1
|
Kaur N, Mehl HL, Langston D, Haak DC. Evaluation of Stagonospora Nodorum Blotch Severity and Parastagonospora nodorum Population Structure and Genetic Diversity Across Multiple Locations and Wheat Varieties in Virginia. PHYTOPATHOLOGY 2024; 114:258-268. [PMID: 37316953 DOI: 10.1094/phyto-10-22-0392-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Parastagonospora nodorum is a necrotrophic pathogen that causes Stagonospora nodorum blotch (SNB) in wheat. Wheat varieties grown in Virginia vary in susceptibility to SNB, and the severity of SNB varies across locations and years. However, the impacts of wheat genetic backgrounds and environments on SNB severity and the structure of P. nodorum populations in the region have not been well studied. Thus, a population genetic study was conducted utilizing P. nodorum isolates collected from different wheat varieties and locations in Virginia. A total of 320 isolates were collected at seven locations over 2 years from five wheat varieties. Isolates were genotyped using multilocus simple sequence repeat markers, and necrotrophic effector (NE) and mating type genes were amplified using gene-specific primers. Wheat varieties varied in susceptibility to SNB, but site-specific environmental conditions were the primary drivers of disease severity. Fungal populations were genetically diverse, but no genetic subdivision was observed among locations or varieties. The ratio of the two mating type idiomorphs was not significantly different from 1:1, consistent with the P. nodorum population undergoing sexual reproduction. Three major NE genes were detected within the P. nodorum population, but not with equal frequency. However, NE gene profiles were similar for groups of isolates originating from different varieties, suggesting that wheat genetic backgrounds do not differentially select for NEs. There was no evidence of population structure among P. nodorum populations in Virginia and, thus, no support for wheat genetic backgrounds shaping these populations. Finally, although varieties only exhibited moderate resistance to SNB, current levels of resistance are likely to be durable over time and remain a useful tool for integrated management of SNB in the region. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Navjot Kaur
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - Hillary L Mehl
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - David Langston
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
- Virginia Tech Tidewater Agricultural Research and Extension Center, Suffolk, VA 23437
| | - David C Haak
- School of Plant and Environmental Sciences, VA Tech, Blacksburg, VA 24061
| |
Collapse
|
2
|
Phylogenetic Analysis and Genetic Diversity of Colletotrichum falcatum Isolates Causing Sugarcane Red Rot Disease in Bangladesh. BIOLOGY 2021; 10:biology10090862. [PMID: 34571739 PMCID: PMC8467384 DOI: 10.3390/biology10090862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Sugarcane is an important agro-industrial crop because it is one of the major sources of white sugar. Red rot which is caused by Colletotrichum falcatum is the most devastating disease of sugarcane because its infestation results in significant sugarcane yield loss. The intra- and inter-specific genetic diversity, population structure and phylogenetic relationship amongst C. falcatum isolates from Bangladesh remain unclear. This information is essential for the effective management of red rot and to also develop resistant sugarcane varieties through plant breeding programmes. This paper demonstrates the phylogenetic relationship and genetic diversity of C. falcatum isolates from Bangladesh. Also, it provides baseline information that can be used to establish red rot disease management strategies for future application. Abstract Colletotrichum falcatum Went causes red rot disease in sugarcane farming in the tropical and sub-tropical regions. This disease causes significant economic loss to the sugarcane production industry. Successful disease management strategies depend on understanding the evolutionary relationship between pathogens, genetic diversity, and population structure, particularly at the intra-specific level. Forty-one isolates of C. falcatum were collected from different sugarcane farms across Bangladesh for molecular identification, phylogeny and genetic diversity study. The four genes namely, ITS-rDNA, β-tubulin, Actin and GAPDH sequences were conducted. All the 41 C. falcatum isolates showed a 99–100% similarity index to the conserved gene sequences in the GenBank database. The phylogram of the four genes revealed that C. falcatum isolates of Bangladesh clustered in the same clade and no distinct geographical structuring were evident within the clade. The four gene sequences revealed that C. falcatum isolates from Bangladesh differed from other countries´ isolates because of nucleotides substitution at different loci. The genetic structure of C. falcatum isolates were determined using ISSR marker generated 404 polymorphic loci from 10 selected markers. The percentage of polymorphic loci was 99.01. The genetic variability at species level was slightly higher than at population level. Total mean gene diversity at the species level was 0.1732 whereas at population level it was 0.1521. The cluster analysis divided 41 isolates into four main genetic groups and the principal component analysis was consistent with cluster analysis. To the best of our knowledge, this is the first finding on characterizing C. falcatum isolates infesting sugarcane in Bangladesh. The results of this present study provide important baseline information vis a vis C. falcatum phylogeny analysis and genetic diversity study.
Collapse
|
3
|
Knight NL, Vaghefi N, Kikkert JR, Bolton MD, Secor GA, Rivera VV, Hanson LE, Nelson SC, Pethybridge SJ. Genetic Diversity and Structure in Regional Cercospora beticola Populations from Beta vulgaris subsp. vulgaris Suggest Two Clusters of Separate Origin. PHYTOPATHOLOGY 2019; 109:1280-1292. [PMID: 30785376 DOI: 10.1094/phyto-07-18-0264-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cercospora leaf spot, caused by Cercospora beticola, is a highly destructive disease of Beta vulgaris subsp. vulgaris worldwide. C. beticola populations are usually characterized by high genetic diversity, but little is known of the relationships among populations from different production regions around the world. This information would be informative of population origin and potential pathways for pathogen movement. For the current study, the genetic diversity, differentiation, and relationships among 948 C. beticola isolates in 28 populations across eight geographic regions were investigated using 12 microsatellite markers. Genotypic diversity, as measured by Simpson's complement index, ranged from 0.18 to 1.00, while pairwise index of differentiation values ranged from 0.02 to 0.42, with the greatest differentiation detected between two New York populations. In these populations, evidence for recent expansion was detected. Assessment of population structure identified two major clusters: the first associated with New York, and the second with Canada, Chile, Eurasia, Hawaii, Michigan, North Dakota, and one population from New York. Inferences of gene flow among these regions suggested that the source for one cluster likely is Eurasia, whereas the source for the other cluster is not known. These results suggest a shared origin of C. beticola populations across regions, except for part of New York, where population divergence has occurred. These findings support the hypothesis that dispersal of C. beticola occurs over long distances.
Collapse
Affiliation(s)
- Noel L Knight
- 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Niloofar Vaghefi
- 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Julie R Kikkert
- 2 Cornell Vegetable Program, Cornell Cooperative Extension, Canandaigua, NY 14424
| | - Melvin D Bolton
- 3 U.S. Department of Agriculture Agricultural Research Service (USDA ARS), Red River Valley Agricultural Research Center, Fargo, ND 58102
| | - Gary A Secor
- 4 Department of Plant Pathology, North Dakota State University, Fargo, ND 58105
| | - Viviana V Rivera
- 4 Department of Plant Pathology, North Dakota State University, Fargo, ND 58105
| | - Linda E Hanson
- 5 USDA ARS Sugar Beet and Bean Research Unit, Michigan State University, East Lansing, MI 48824; and
| | - Scot C Nelson
- 6 Department of Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Sarah J Pethybridge
- 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
4
|
Kashyap PL, Kumar S, Tripathi R, Kumar RS, Jasrotia P, Singh DP, Singh GP. Phylogeography and Population Structure Analysis Reveal Diversity by Gene Flow and Mutation in Ustilago segetum (Pers.) Roussel tritici Causing Loose Smut of Wheat. Front Microbiol 2019; 10:1072. [PMID: 31156587 PMCID: PMC6529584 DOI: 10.3389/fmicb.2019.01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/29/2019] [Indexed: 02/02/2023] Open
Abstract
Ustilago segetum (Pers.) Roussel tritici (UST) causes loose smut of wheat account for considerable grain yield losses globally. For effective management, knowledge of its genetic variability and population structure is a prerequisite. In this study, UST isolates sampled from four different wheat growing zones of India were analyzed using the second largest subunit of the RNA polymerase II (RPB2) and a set of sixteen neutral simple sequence repeats (SSRs) markers. Among the 112 UST isolates genotyped, 98 haplotypes were identified. All the isolates were categorized into two groups (K = 2), each consisting of isolates from different sampling sites, on the basis of unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure. The positive and significant index of association (IA = 1.169) and standardized index of association (rBarD = 0.075) indicate population is of non-random mating type. Analysis of molecular variance showed that the highest variance component is among isolates (91%), with significantly low genetic differentiation variation among regions (8%) (Fst = 0.012). Recombination (Rm = 0) was not detected. The results showed that UST isolates have a clonal genetic structure with limited genetic differentiation and human arbitrated gene flow and mutations are the prime evolutionary processes determining its genetic structure. These findings will be helpful in devising management strategy especially for selection and breeding of resistant wheat cultivars.
Collapse
Affiliation(s)
- Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | - Rahul Tripathi
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | - Ravi Shekhar Kumar
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | - Devendra Pal Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India
| | | |
Collapse
|
5
|
Knight NL, Vaghefi N, Hansen ZR, Kikkert JR, Pethybridge SJ. Temporal Genetic Differentiation of Cercospora beticola Populations in New York Table Beet Fields. PLANT DISEASE 2018; 102:2074-2082. [PMID: 30156961 DOI: 10.1094/pdis-01-18-0175-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Annual epidemics of Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, can result in substantial defoliation in table beet fields in New York. High allelic and genotypic diversity have been described within C. beticola populations; however, information on the temporal stability of populations is lacking. C. beticola isolates were obtained from symptomatic leaves in three table beet fields in successive years. Two of the fields were organic mixed-cropping farms and the third was managed conventionally in a broad-acre cropping system. C. beticola isolates (n = 304) were genotyped using 12 microsatellite markers. Genotypic diversity (Simpson's complement index = 0.178 to 0.990), allele frequencies, and indices of differentiation between years varied. Pairwise index of differentiation values ranged from 0.02 to 0.25 for clone-corrected data, and indicated significant genetic differentiation at Farm 2. No multilocus genotype was shared between years. The shift in multilocus genotypes between years questions the role of clonally reproducing primary inoculum. Collectively, these results suggest that a dominant inoculum source for initiating annual CLS epidemics is external to the field of interest. These findings have implications for CLS disease management in conventional and organic table beet production.
Collapse
Affiliation(s)
- Noel L Knight
- Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Niloofar Vaghefi
- Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Zachariah R Hansen
- Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | | | - Sarah J Pethybridge
- Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
6
|
Vaghefi N, Nelson SC, Kikkert JR, Pethybridge SJ. Genetic structure of Cercospora beticola populations on Beta vulgaris in New York and Hawaii. Sci Rep 2017; 7:1726. [PMID: 28496148 PMCID: PMC5431814 DOI: 10.1038/s41598-017-01929-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
Cercospora leaf spot (CLS), caused by Cercospora beticola, is a major disease of Beta vulgaris worldwide. No sexual stage is known for C. beticola but in its asexual form it overwinters on infected plant debris as pseudostromata, and travels short distances by rain splash-dispersed conidiospores. Cercospora beticola infects a broad range of host species and may be seedborne. The relative contribution of these inoculum sources to CLS epidemics on table beet is not well understood. Pathogen isolates collected from table beet, Swiss chard and common lambsquarters in mixed-cropping farms and monoculture fields in New York and Hawaii, USA, were genotyped (n = 600) using 12 microsatellite markers. All isolates from CLS symptoms on lambsquarters were identified as C. chenopodii. Sympatric populations of C. beticola derived from Swiss chard and table beet were not genetically differentiated. Results suggested that local (within field) inoculum sources may be responsible for the initiation of CLS epidemics in mixed-cropping farms, whereas external sources of inoculum may be contributing to CLS epidemics in the monoculture fields in New York. New multiplex PCR assays were developed for mating-type determination for C. beticola. Implications of these findings for disease management are discussed.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Scot C Nelson
- College of Tropical Agriculture and Human Resources, Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | | | - Sarah J Pethybridge
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
7
|
Moges AD, Admassu B, Belew D, Yesuf M, Njuguna J, Kyalo M, Ghimire SR. Development of Microsatellite Markers and Analysis of Genetic Diversity and Population Structure of Colletotrichum gloeosporioides from Ethiopia. PLoS One 2016; 11:e0151257. [PMID: 26978654 PMCID: PMC4792483 DOI: 10.1371/journal.pone.0151257] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/25/2016] [Indexed: 01/10/2023] Open
Abstract
Twenty three polymorphic microsatellite markers were developed for citrus plant pathogenic fungus, Colletotrichum gloeosporioides, and were used to analyze genetic diversity and population structure of 163 isolates from four different geographical regions of Ethiopia. These loci produced a total of 118 alleles with an average of 5.13 alleles per microsatellite marker. The polymorphic information content values ranged from 0.104 to 0.597 with an average of 0.371. The average observed heterozygosity across all loci varied from 0.046 to 0.058. The gene diversity among the loci ranged from 0.106 to 0.664. Unweighted Neighbor-joining and population structure analysis grouped these 163 isolates into three major groups. The clusters were not according to the geographic origin of the isolates. Analysis of molecular variance showed 85% of the total variation within populations and only 5% among populations. There was low genetic differentiation in the total populations (FST = 0.049) as evidenced by high level of gene flow estimate (Nm = 4.8 per generation) among populations. The results show that Ethiopian C. gloeosporioides populations are generally characterized by a low level of genetic diversity. The newly developed microsatellite markers were useful in analyzing the genetic diversity and population structure of the C. gloeosporioides populations. Information obtained from this study could be useful as a base to design strategies for better management of leaf and fruit spot disease of citrus in Ethiopia.
Collapse
Affiliation(s)
- Asmare D. Moges
- Department of Horticulture, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Biosciences eastern and central Africa Hub, International Livestock Research Institute, Nairobi, Kenya
| | - Belayneh Admassu
- Department of Agricultural Biotechnology, Ethiopian Institute of Agricultural Research, Holetta, Ethiopia
| | - Derbew Belew
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Mohammed Yesuf
- Department of Horticulture, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Joyce Njuguna
- Biosciences eastern and central Africa Hub, International Livestock Research Institute, Nairobi, Kenya
| | - Martina Kyalo
- Biosciences eastern and central Africa Hub, International Livestock Research Institute, Nairobi, Kenya
| | - Sita R. Ghimire
- Biosciences eastern and central Africa Hub, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
8
|
Rampersad SN. Genetic structure of Colletotrichum gloeosporioides sensu lato isolates infecting papaya inferred by multilocus ISSR markers. PHYTOPATHOLOGY 2013; 103:182-189. [PMID: 23294406 DOI: 10.1094/phyto-07-12-0160-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Colletotrichum gloeosporioides sensu lato is widely distributed throughout temperate and tropical regions and causes anthracnose disease in numerous plant species. Development of effective disease management strategies is dependent on, among other factors, an understanding of pathogen genetic diversity and population stratification at the intraspecific level. For 132 isolates of C. gloeosporioides sensu lato collected from papaya in Trinidad, inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 121 polymorphic loci from five ISSR primers selected from an initial screen of 22 ISSR primers. The mean percentage of polymorphic loci was 99.18%. Bayesian cluster analysis inferred three genetic subpopulations, where group 1 consisted exclusively of isolates collected in the southern part of Trinidad whereas groups 2 and 3, although genetically distinct, were mixtures of isolates collected from both the northern and southern parts of Trinidad. Principal coordinates analysis and unweighted pair-group method with arithmetic mean phylogeny were concordant with Bayesian cluster analysis and supported subdivision into the three subpopulations. Overall, the total mean gene diversity was 0.279, the mean within-population gene diversity was 0.2161, and genetic differentiation for the Trinidad population was 0.225. Regionally, northern isolates had a lower gene diversity compared with southern isolates. Nei's gene diversity was highest for group 1 (h = 0.231), followed by group 2 (h = 0.215) and group 3 (h = 0.202). Genotypic diversity was at or near maximum for all three subpopulations after clone correction. Pairwise estimates of differentiation indicated high and significant genetic differentiation among the inferred subpopulations (Weir's θ of 0.212 to 0.325). Pairwise comparisons among subpopulations suggested restricted gene flow between groups 1 and 2 and groups 1 and 3 but not between groups 2 and 3. The null hypothesis of random mating was rejected for all three inferred subpopulations. These results suggest that pathogen biology and epidemiology as well as certain evolutionary factors may play an important role in population substructuring of C. gloeosporioides sensu lato isolates infecting papaya in Trinidad.
Collapse
Affiliation(s)
- Sephra N Rampersad
- The University of the West Indies, Development of Life Sciences, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
9
|
Simwami SP, Khayhan K, Henk DA, Aanensen DM, Boekhout T, Hagen F, Brouwer AE, Harrison TS, Donnelly CA, Fisher MC. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin. PLoS Pathog 2011; 7:e1001343. [PMID: 21573144 PMCID: PMC3089418 DOI: 10.1371/journal.ppat.1001343] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 04/15/2011] [Indexed: 12/19/2022] Open
Abstract
The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.
Collapse
Affiliation(s)
- Sitali P. Simwami
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kantarawee Khayhan
- CBS Fungal Biodiversity Centre, Utrecht, The Netherlands
- Department of Microbiology and Parasitology, School of Medical Science, Naresuan University Phayao, Phayao, Thailand
| | - Daniel A. Henk
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Ferry Hagen
- CBS Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annemarie E. Brouwer
- Department of General Internal Medicine and Nijmegen University Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Thomas S. Harrison
- Department of Infectious Diseases, St George's Hospital Medical School, London, United Kingdom
| | - Christl A. Donnelly
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Bogacki P, Keiper FJ, Oldach KH. Genetic structure of South Australian Pyrenophora teres populations as revealed by microsatellite analyses. Fungal Biol 2010; 114:834-41. [DOI: 10.1016/j.funbio.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 06/17/2010] [Accepted: 08/01/2010] [Indexed: 10/19/2022]
|
11
|
|
12
|
Ciampi MB, Meyer MC, Costa MJN, Zala M, McDonald BA, Ceresini PC. Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil. PHYTOPATHOLOGY 2008; 98:932-41. [PMID: 18943212 DOI: 10.1094/phyto-98-8-0932] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Basidiomycete fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen of soybean in Brazil, where the average yield losses have reached 30 to 60% in some states in Northern Brazil. No information is currently available concerning levels of genetic diversity and population structure for this pathogen in Brazil. A total of 232 isolates of R. solani AG1 IA were collected from five soybean fields in the most important soybean production areas in central-western, northern, and northeastern Brazil. These isolates were genotyped using 10 microsatellite loci. Most of the multilocus genotypes (MLGTs) were site-specific, with few MLGTs shared among populations. Significant population subdivision was evident. High levels of admixture were observed for populations from Mato Grosso and Tocantins. After removing admixed genotypes, three out of five field populations (Maranhao, Mato Grosso, and Tocantins), were in Hardy-Weinberg (HW) equilibrium, consistent with sexual recombination. HW and gametic disequilibrium were found for the remaining soybean-infecting populations. The findings of low genotypic diversity, departures from HW equilibrium, gametic disequilibrium, and high degree of population subdivision in these R. solani AG-1 IA populations from Brazil are consistent with predominantly asexual reproduction, short-distance dispersal of vegetative propagules (mycelium or sclerotia), and limited long-distance dispersal, possibly via contaminated seed. None of the soybean-infecting populations showed a reduction in population size (bottleneck effect). We detected asymmetric historical migration among the soybean-infecting populations, which could explain the observed levels of subdivision.
Collapse
Affiliation(s)
- M B Ciampi
- UNESP, Universidade Estadual Paulista, Campus de Jaboticabal, Graduate Program in Genetics and Plant Breeding, Jaboticabal, SP, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Cai G, Schneider RW. Population structure of Cercospora kikuchii, the causal agent of Cercospora leaf blight and purple seed stain in soybean. PHYTOPATHOLOGY 2008; 98:823-9. [PMID: 18943259 DOI: 10.1094/phyto-98-7-0823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Random amplified polymorphic DNA (RAPD) and microsatellite-primed polymerase chain reaction (MP-PCR) were used to characterize 164 isolates of Cercospora kikuchii, most of which were collected from Louisiana. Plant tissue (seeds versus leaves), but not host cultivar, had a significant impact on pathogen population differentiation. Cluster analysis showed that the Louisiana population was dominated by a primary lineage (group I) with only a few Louisiana isolates belonging to the minor lineage that also included the non-Louisiana isolates (group II). A previous study showed that isolates could be differentiated according to vegetative compatibility groups (VCGs). However, RAPD and MP-PCR data demonstrated that isolates of C. kikuchii were not generally clustered according to these VCGs. Furthermore, genetic relationships within and between VCGs were examined using sequences of the intergenic spacer region of rDNA. These analyses showed that VCG is not an indicator of evolutionary lineage in this fungus. Our results suggest the likely existence of a cryptically functioning sexual stage in some portion of the C. kikuchii population.
Collapse
Affiliation(s)
- G Cai
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
14
|
Adhikari TB, Ali S, Burlakoti RR, Singh PK, Mergoum M, Goodwin SB. Genetic structure of Phaeosphaeria nodorum populations in the north-central and midwestern United States. PHYTOPATHOLOGY 2008; 98:101-107. [PMID: 18943244 DOI: 10.1094/phyto-98-1-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stagonospora nodorum blotch, caused by Phaeosphaeria nodorum, is considered one of the most destructive foliar diseases of wheat in the United States. However, relatively little is known about the population biology of this fungus in the major wheat-growing regions of the central United States. To rectify this situation, 308 single-spore isolates of P. nodorum were analyzed from 12 populations, five from hard red spring wheat cultivars in Minnesota and North Dakota and seven from soft red winter wheat in Indiana and Ohio. The genetic structure of the sampled populations was determined by analyzing polymorphisms at five microsatellite or simple-sequence repeat (SSR) loci and the mating type locus. Although a few clones were identified, most P. nodorum populations had high levels of gene (H(S) = 0.175 to 0.519) and genotype (D = 0.600 to 0.972) diversity. Gene diversity was higher among isolates collected from spring wheat cultivars in North Dakota and Minnesota (mean H(S) = 0.503) than in those from winter wheat cultivars in Indiana and Ohio (H(S) = 0.269). Analyses of clone-corrected data sets showed equal frequencies of both mating types in both regional and local populations, indicating that sexual recombination may occur regularly. However, significant gametic disequilibrium occurred in three of the four populations from North Dakota, and there was genetic differentiation both within and among locations. Genetic differentiation between the hard red spring and soft red winter wheat production regions was moderate (F(ST) = 0.168), but whether this is due to differences in wheat production or to geographical variation cannot be determined. These results suggest that sexual reproduction occurs in P. nodorum populations in the major wheat-growing regions of the central United States, and that geographically separated populations can be genetically differentiated, reflecting either restrictions on gene flow or selection.
Collapse
Affiliation(s)
- T B Adhikari
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58105, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Shaw MW, Bearchell SJ, Fitt BDL, Fraaije BA. Long-term relationships between environment and abundance in wheat of Phaeosphaeria nodorum and Mycosphaerella graminicola. THE NEW PHYTOLOGIST 2007; 177:229-238. [PMID: 17944823 DOI: 10.1111/j.1469-8137.2007.02236.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Relationships between weather, agronomic factors and wheat disease abundance were examined to determine possible causes of variability on century time scales. In archived samples of wheat grain and leaves obtained from the Rothamsted Broadbalk experiment archive (1844-2003), amounts of wheat, Phaeosphaeria nodorum and Mycosphaerella graminicola DNA were determined by quantitative polymerase chain reaction (PCR). Relationships between amounts of pathogens and environmental and agronomic factors were examined by multiple regression. Wheat DNA decayed at approx. 1% yr(-1) in stored grain. No M. graminicola DNA was detected in grain samples. Fluctuations in amounts of P. nodorum in grain were related to changes in spring rainfall, summer temperature and national SO(2) emission. Differences in amounts of P. nodorum between grain and leaf were related to summer temperature and spring rainfall. In leaves, annual variation in spring rainfall affected both pathogens similarly, but SO(2) had opposite effects. Previous summer temperature had a highly significant effect on M. graminicola. Cultivar effects were significant only at P = 0.1. Long-term variation in P. nodorum and M. graminicola DNA in leaf and grain over the period 1844-2003 was dominated by factors related to national SO(2) emissions. Annual variability was dominated by weather factors occurring over a period longer than the growing season.
Collapse
Affiliation(s)
- M W Shaw
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - S J Bearchell
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
- Plant Pathology and Microbiology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - B D L Fitt
- Plant Pathology and Microbiology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - B A Fraaije
- Plant Pathology and Microbiology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
16
|
Serenius M, Manninen O, Wallwork H, Williams K. Genetic differentiation in Pyrenophora teres populations measured with AFLP markers. ACTA ACUST UNITED AC 2007; 111:213-23. [PMID: 17324759 DOI: 10.1016/j.mycres.2006.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 09/06/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The genetic structure and occurrence of mating types and forms of Pyrenophora teres, the causal agent of net blotch on barley, was studied among 278 isolates collected from the northern hemisphere and from Australia. Genetic differentiation was high (F(CT) 0.238, P=0.002) between P. teres f. teres (PTT) isolates originating from Northern Europe, North America, Russia and Australia. The P. teres population in Australia was clearly divided into two subgroups (F(CT) 0.793, P<0.001) according to the form identity: PTT and P. teres f. maculata (PTM), with the PTT samples showing a greater degree of differentiation (F(ST) 0.573, P<0.001) among Australian states than the PTM samples (F(CT) 0.219, P<0.001). No differentiation was found among locations within Australian states. Both mating types (MAT1 and MAT2) were equally common (1:1) in several locations in Australia and in Finland. The only exception was Krasnodar, Russia, where only MAT2 was identified. Our results show that the prevalence of sexual reproduction, occurrence of forms of P. teres, and genetic differentiation between geographical regions are highly variable. The paper discusses the various effects and outcomes of population selection in Australia and in the northern barley growing regions.
Collapse
Affiliation(s)
- Marjo Serenius
- MTT Agrifood Research Finland, Biotechnology and Food Research, Myllytie 10, 31600 Jokioinen, Finland.
| | | | | | | |
Collapse
|
17
|
Bennett RS, Milgroom MG, Sainudiin R, Cunfer BM, Bergstrom GC. Relative Contribution of Seed-Transmitted Inoculum to Foliar Populations of Phaeosphaeria nodorum. PHYTOPATHOLOGY 2007; 97:584-591. [PMID: 18943577 DOI: 10.1094/phyto-97-5-0584] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT A marked-isolate, release-recapture experiment was conducted to assess the relative contributions of seed-transmitted (released isolates) versus all other inocula to foliar and grain populations of Phaeosphaeria nodorum in winter wheat rotated with nonsusceptible crops in New York and Georgia, United States. Seed infected with two distinct groups of marked isolates of P. nodorum containing rare alleles (identified by amplified fragment length polymorphisms [AFLPs]) and balanced for mating type were planted in experimental field plots in two locations in each state. Recapture was done by isolating P. nodorum from leaves showing necrotic lesions at spring tillering and flowering stages, and mature grains from spikes showing glume blotch. Isolates from these samples were genotyped by AFLPs and categorized as released or nonreleased to infer sources of inoculum. Both infected seed and other sources of the pathogen contributed significant primary inocula to populations recovered from leaves and harvested grain. Seed-transmitted genotypes accounted for a total of 57% of all isolates recovered from inoculated plots, with a range of 15 to 90% of the populations of P. nodorum collected over the season in individual, inoculated plots at the four locations. Plants in the noninoculated control plots also became diseased and 95% or more of the isolates recovered from these plots were nonreleased genotypes. Although other potential sources of P. nodorum within and adjacent to experimental plots were not ruled out, nonreleased genotypes likely were derived from immigrant ascospores potentially from sources at a considerable distance from the plots. Our results suggest that, although reduction of seedborne inoculum of P. nodorum may delay foliar epidemics, this strategy by itself is unlikely to result in high levels of control in eastern North America because of the additional contribution from alternative sources of inoculum.
Collapse
|
18
|
Schmale Iii DG, Leslie JF, Zeller KA, Saleh AA, Shields EJ, Bergstrom GC. Genetic Structure of Atmospheric Populations of Gibberella zeae. PHYTOPATHOLOGY 2006; 96:1021-1026. [PMID: 18944058 DOI: 10.1094/phyto-96-1021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Gibberella zeae, causal agent of Fusarium head blight (FHB) of wheat and barley and Gibberella ear rot (GER) of corn, may be transported over long distances in the atmosphere. Epidemics of FHB and GER may be initiated by regional atmospheric sources of inoculum of G. zeae; however, little is known about the origin of inoculum for these epidemics. We tested the hypothesis that atmospheric populations of G. zeae are genetically diverse by determining the genetic structure of New York atmospheric populations (NYAPs) of G. zeae, and comparing them with populations of G. zeae collected from seven different states in the northern United States. Viable, airborne spores of G. zeae were collected in rotational (lacking any apparent within-field inoculum sources of G. zeae) wheat and corn fields in Aurora, NY in May through August over 3 years (2002 to 2004). We evaluated 23 amplified fragment length polymorphism (AFLP) loci in 780 isolates of G. zeae. Normalized genotypic diversity was high (ranging from 0.91 to 1.0) in NYAPs of G. zeae, and nearly all of the isolates in each of the populations represented unique AFLP haplotypes. Pairwise calculations of Nei's unbiased genetic identity were uniformly high (>0.99) for all of the possible NYAP comparisons. Although the NYAPs were genotypically diverse, they were genetically similar and potentially part of a large, interbreeding population of G. zeae in North America. Estimates of the fixation index (G(ST)) and the effective migration rate (Nm) for the NYAPs indicated significant genetic exchange among populations. Relatively low levels of linkage disequilibrium in the NYAPs suggest that outcrossing is common and that the populations are not a result of a recent bottleneck or invasion. When NYAPs were compared with those collected across the United States, the observed genetic identities between the populations ranged from 0.92 to 0.99. However, there was a significant negative correlation (R = -0.59, P < 0.001) between genetic identity and geographic distance, suggesting that some genetic isolation may occur on a continental scale. The contribution of long-distance transport of G. zeae to regional epidemics of FHB and GER remains unclear, but the diverse atmospheric populations of G. zeae suggest that inoculum may originate from multiple locations over large geographic distances. Practically, the long-distance transport of G. zeae suggests that management of inoculum sources on a local scale, unless performed over extensive production areas, will not be completely effective for the management of FHB and GER.
Collapse
|
19
|
Stukenbrock EH, Banke S, McDonald BA. Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Mol Ecol 2006; 15:2895-904. [PMID: 16911209 DOI: 10.1111/j.1365-294x.2006.02986.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The global migration patterns of the fungal wheat pathogen Phaeosphaeria nodorum were analysed using 12 microsatellite loci. Analysis of 693 isolates from nine populations indicated that the population structure of P. nodorum is characterized by high levels of genetic diversity and a low degree of subdivision between continents. To determine whether genetic similarity of populations was a result of recent divergence or extensive gene flow, the microsatellite data were analysed using an isolation-with-migration model. We found that the continental P. nodorum populations diverged recently, but that enough migration occurred to reduce population differentiation. The migration patterns of the pathogen indicate that immigrants originated mainly from populations in Europe, China and North America.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Institute of Integrative Biology, Plant Pathology, ETH Zurich, LFW, Universitätstrasse 2, CH-8092 Zurich, Switzerland.
| | | | | |
Collapse
|
20
|
Sommerhalder RJ, McDonald BA, Zhan J. The Frequencies and Spatial Distribution of Mating Types in Stagonospora nodorum Are Consistent with Recurring Sexual Reproduction. PHYTOPATHOLOGY 2006; 96:234-239. [PMID: 18944437 DOI: 10.1094/phyto-96-0234] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT To test the hypothesis that Stagonospora nodorum undergoes regular cycles of sexual recombination, a total of 1,207 isolates sampled from 18 fields in 12 geographical regions in six countries on five continents were analyzed for mating type frequency and distribution using polymerase chain reaction amplification of the mating type locus. Restriction fragment length polymorphism and random amplified polymorphic DNA fingerprints were used to clone-correct the data sets. Both mating types were often found on the smallest spatial scales tested, including within the same lesion, the same leaf, and the same 1-m(2) plot. In only one case out of the 18 fields tested was there a significant departure from the expected 1:1 ratio. Combining this result with previous data on the population structure of S. nodorum, we conclude that this pathogen undergoes regular cycles of sexual recombination in all regions we examined.
Collapse
|