1
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
2
|
Kämper J, Friedrich MW, Kahmann R. Creating novel specificities in a fungal nonself recognition system by single step homologous recombination events. THE NEW PHYTOLOGIST 2020; 228:1001-1010. [PMID: 32559311 DOI: 10.1111/nph.16755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
In many organisms, two component systems have evolved to discriminate self from nonself. While the molecular function of the two components has been elucidated in several systems, the evolutionary events leading to the large number of different specificities for self-nonself recognition found in most systems remain obscure. We have investigated the variation within a multiallelic nonself recognition system in the phytopathogenic basidiomycete Ustilago maydis by means of sequence analysis and functional studies. The multiallelic b mating type locus of U. maydis ensures outbreeding during sexual development. Nonself recognition is specified by the two homeodomain proteins, bE and bW, encoded by the b locus. While bE-bW combinations from the same allele do not dimerize, bE and bW proteins originating from different alleles form a heterodimeric complex that functions as master regulator for sexual and pathogenic development. We show that novel specificities of the b mating type locus have arisen by single homologous recombination events between distinct b alleles that lead to a simultaneous exchange of subdomains involved in dimerization in both bE and bW, altering the specificity of both proteins in a single step.
Collapse
Affiliation(s)
- Jörg Kämper
- Department Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, 35043, Germany
- Department of Genetics, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz Haber Weg 4, Karlsruhe, 76131, Germany
| | - Michael W Friedrich
- Department Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, 35043, Germany
- Microbial Ecophysiology Group BreMarE, University of Bremen, Leobener Straße 3, Bremen, 28359, Germany
| | - Regine Kahmann
- Department Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, 35043, Germany
| |
Collapse
|
3
|
Sánchez Maya HE, Mercado-Flores Y, Téllez-Jurado A, Pérez-Camarillo JP, Mejía O, Anducho-Reyes MA. Molecular Variation of the Phytopathogenic Fungus Sporisorium reilianum in Valle del Mezquital, Hidalgo. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Snetselaar K, McCann M. Ustilago maydis, the corn smut fungus, has an unusual diploid mitotic stage. Mycologia 2017; 109:140-152. [DOI: 10.1080/00275514.2016.1274597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Karen Snetselaar
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| | - Michael McCann
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| |
Collapse
|
5
|
Affiliation(s)
- Charles W. Barnes
- USDA-ARS Cereal Disease Laboratory, 1551 Lindig Street, St. Paul, Minnesota 55108-6052
| | - Les J. Szabo
- USDA-ARS Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, 1551, Lindig St., St. Paul, Minnesota 55108-6052
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology Building, 1987, Upper Buford Circle, St. Paul, Minnesota 55108-6052
| | - James V. Groth
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Burford, Circle, St. Paul, Minnesota 55108-6052
| |
Collapse
|
6
|
Jiménez-Becerril MF, Hernández-Delgado S, Solís-Oba M, González Prieto JM. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:1-8. [PMID: 27728988 DOI: 10.1080/24701394.2016.1229776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (FST = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.
Collapse
Affiliation(s)
- María F Jiménez-Becerril
- a Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional , Reynosa , Tamaulipas , México
| | - Sanjuana Hernández-Delgado
- a Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional , Reynosa , Tamaulipas , México
| | - Myrna Solís-Oba
- b Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional , Tepetitla , México
| | - Juan M González Prieto
- a Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional , Reynosa , Tamaulipas , México
| |
Collapse
|
7
|
|
8
|
Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. EUKARYOTIC CELL 2012; 11:1055-66. [PMID: 22707484 DOI: 10.1128/ec.00129-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An understanding of metabolic adaptation during the colonization of plants by phytopathogenic fungi is critical for developing strategies to protect crops. Lipids are abundant in plant tissues, and fungal phytopathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. Previously, we demonstrated a role for the peroxisomal β-oxidation enzyme Mfe2 in the filamentous growth, virulence, and sporulation of the maize pathogen Ustilago maydis. However, mfe2 mutants still caused disease symptoms, thus prompting a more detailed investigation of β-oxidation. We now demonstrate that a defect in the had1 gene encoding hydroxyacyl coenzyme A dehydrogenase for mitochondrial β-oxidation also influences virulence, although its paralog, had2, makes only a minor contribution. Additionally, we identified a gene encoding a polypeptide with similarity to the C terminus of Mfe2 and designated it Mfe2b; this gene makes a contribution to virulence only in the background of an mfe2Δ mutant. We also show that short-chain fatty acids induce cell death in U. maydis and that a block in β-oxidation leads to toxicity, likely because of the accumulation of toxic intermediates. Overall, this study reveals that β-oxidation has a complex influence on the formation of disease symptoms by U. maydis that includes potential metabolic contributions to proliferation in planta and an effect on virulence-related morphogenesis.
Collapse
|
9
|
Votintseva AA, Filatov DA. DNA polymorphism in recombining and non-recombining mating-type-specific loci of the smut fungus Microbotryum. Heredity (Edinb) 2011; 106:936-44. [PMID: 21081967 PMCID: PMC3186254 DOI: 10.1038/hdy.2010.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 07/21/2010] [Accepted: 09/06/2010] [Indexed: 11/09/2022] Open
Abstract
The population-genetic processes leading to the genetic degeneration of non-recombining regions have mainly been studied in animal and plant sex chromosomes. Here, we report population genetic analysis of the processes in the non-recombining mating-type-specific regions of the smut fungus Microbotryum violaceum. M. violaceum has A1 and A2 mating types, determined by mating-type-specific 'sex chromosomes' that contain 1-2 Mb long non-recombining regions. If genetic degeneration were occurring, then one would expect reduced DNA polymorphism in the non-recombining regions of this fungus. The analysis of DNA diversity among 19 M. violaceum strains, collected across Europe from Silene latifolia flowers, revealed that (i) DNA polymorphism is relatively low in all 20 studied loci (π∼0.15%), (ii) it is not significantly different between the two mating-type-specific chromosomes nor between the non-recombining and recombining regions, (iii) there is substantial population structure in M. violaceum populations, which resembles that of its host species, S. latifolia, and (iv) there is significant linkage disequilibrium, suggesting that widespread selfing in this species results in a reduction of the effective recombination rate across the genome. We hypothesise that selfing-related reduction of recombination across the M. violaceum genome negates the difference in the level of DNA polymorphism between the recombining and non-recombining regions, and may possibly lead to similar levels of genetic degeneration in the mating-type-specific regions of the non-recombining 'sex chromosomes' and elsewhere in the genome.
Collapse
Affiliation(s)
- A A Votintseva
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - D A Filatov
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Voth PD, Mairura L, Lockhart BE, May G. Phylogeography of Ustilago maydis virus H1 in the USA and Mexico. J Gen Virol 2006; 87:3433-3441. [PMID: 17030880 DOI: 10.1099/vir.0.82149-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ustilago maydis virus H1 (Umv-H1) is a mycovirus that infects Ustilago maydis, a fungal pathogen of maize. As Zea mays was domesticated, it carried with it many associated symbionts, such that the subsequent range expansion and cultivation of maize should have affected maize symbionts' evolutionary history dramatically. Because transmission of Umv-H1 takes place only through cytoplasmic fusion during mating of U. maydis individuals, the population dynamics of U. maydis and maize are expected to affect the population structure of the viral symbiont strongly. Here, the impact of changes in the evolutionary history of U. maydis on that of Umv-H1 was investigated. The high mutation rate of this virus allows inferences to be made about the evolution and divergence of Umv-H1 lineages as a result of the recent changes in U. maydis geographical and genetic structure. The phylogeographical history and genetic structure of Umv-H1 populations in the USA and Mexico were determined by using analyses of viral nucleotide sequence variation. Infection and recombination frequencies, genetic diversity and rates of neutral evolution were also assessed, to make inferences regarding evolutionary processes underlying the population genetic structure of ancestral and descendent populations. The results suggest that Mexico represents the ancestral population of Umv-H1, from which the virus has been carried with U. maydis populations into the USA. Thus, the population dynamics of one symbiont represent a major evolutionary force on the co-evolutionary dynamics of symbiotic partners.
Collapse
Affiliation(s)
- Peter D Voth
- Plant Biological Sciences Graduate Program, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St Paul, MN 55108, USA
| | - Linah Mairura
- Department of Ecology, Evolution, and Behaviour, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St Paul, MN 55108, USA
| | - Ben E Lockhart
- Department of Plant Pathology, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St Paul, MN 55108, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behaviour, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St Paul, MN 55108, USA
| |
Collapse
|
11
|
Fletcher J, Bender C, Budowle B, Cobb WT, Gold SE, Ishimaru CA, Luster D, Melcher U, Murch R, Scherm H, Seem RC, Sherwood JL, Sobral BW, Tolin SA. Plant pathogen forensics: capabilities, needs, and recommendations. Microbiol Mol Biol Rev 2006; 70:450-71. [PMID: 16760310 PMCID: PMC1489535 DOI: 10.1128/mmbr.00022-05] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A biological attack on U.S. crops, rangelands, or forests could reduce yield and quality, erode consumer confidence, affect economic health and the environment, and possibly impact human nutrition and international relations. Preparedness for a crop bioterror event requires a strong national security plan that includes steps for microbial forensics and criminal attribution. However, U.S. crop producers, consultants, and agricultural scientists have traditionally focused primarily on strategies for prevention and management of diseases introduced naturally or unintentionally rather than on responding appropriately to an intentional pathogen introduction. We assess currently available information, technologies, and resources that were developed originally to ensure plant health but also could be utilized for postintroduction plant pathogen forensics. Recommendations for prioritization of efforts and resource expenditures needed to enhance our plant pathogen forensics capabilities are presented.
Collapse
Affiliation(s)
- J Fletcher
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Martínez-Espinoza AD, García-Pedrajas MD, Gold SE. The Ustilaginales as plant pests and model systems. Fungal Genet Biol 2002; 35:1-20. [PMID: 11860261 DOI: 10.1006/fgbi.2001.1301] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ustilaginales are a vast and diverse group of fungi, which includes the plant pathogenic smuts that cause significant losses to crops worldwide. Members of the Ustilaginales are also valuable models for the unraveling of fundamental mechanisms controlling important biological processes. Ustilago maydis is an important fungal model system and has been well studied with regard to mating, morphogenesis, pathogenicity, signal transduction, mycoviruses, DNA recombination, and, recently, genomics. In this review we discuss the life cycles of members of the Ustilaginales and provide background on their economic impact as agricultural pests. We then focus on providing a summary of the literature with special attention to topics not well covered in recent reviews such as the use of U. maydis in mycovirus research and as a model for understanding the molecular mechanisms of fungicide resistance and DNA recombination and repair.
Collapse
|
14
|
Fischer JA, McCann MP, Snetselaar KM. Methylation is involved in the Ustilago maydis mating response. Fungal Genet Biol 2001; 34:21-35. [PMID: 11567549 DOI: 10.1006/fgbi.2001.1287] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methionine auxotrophs of Ustilago maydis were deficient in mating; unlike wild-type cells, they neither induced nor produced normal mating filaments in the presence of compatible cells. The deficiency was most severe when cells were located some distance apart, but when in direct contact with compatible cells methionine auxotrophs mated and infected plants fairly normally. The mating deficiency was genetically linked to the methionine auxotrophy, segregating with it through in planta crosses. Wild-type cells exposed to the methyltransferase inhibitors ethionine and homocysteine thiolactone were similarly impaired in mating. Exogenous methionine, S-adenosylmethionine (SAM), synthetic mating pheromone, or cAMP all compensated for the mating impairment of the auxotrophs to some extent. Although SAM-dependent methylation could influence activities of various molecules in diverse pathways, these observations indicate that the most likely cause of the mating deficiency in met(-) cells is failure to methylate a component of the U. maydis pheromone signal transduction pathway.
Collapse
Affiliation(s)
- J A Fischer
- Biology Department, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | | | | |
Collapse
|
15
|
James TY, Moncalvo JM, Li S, Vilgalys R. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 2001; 157:149-61. [PMID: 11139499 PMCID: PMC1461461 DOI: 10.1093/genetics/157.1.149] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The common split-gilled mushroom Schizophyllum commune is found throughout the world on woody substrates. This study addresses the dispersal and population structure of this fungal species by studying the phylogeny and evolutionary dynamics of ribosomal DNA (rDNA) spacer regions. Extensive sampling (n = 195) of sequences of the intergenic spacer region (IGS1) revealed a large number of unique haplotypes (n = 143). The phylogeny of these IGS1 sequences revealed strong geographic patterns and supported three evolutionarily distinct lineages within the global population. The same three geographic lineages were found in phylogenetic analysis of both other rDNA spacer regions (IGS2 and ITS). However, nested clade analysis of the IGS1 phylogeny suggested the population structure of S. commune has undergone recent changes, such as a long distance colonization of western North America from Europe as well as a recent range expansion in the Caribbean. Among all spacer regions, variation in length and nucleotide sequence was observed between but not within the tandem rDNA repeats (arrays). This pattern is consistent with strong within-array and weak among-array homogenizing forces. We present evidence for the suppression of recombination between rDNA arrays on homologous chromosomes that may account for this pattern of concerted evolution.
Collapse
Affiliation(s)
- T Y James
- Department of Botany, Duke University, Durham, North Carolina 27708-0338, USA.
| | | | | | | |
Collapse
|
16
|
Arslanyolu M, Doerder FP. Genetic and environmental factors affecting mating type frequency in natural isolates of Tetrahymena thermophila. J Eukaryot Microbiol 2000; 47:412-8. [PMID: 11140456 DOI: 10.1111/j.1550-7408.2000.tb00068.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Tetrahymena thermophila mating type alleles specify temperature sensitive frequency distributions of multiple mating types. A-like alleles specify mating types I, II, III, V and VI, whereas B-like alleles specify mating types II through VII. We have characterized the mating type distributions specified by several A- and B-like genotypes segregated by genomic exclusion from cells isolated from a pond in northwestern Pennsylvania. The B-like genotypes are alike in specifying very low frequencies of mating type III, but differ with respect to the frequencies of other mating types, particularly II and VII. An A-like genotype specifies a high frequency of mating type III and is unstable in successive generations for the expression of mating type II, suggesting a possible modifier. Inter se crosses performed at 18 degrees C, 28 degrees C and 34 degrees C showed that each genotype specifies a frequency distribution that is uniquely affected by temperature. No mating type was affected the same way by temperature in all genotypes. In A/B heterozygotes, the B-like genotype exhibited partial dominance. The genotypes described here differ significantly from previously described genotypes from the same pond, indicating that there are numerous mating type alleles. For frequency-dependent selection to equalize mating type frequencies, it must act not only on complex multiple alleles but also on the response of mating type alleles to temperature.
Collapse
Affiliation(s)
- M Arslanyolu
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Ohio 44115, USA
| | | |
Collapse
|
17
|
Abstract
Coprinus cinereus has two main types of mycelia, the asexual monokaryon and the sexual dikaryon, formed by fusion of compatible monokaryons. Syngamy (plasmogamy) and karyogamy are spatially and temporally separated, which is typical for basidiomycetous fungi. This property of the dikaryon enables an easy exchange of nuclear partners in further dikaryotic-monokaryotic and dikaryotic-dikaryotic mycelial fusions. Fruiting bodies normally develop on the dikaryon, and the cytological process of fruiting-body development has been described in its principles. Within the specialized basidia, present within the gills of the fruiting bodies, karyogamy occurs in a synchronized manner. It is directly followed by meiosis and by the production of the meiotic basidiospores. The synchrony of karyogamy and meiosis has made the fungus a classical object to study meiotic cytology and recombination. Several genes involved in these processes have been identified. Both monokaryons and dikaryons can form multicellular resting bodies (sclerotia) and different types of mitotic spores, the small uninucleate aerial oidia, and, within submerged mycelium, the large thick-walled chlamydospores. The decision about whether a structure will be formed is made on the basis of environmental signals (light, temperature, humidity, and nutrients). Of the intrinsic factors that control development, the products of the two mating type loci are most important. Mutant complementation and PCR approaches identified further genes which possibly link the two mating-type pathways with each other and with nutritional regulation, for example with the cAMP signaling pathway. Among genes specifically expressed within the fruiting body are those for two galectins, beta-galactoside binding lectins that probably act in hyphal aggregation. These genes serve as molecular markers to study development in wild-type and mutant strains. The isolation of genes for potential non-DNA methyltransferases, needed for tissue formation within the fruiting body, promises the discovery of new signaling pathways, possibly involving secondary fungal metabolites.
Collapse
Affiliation(s)
- U Kües
- ETH Zürich, Institut für Mikrobiologie, CH-8092 Zürich, Switzerland
| |
Collapse
|
18
|
Hiscock SJ, Kües U. Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:165-295. [PMID: 10494623 DOI: 10.1016/s0074-7696(08)61781-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants and fungi show an astonishing diversity of mechanisms to promote outbreeding, the most widespread of which is sexual incompatibility. Sexual incompatibility involves molecular recognition between mating partners. In fungi and algae, highly polymorphic mating-type loci mediate mating through complementary interactions between molecules encoded or regulated by different mating-type haplotypes, whereas in flowering plants polymorphic self-incompatibility loci regulate mate recognition through oppositional interactions between molecules encoded by the same self-incompatibility haplotypes. This subtle mechanistic difference is a consequence of the different life cycles of fungi, algae, and flowering plants. Recent molecular and biochemical studies have provided fascinating insights into the mechanisms of mate recognition and are beginning to shed light on evolution and population genetics of these extraordinarily polymorphic genetic systems of incompatibility.
Collapse
Affiliation(s)
- S J Hiscock
- Department of Plant Sciences, University of Oxford, United Kingdom
| | | |
Collapse
|