1
|
Wang W, Xiong T, Zeng Y, Li W, Jiao C, Xu J, Li H. Clonal Expansion in Multiple Phyllosticta Species Causing Citrus Black Spot or Similar Symptoms in China. J Fungi (Basel) 2023; 9:449. [PMID: 37108904 PMCID: PMC10145914 DOI: 10.3390/jof9040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Phyllosticta spp. are important pathogens of citrus plants. Several Phyllosticta species associated with Citrus species grown in China have been reported; however, the relative prevalences of individual species and the distributions of their genotypes among host Citrus species remain largely unknown. In this study, we conducted an extensive survey of Phyllosticta species across 11 citrus-producing provinces in southern China. From fruits and leaves with black spots or black-spot-like symptoms, a total of 461 Phyllosticta strains were isolated. Based on molecular (ITS, actA, tef1, gapdh, LSU, and rpb2 sequences) and morphological data, the strains were systematically identified as belonging to five species: P. capitalensis, P. citrichinaensis, P. citriasiana, P. citricarpa, and P. paracitricarpa. To further understand intraspecific genetic diversity and relationships, strains of five species from different geographic and host sources were analyzed based on the multilocus sequence data. Our population genetic analyses revealed that all five Phyllosticta species on citrus showed evidence for clonal dispersals within and among geographic regions. In addition, pathogenicity tests using representative strains showed that all five species can cause disease on the tested Citrus spp. We discuss the implications of our results for the control and management of Citrus Black Spot and related diseases.
Collapse
Affiliation(s)
- Wen Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tao Xiong
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yating Zeng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wenwen Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Chen Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agricultural, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
2
|
Discerning the global phylogeographic distribution of Phyllosticta citricarpa by means of whole genome sequencing. Fungal Genet Biol 2022; 162:103727. [PMID: 35870700 DOI: 10.1016/j.fgb.2022.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Phyllosticta citricarpa is a fungal pathogen causing citrus black spot (CBS). As a regulated pest in some countries, the presence of the pathogen limits the export of fruit and is therefore of agricultural and economic importance. In this study, we used high throughput sequencing data to infer the global phylogeographic distribution of this pathogen, including 71 isolates from eight countries, Argentina, Australia, Brazil, China, Cuba, Eswatini, South Africa and the United States of America. We assembled draft genomes and used a pairwise read mapping approach for the detection and enumeration of variants between isolates. We performed SSR marker discovery based on the assembled genome with the best assembly statistics, and generated genotype profiles for all isolates with 1987 SSR markers in silico. Furthermore, we identified 32,560 SNPs relative to a reference sequence followed by population genetic analyses based on the three datasets; pairwise variant counts, SSR genotypes and SNP genotypes. All three analysis approaches gave similar overall results. Possible pathways of dissemination among the populations from China, Australia, southern Africa and the Americas are postulated. The Chinese population is the most diverse, and is genetically the furthest removed from all other populations, and is therefore considered the closest to the origin of the pathogen. Isolates from Australia, Eswatini and the South African province Mpumalanga are closely associated and clustered together with those from Argentina and Brazil. The Eastern Cape, North West, and KwaZulu-Natal populations in South Africa grouped in another cluster, while isolates from Limpopo are distributed between the two aforementioned clusters. Southern African populations showed a close relationship to populations in North America, and could be a possible source of P. citricarpa populations that are now found in North America. This study represents the largest whole genome sequencing survey of P. citricarpa to date and provides a more comprehensive assessment of the population genetic diversity and connectivity of P. citricarpa from different geographic origins. This information could further assist in a better understanding of the epidemiology of the CBS pathogen, its long-distance dispersal and dissemination pathways, and can be used to refine phytosanitary regulations and management programmes for the disease.
Collapse
|
3
|
He Y, Chen J, Tang C, Deng Q, Guo L, Cheng Y, Li Z, Wang T, Xu J, Gao C. Genetic Diversity and Population Structure of Fusarium commune Causing Strawberry Root Rot in Southcentral China. Genes (Basel) 2022; 13:genes13050899. [PMID: 35627284 PMCID: PMC9140712 DOI: 10.3390/genes13050899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Strawberry plants and fruits are vulnerable to infections by a broad range of pathogens and pests. However, knowledge about the epidemiology of pathogens causing strawberry diseases is limited. In this study, we analyzed Fusarium commune, a major fungal pathogen causing strawberry root rot, from diseased strawberry root tissues in southcentral China. A total of 354 isolates were obtained from 11 locations that spanned about 700 km from both south to north and east to west. Multilocus genotypes of all isolates were obtained using seven polymorphic simple sequence repeat markers developed in this study. Our analyses revealed significant genetic diversity within each of the 11 local populations of F. commune. STRUCTURE analysis revealed that the optimal number of genetic populations for the 354 strains was two, with most local geographic populations containing isolates in both genetic clusters. Interestingly, many isolates showed allelic ancestry to both genetic clusters, consistent with recent hybridization between the two genetic clusters. In addition, though alleles and genotypes were frequently shared among local populations, statistically significant genetic differentiations were found among the local populations. However, the observed F. commune population genetic distances were not correlated with geographic distances. Together, our analyses suggest that populations of F. commune causing strawberry root rot are likely endemic to southcentral China, with each local population containing shared and unique genetic elements. Though the observed gene flow among geographic regions was relatively low, human activities will likely accelerate pathogen dispersals, resulting in the generation of new genotypes through mating and recombination.
Collapse
Affiliation(s)
- Yunlu He
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chao Tang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qiao Deng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
4
|
Cui L, Deng J, Zhao L, Hu Y, Liu T. Genetic Diversity and Population Genetic Structure of Setosphaeria turcica From Sorghum in Three Provinces of China Using Single Nucleotide Polymorphism Markers. Front Microbiol 2022; 13:853202. [PMID: 35308383 PMCID: PMC8924674 DOI: 10.3389/fmicb.2022.853202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
Setosphaeria turcica is a heterothallic fungus that is the causal agent of northern leaf blight (NLB), which is a devastating foliar disease of sorghum and maize. Despite of its adversary to crop production, little is known about the genetic diversity and population genetic structure of this pathogen from sorghum. In this study, we explored the utilization of single nucleotide polymorphism (SNP) molecular markers and three mating type-specific primers to analyze the genetic diversity, population genetic structure, and mating type distribution of 87 S. turcica isolates that had been collected in sorghum production areas from three provinces, including Henan, Shaanxi, and Shanxi in China. The populations are featured with moderate genetic diversity and relatively equal mating type distribution of MAT1-1 and MAT1-2. The genetic differentiation was significant (p < 0.05) among different populations except those from Henan and Shanxi provinces that showed particularly frequent gene flow between them. Neither the maxinum likelihood phylogenetic tree, nor principal coordinate analysis, nor genetic structure analysis was able to completely separate the three populations. The relatively low genetic distance and high genetic identification were also observed among the three populations. Nevertheless, the genetic variation within populations was the major source of variation as revealed by AMOVA analysis. The findings of this study have improved our current understanding about the genetic diversity, population genetic structure, and the distribution of mating type of S. turcica, which are useful for unraveling the epidemiology of NLB and developing effective disease management strategies.
Collapse
Affiliation(s)
- Linkai Cui
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Junli Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Linxi Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yanhong Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Tingli Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
5
|
Abundant Genetic Diversity and Extensive Differentiation among Geographic Populations of the Citrus Pathogen Diaporthe citri in Southern China. J Fungi (Basel) 2021; 7:jof7090749. [PMID: 34575787 PMCID: PMC8468327 DOI: 10.3390/jof7090749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
The fungal pathogen Diaporthe citri is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of D. citri. In this study, we analyzed 339 isolates from leaves and fruits with melanose symptoms from five provinces in southern China at 14 polymorphic simple sequence repeat (SSR) loci and the mating type idiomorphs. The genetic variations were analyzed at three levels with separate samples: among provinces, among orchards within one county, and among trees within one orchard. The five provincial populations from Fujian, Zhejiang, Jiangxi, Hunan, and Guizhou were significantly differentiated, while limited differences were found among orchards from the same county or among trees from the same orchard. STRUCTURE analysis detected two genetic clusters in the total sample, with different provincial subpopulations showing different frequencies of isolates in these two clusters. Mantel analysis showed significant positive correlation between genetic and geographic distances, consistent with geographic separation as a significant barrier to gene flow in D. citri in China. High levels of genetic diversity were found within individual subpopulations at all three spatial scales of analyses. Interestingly, most subpopulations at all three spatial scales had the two mating types in similar frequencies and with alleles at the 14 SSR loci not significantly different from linkage equilibrium. Indeed, strains with different mating types and different multilocus genotypes were frequently isolated from the same leaves and fruits. The results indicate that sexual reproduction plays an important role in natural populations of D. citri in southern China and that its ascospores likely represent an important contributor to citrus disease.
Collapse
|