department of Agricultural Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, 1107 2020 Lebanon
| |
Collapse
|
9
|
Abrahamian PE, Seblani R, Sobh H, Abou-Jawdah Y. Detection and quantitation of two cucurbit criniviruses in mixed infection by real-time RT-PCR. J Virol Methods 2013; 193:320-6. [PMID: 23810855 DOI: 10.1016/j.jviromet.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
Cucurbit chlorotic yellows virus (CCYV) and Cucurbit yellow stunting disorder virus (CYSDV) are whitefly-transmitted criniviruses infecting cucurbit crops inducing similar symptoms. Single and multiplex RT-PCR protocols were developed and evaluated on cucurbit samples collected from commercial greenhouses. Primers and probes were designed from the highly conserved heat shock protein 70 homolog (Hsp70h) gene. Conventional RT-PCR and multiplex RT-PCR assays showed high specificity and suitability for routine screening. TaqMan-based quantitative real-time RT-PCR (RT-qPCR) protocols were also developed for the detection and quantitation of both viruses occurring in single or mixed infection. The assays proved to be highly specific with no cross amplification. RT-qPCR assays showed a 100-1000 times improved sensitivity over conventional RT-PCR. Virus titers in mixed infections were compared to singly infected plants by RT-qPCR. CYSDV and CCYV titers decreased in double infected plants. This paper reports highly specific conventional RT-PCR and quantitative real-time PCR assays for detection, quantitation and differentiation between two closely related cucurbit-infecting criniviruses.
Collapse
Affiliation(s)
- Peter E Abrahamian
- Department of Agricultural Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107 2020, Lebanon.
| | | | | | | |
Collapse
|