1
|
Hossain MM, Sultana F, Yesmin L, Rubayet MT, Abdullah HM, Siddique SS, Bhuiyan MAB, Yamanaka N. Understanding Phakopsora pachyrhizi in soybean: comprehensive insights, threats, and interventions from the Asian perspective. Front Microbiol 2024; 14:1304205. [PMID: 38274768 PMCID: PMC10808435 DOI: 10.3389/fmicb.2023.1304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Soybean (Glycine max L.) is an important crop in Asia, accounting for 17% of global soybean cultivation. However, this crop faces formidable challenges from the devastating foliar disease, Asian Soybean Rust (ASR), caused by Phakopsora pachyrhizi, a biotrophic fungus with a broad host range, causing substantial yield losses (10-100%) in Asia. This comprehensive review consolidates knowledge on ASR, encompassing its impact, historical perspectives, genetic diversity, epidemic drivers, early detection, risk assessment, and sustainable management strategies of ASR in the region. ASR has expanded globally from Asia, reaching Africa and Americas, driven by wind-dispersed urediniospores. Genetic diversity studies reveal the complexity of P. pachyrhizi, with distinct populations exhibiting varying virulence patterns. Factors affecting ASR epidemics in Asia include host susceptibility, landscape connectivity, climate, and environmental conditions. Understanding the interplay of these factors is essential for early intervention and control of ASR in soybean fields. Effectively managing ASR can exploit the utilization of diverse intervention strategies, encompassing disease forecasting, automated early detection, disease resistance, fungicide application, and biological control. A pivotal aspect of successful, sustainable disease management lies in reducing the ASR pathogen virulence and preventing it from developing fungicide resistance, while the highpoint of effectiveness in disease control is attained through a synergistic approach, integrating various strategies. In summary, this comprehensive review provides insights into multifaceted approaches that contribute to the development of sustainable and economically impactful soybean production in the face of the persistent threat of ASR in Asia.
Collapse
Affiliation(s)
- Md. Motaher Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Farjana Sultana
- College of Agricultural Sciences, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Laboni Yesmin
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Tanbir Rubayet
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hasan M. Abdullah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Shaikh Sharmin Siddique
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Abdullahil Baki Bhuiyan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Naoki Yamanaka
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Hosseini B, Voegele RT, Link TI. Diagnosis of Soybean Diseases Caused by Fungal and Oomycete Pathogens: Existing Methods and New Developments. J Fungi (Basel) 2023; 9:jof9050587. [PMID: 37233298 DOI: 10.3390/jof9050587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Soybean (Glycine max) acreage is increasing dramatically, together with the use of soybean as a source of vegetable protein and oil. However, soybean production is affected by several diseases, especially diseases caused by fungal seed-borne pathogens. As infected seeds often appear symptomless, diagnosis by applying accurate detection techniques is essential to prevent propagation of pathogens. Seed incubation on culture media is the traditional method to detect such pathogens. This method is simple, but fungi have to develop axenically and expert mycologists are required for species identification. Even experts may not be able to provide reliable type level identification because of close similarities between species. Other pathogens are soil-borne. Here, traditional methods for detection and identification pose even greater problems. Recently, molecular methods, based on analyzing DNA, have been developed for sensitive and specific identification. Here, we provide an overview of available molecular assays to identify species of the genera Diaporthe, Sclerotinia, Colletotrichum, Fusarium, Cercospora, Septoria, Macrophomina, Phialophora, Rhizoctonia, Phakopsora, Phytophthora, and Pythium, causing soybean diseases. We also describe the basic steps in establishing PCR-based detection methods, and we discuss potentials and challenges in using such assays.
Collapse
Affiliation(s)
- Behnoush Hosseini
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Tobias Immanuel Link
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| |
Collapse
|
3
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
4
|
Krivitsky V, Granot E, Avidor Y, Borberg E, Voegele RT, Patolsky F. Rapid Collection and Aptamer-Based Sensitive Electrochemical Detection of Soybean Rust Fungi Airborne Urediniospores. ACS Sens 2021; 6:1187-1198. [PMID: 33507747 PMCID: PMC8023804 DOI: 10.1021/acssensors.0c02452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Plants are the central source of food for humans around the world. Unfortunately, plants can be negatively affected by diverse kinds of diseases that are responsible for major economic losses worldwide. Thus, monitoring plant health and early detection of pathogens are essential to reduce disease spread and facilitate effective management practices. Various detection approaches are currently practiced. These methods mainly include visual inspection and laboratory tests. Nonetheless, these methods are labor-intensive, time-consuming, expensive, and inefficient in the early stages of infection. Thus, it is extremely important to detect diseases at the early stages of the epidemic. Here, we would like to present a fast, sensitive, and reliable electrochemical sensing platform for the detection of airborne soybean rust spores. The suspected airborne soybean rust spores are first collected and trapped inside a carbon 3D electrode matrix by high-capacity air-sampling means. Then, a specific biotinylated aptamer, suitable to target specific sites of soybean rust spores is applied. This aptamer agent binds to the surface of the collected spores on the electrode. Finally, spore-bound aptamer units are incubated with a streptavidin-alkaline phosphatase agent leading to the enzymatic formation of p-nitrophenol, which is characterized by its unique electrochemical properties. Our method allows for the rapid (ca. 2 min), selective, and sensitive collection and detection of soybean rust spores (down to the limit of 100-200 collected spores per cm2 of electrode area). This method could be further optimized for its sensitivity and applied to the future multiplex early detection of various airborne plant diseases.
Collapse
Affiliation(s)
- Vadim Krivitsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Granot
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Ella Borberg
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ralf T. Voegele
- Institute
of Phytomedicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Fernando Patolsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department
of Materials Science and Engineering, the Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Rush TA, Golan J, McTaggart A, Kane C, Schneider RW, Aime MC. Variation in the Internal Transcribed Spacer Region of Phakopsora pachyrhizi and Implications for Molecular Diagnostic Assays. PLANT DISEASE 2019; 103:2237-2245. [PMID: 31306089 DOI: 10.1094/pdis-08-18-1426-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phakopsora pachyrhizi, the causal agent of soybean rust (SBR), is a global threat to soybean production. Since the discovery of SBR in the continental United States, quantitative polymerase chain reaction assays based on the internal transcribed spacer (ITS) ribosomal DNA locus were established for its rapid detection. However, insufficient data were initially available to test assays against factors that could give rise to misidentification. This study aimed to reevaluate current assays for (i) the potential for false-positive detection caused by nontarget Phakopsora species and (ii) the potential for false-negative detection caused by intraspecific variation within the ITS locus of P. pachyrhizi. A large amount of intraspecific and intragenomic variation in ITS was detected, including the presence of polymorphic ITS copies within single leaf samples and within single rust sori. The diagnostic assays were not affected by polymorphisms in the ITS region; however, current assays are at risk of false positives when screened against other species of Phakopsora. This study raises caveats to the use of multicopy genes (e.g., ITS) in single-gene detection assays and discusses the pitfalls of inferences concerning the aerobiological pathways of disease spread made in the absence of an evaluation of intragenomic ITS heterogeneity.
Collapse
Affiliation(s)
- Tomás Allen Rush
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Jacob Golan
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Alistair McTaggart
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Ecosciences Precinct, Brisbane, Queensland 4001, Australia
| | - Cade Kane
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - R W Schneider
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
6
|
Phylogenetic study of indigenous grapevine leaf rust fungi in North America and biological identity of an invasive grapevine leaf rust fungus in Brazil. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
DNA Barcoding for Diagnosis and Monitoring of Fungal Plant Pathogens. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Wang W. The Molecular Detection of Corynespora Cassiicola on Cucumber by PCR Assay Using DNAman Software and NCBI. COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IX 2016. [DOI: 10.1007/978-3-319-48354-2_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Rocha CML, Vellicce GR, García MG, Pardo EM, Racedo J, Perera MF, de Lucía A, Gilli J, Bogado N, Bonnecarrère V, German S, Marcelino F, Ledesma F, Reznikov S, Ploper LD, Welin B, Castagnaro AP. Use of AFLP markers to estimate molecular diversity of Phakopsora pachyrhizi. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Haudenshield JS, Hartman GL. Archaeophytopathology of Phakopsora pachyrhizi, the Soybean Rust Pathogen. PLANT DISEASE 2015; 99:575-579. [PMID: 30699680 DOI: 10.1094/pdis-07-14-0772-sr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herbarium specimens are useful to compare attributes of the past to attributes of today and predictions into the future. In this study, herbarium specimens from 1887 to 2006 were used to identify Phakopsora pachyrhizi and P. meibomiae, the two known fungal species that cause soybean rust. Historically, these two species differed in geographic distribution, with P. pachyrhizi confined to Asia and Australia, and P. meibomiae confined to the Americas. In our analyses, herbarium specimens were used to determine whether it was possible to extract adequate useful DNA from the fungal structures. If present, quantitative PCR primers specific to P. pachyrhizi, P. meibomiae, or to a third group inclusive of many rust species could be used to speciate the fungus. Of the 38 archival specimens, 11 were positive for P. pachyrhizi, including a 1912 specimen from Japan; 15 were positive for P. meibomiae, including a 1928 specimen from Brazil and two 1923 specimens from the Philippines; and 12 (including all African accessions) were negative for both species. Five specimens were positive in the more inclusive rust assay; all had been labeled as P. pachyrhizi and none were on soybean. These results demonstrate the feasibility of DNA genotyping in archaeophytopathological investigations.
Collapse
Affiliation(s)
- James S Haudenshield
- United States Department of Agriculture, Agricultural Research Service, and Department of Crop Sciences, University of Illinois, Urbana 61801
| | - Glen L Hartman
- United States Department of Agriculture, Agricultural Research Service, and Department of Crop Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
11
|
Taxonomic identity of a Phakopsora fungus causing the grapevine leaf rust disease in Southeast Asia and Australasia. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Gomes LIS, Douhan GW, Bibiano LBJ, Maffia LA, Mizubuti ESG. Mycosphaerella musicola Identified as the Only Pathogen of the Sigatoka Disease Complex Present in Minas Gerais State, Brazil. PLANT DISEASE 2013; 97:1537-1543. [PMID: 30716832 DOI: 10.1094/pdis-12-12-1212-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A thorough assessment of the distribution of Mycosphaerella spp. associated with banana in Minas Gerais State, Brazil, was conducted after Mycosphaerella fijiensis was first reported to occur in this region in 2005. From 2009 to 2011, 80 fields located in 20 municipalities including the same fields where the disease was first reported were sampled. A total of 800 samples of leaf tissue with symptoms similar to those of yellow or black Sigatoka diseases were examined, and 239 isolates were obtained. The identification of the fungi was based on morphological characters combined with DNA sequences obtained after amplification with species-specific primers and phylogeny inferred from the internal transcribed spacer region of Mycosphaerella strains from banana. All 239 isolates were identified as Mycosphaerella musicola. The absence of M. fijiensis in the samples may have been due to misidentification of M. fijiensis or the displacement of M. fijiensis by M. musicola. It is now apparent that yellow Sigatoka caused by M. musicola is the prevailing leaf spot disease of bananas in Minas Gerais State and that regulatory/legislative control measures need to be revised based on our findings.
Collapse
Affiliation(s)
- Lahyre Izaete S Gomes
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521
| | - Líllian B J Bibiano
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Luiz A Maffia
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| |
Collapse
|
13
|
Miranda BS, Linares EM, Thalhammer S, Kubota LT. Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust. Biosens Bioelectron 2013; 45:123-8. [PMID: 23455051 DOI: 10.1016/j.bios.2013.01.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 10/27/2022]
Abstract
Soybean is one of the most important crops and plays a key role in the whole food chain production. Soybean crops are very susceptible to the fungus Phakopsora Pachyrhizi, the agent responsible by the Asian soybean rust. The spore of the fungus is easily disseminated by wind with adequate environment, leaf wetness, high humidity and temperatures, the crop can be totally lost within few days. A high sensitive, specific and easy test is the key for early diagnosing the soybean rust and therefore save the crop. Here we present a paper-based immunosensor for early stage diagnosis of soybean rust that can be performed by unskilled operators on-site. Nitrocellulose membrane was chosen as the substrate to stick the antigen due to its high binding properties. Polyclonal antibodies labeled with fluorescent nanoparticles were employed as the recognizers. An analytical curve with spiked samples shows a linear response range from 0.0032 to 3.2 μg/mL. This immunosensor presents a very low detection limit of 2.2 ng/mL, which corresponds approximately to 8-12 spores/mL. The paper-based sensor reachs the detection range of ELISA and PCR based test systems, and outranges the available commercial test kits by two order of magnitude. We believe this immunosensor has a great potential as a point-of-care device for the early diagnosis of Asian soybean rust.
Collapse
Affiliation(s)
- Barbara S Miranda
- Institute of Chemistry, State University of Campinas, Cidade Universitária s/n, 13083-970, Campinas, São Paulo, Brazil.
| | | | | | | |
Collapse
|
14
|
Vittal R, Haudenshield JS, Hartman GL. A multiplexed immunofluorescence method identifies Phakopsora pachyrhizi Urediniospores and determines their viability. PHYTOPATHOLOGY 2012; 102:1143-1152. [PMID: 22894915 DOI: 10.1094/phyto-02-12-0040-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Soybean rust, caused by Phakopsora pachyrhizi, occurs concomitantly wherever soybean is grown in the tropical and subtropical regions of the world. After reports of its first occurrence in Brazil in 2001 and the continental United States in 2004, research on the disease and its pathogen has greatly increased. One area of research has focused on capturing urediniospores, primarily by rain collection or wind traps, and detecting them either by microscopic observations or by immunological or molecular techniques. This system of detection has been touted for use as a potential warning system to recommend early applications of fungicides. One shortcoming of the method has been an inability to determine whether the spores are viable. Our study developed a method to detect viable P. pachyrhizi urediniospores using an immunofluorescence assay combined with propidium iodide (PI) staining. Antibodies reacted to P. pachyrhizi and other Phakopsora spp. but did not react with other common soybean pathogens or most other rust fungi tested, based on an indirect immunofluorescence assay using fluorescein isothiocyanate-labeled secondary antibodies. Two vital staining techniques were used to assess viability of P. pachyrhizi urediniospores: one combined carboxy fluorescein diacetate (CFDA) and PI, and the other utilized (2-chloro-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium iodide] (FUN 1). Using the CFDA-PI method, viable spores stained green with CFDA and nonviable spores counterstained red with PI. Using the FUN 1 method, cylindrical intravacuolar structures were induced to form within metabolically active urediniospores, causing them to fluoresce bright red to reddish-orange, whereas dead spores, with no metabolic activity, had an extremely diffused, faint fluorescence. An immunofluorescence technique in combination with PI counterstaining was developed to specifically detect viable P. pachyrhizi urediniospores. The method is rapid and reliable, with a potential for application in forecasting soybean rust based on the detection of viable urediniospores.
Collapse
Affiliation(s)
- R Vittal
- Department of Crop Sciences, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
15
|
Ward NA, Robertson CL, Chanda AK, Schneider RW. Effects of Simplicillium lanosoniveum on Phakopsora pachyrhizi, the soybean rust pathogen, and its use as a biological control agent. PHYTOPATHOLOGY 2012; 102:749-60. [PMID: 22533877 DOI: 10.1094/phyto-01-11-0031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The fungus Simplicillium lanosoniveum was isolated from soybean leaves infected with Phakopsora pachyrhizi, the soybean rust pathogen, in Louisiana and Florida. The fungus did not grow or become established on leaf surfaces until uredinia erupted, but when soybean rust signs and symptoms were evident, S. lanosoniveum colonized leaves within 3 days and sporulated within 4 days. Development of new uredinia was suppressed by about fourfold when S. lanosoniveum colonized uredinia. In the presence of S. lanosoniveum, uredinia became increasingly red-brown, and urediniospores turned brown and germinated at very low rates. Assays using quantitative real time polymerase chain reaction revealed that the fungus colonized leaf surfaces when plants were infected with P. pachyrhizi, either in a latent stage of infection or when symptoms were present. However, when plants were inoculated before infection, there was no increase of DNA of S. lanosoniveum, suggesting that the pathogen must be present in order for the antagonist to become established on soybean leaf surfaces. We documented significantly lower amounts of DNA of P. pachyrhizi and lower disease severity when soybean leaves were colonized with S. lanosoniveum. These studies documented the mycophilic and disease-suppressive nature of S. lanosoniveum.
Collapse
Affiliation(s)
- N A Ward
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agriculture Center, USA.
| | | | | | | |
Collapse
|
16
|
Stone CL, McMahon MB, Fortis LL, Nuñez A, Smythers GW, Luster DG, Frederick RD. Gene expression and proteomic analysis of the formation of Phakopsora pachyrhizi appressoria. BMC Genomics 2012; 13:269. [PMID: 22727213 PMCID: PMC3431228 DOI: 10.1186/1471-2164-13-269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 06/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phakopsora pachyrhizi is an obligate fungal pathogen causing Asian soybean rust (ASR). A dual approach was taken to examine the molecular and biochemical processes occurring during the development of appressoria, specialized infection structures by which P. pachyrhizi invades a host plant. Suppression subtractive hybridization (SSH) was utilized to generate a cDNA library enriched for transcripts expressed during appressoria formation. Two-dimensional gel electrophoresis and mass spectroscopy analysis were used to generate a partial proteome of proteins present during appressoria formation. RESULTS Sequence analysis of 1133 expressed sequence tags (ESTs) revealed 238 non-redundant ESTs, of which 53% had putative identities assigned. Twenty-nine of the non-redundant ESTs were found to be specific to the appressoria-enriched cDNA library, and did not occur in a previously constructed germinated urediniospore cDNA library. Analysis of proteins against a custom database of the appressoria-enriched ESTs plus Basidiomycota EST sequences available from NCBI revealed 256 proteins. Fifty-nine of these proteins were not previously identified in a partial proteome of P. pachyrhizi germinated urediniospores. Genes and proteins identified fell into functional categories of metabolism, cell cycle and DNA processing, protein fate, cellular transport, cellular communication and signal transduction, and cell rescue. However, 38% of ESTs and 24% of proteins matched only to hypothetical proteins of unknown function, or showed no similarity to sequences in the current NCBI database. Three novel Phakopsora genes were identified from the cDNA library along with six potentially rust-specific genes. Protein analysis revealed eight proteins of unknown function, which possessed classic secretion signals. Two of the extracellular proteins are reported as potential effector proteins. CONCLUSIONS Several genes and proteins were identified that are expressed in P. pachyrhizi during appressoria formation. Understanding the role that these genes and proteins play in the molecular and biochemical processes in the infection process may provide insight for developing targeted control measures and novel methods of disease management.
Collapse
Affiliation(s)
- Christine L Stone
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| | - Michael B McMahon
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| | - Laurie L Fortis
- USDA-Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
- Present address: USDA-National Institute of Food and Agriculture, Institute of Bioenergy, Climate, and Environment, 3245 Waterfront Centre, 800 9th Street, Southwest, Washington, District of Columbia, 20024, USA
| | - Alberto Nuñez
- USDA-Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary W Smythers
- National Cancer Institute, Advanced Biomedical Computing Center, Building 430, Fort Detrick, MD, 21702, USA
| | - Douglas G Luster
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| | - Reid D Frederick
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| |
Collapse
|
17
|
Freire MCM, da Silva MR, Zhang X, Almeida ÁMR, Stacey G, de Oliveira LO. Nucleotide polymorphism in the 5.8S nrDNA gene and internal transcribed spacers in Phakopsora pachyrhizi viewed from structural models. Fungal Genet Biol 2012; 49:95-100. [PMID: 22233882 DOI: 10.1016/j.fgb.2011.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/30/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
The assessment of nucleotide polymorphisms in environmental samples of obligate pathogens requires DNA amplification through the polymerase chain reaction (PCR) and bacterial cloning of PCR products prior to sequencing. The drawback of this strategy is that it can give rise to false polymorphisms owing to DNA polymerase misincorporation during PCR or bacterial cloning. We investigated patterns of nucleotide polymorphism in the internal transcribed spacer (ITS) region for Phakopsora pachyrhizi, an obligate biotrophic fungus that causes the Asian soybean rust. Field-collected samples of P. pachyrhizi were obtained from all major soybean production areas worldwide, including Brazil and the United States. Bacterially-cloned, PCR products were obtained using a high fidelity DNA polymerase. A total of 370 ITS sequences that were subjected to an array of complementary sequence analyses, which included analyses of secondary structure stability, the pattern of nucleotide polymorphisms, GC content, and the presence of conserved motifs. The sequences exhibited features of functional rRNAs. Overall, polymorphisms took place within less conserved motives, such as loops and bulges; alternatively, they gave rise to non-canonical G-U pairs within conserved regions of double stranded helices. We discuss the usefulness of structural analyses to filter out putative 'suspicious' bacterially cloned ITS sequences, thus keeping artificially-induced sequence variation to a minimum.
Collapse
|
18
|
Paul C, Hill CB, Hartman GL. Comparisons of Visual Rust Assessments and DNA Levels of Phakopsora pachyrhizi in Soybean Genotypes Varying in Rust Resistance. PLANT DISEASE 2011; 95:1007-1012. [PMID: 30732112 DOI: 10.1094/pdis-10-10-0729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean resistance to Phakopsora pachyrhizi, the cause of soybean rust, has been characterized by the following three infection types: (i) immune response (IM; complete resistance) with no visible lesions, (ii) resistant reaction with reddish brown (RB) lesions (incomplete resistance), and (iii) susceptible reaction with tan-colored (TAN) lesions. Based on visual assessments of these phenotypes, single gene resistance in soybean to P. pachyrhizi has been documented, but colonization within infected tissues based on fungal DNA (FDNA) levels in different soybean genotypes had not been analyzed. The research used a quantitative polymerase chain reaction (Q-PCR) assay to compare visual disease assessment to FDNA in controlled inoculation experiments using two isolates of P. pachyrhizi. The objective of the first experiment was to compare data from digital visual disease assessment to FDNA from Q-PCR assays using digital visual disease assessment using five resistant soybean genotypes (one IM and four RB) and five susceptible genotypes (TAN). The objective of the second experiment was to quantify FDNA using Q-PCR at different time points after inoculation to determine if levels of fungal colonization differed in five soybean genotypes with different levels of resistance (one IM, two RB, and two TAN). For experiment 1, the numbers of uredinia and uredinia per lesion on four of the five resistant soybean genotypes were lower (P < 0.05) than the other six genotypes. Significant differences (P < 0.05) in FDNA concentrations were found among soybean genotypes with TAN lesions and among soybean genotypes with RB lesions. Soybean cultivar UG5 (IM phenotype) had significantly less (P < 0.05) FDNA than all of the other genotypes. Some genotypes that produced TAN lesions had significantly lower (P < 0.05) or non-significantly different FDNA concentrations compared to those genotypes that produced RB lesions. For experiment 2, the regression of FDNA on days after inoculation was significant (P < 0.01) with positive slopes for all genotypes except for UG5, in which FDNA declined over time, indicating a reduction of fungal colonization. The results of this Q-PCR FDNA screening technique demonstrates its use to distinguish different types of resistance, and could be used to facilitate the evaluation of soybean breeding populations, where precise quantification of incomplete and/or partial resistance is needed to identify and map quantitative trait loci.
Collapse
Affiliation(s)
- C Paul
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - C B Hill
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - G L Hartman
- USDA-ARS and Department of Crop Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
19
|
Edwards HH, Bonde MR. Penetration and establishment of Phakopsora pachyrhizi in soybean leaves as observed by transmission electron microscopy. PHYTOPATHOLOGY 2011; 101:894-900. [PMID: 21405996 DOI: 10.1094/phyto-09-10-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
For over 30 years, it has been known that Phakopsora pachyrhizi is unusual in that it penetrates from urediniospores directly through the leaf cuticle without entering stomates. This unusual mode of penetration suggests that disease resistance mechanisms might exist for soybean rust that do not exist for most rust diseases. As a result, we decided to conduct a histological study using transmission electron microscopy to further elucidate the mechanisms of penetration and early establishment of P. pachyrhizi in soybean leaves. Based on our study, it was concluded that P. pachyrhizi utilizes primarily mechanical force, perhaps with the aid of digestive enzymes, to penetrate the cuticle on the leaf surface. However, the lack of deformation lines in micrographs indicated that digestive enzymes, without mechanical force, are used by the penetration hypha to penetrate the outer and inner epidermal cell walls. Digestive enzymes, again indicated by the lack of deformation lines, are used by haustorial mother cells to breach the walls of mesophyll cells to form haustoria. The possibility exists for eventual determination of the precise roles of pressure and digestive enzymes in the development of soybean rust and elucidation of some of the determinants of resistance and susceptibility to this important plant disease.
Collapse
Affiliation(s)
- H H Edwards
- Western Illinois University, Department of Biological Sciences, 1 University Circle, Macomb, Illinois 61455, USA
| | | |
Collapse
|
20
|
Crouch JA, Szabo LJ. Real-Time PCR Detection and Discrimination of the Southern and Common Corn Rust Pathogens Puccinia polysora and Puccinia sorghi. PLANT DISEASE 2011; 95:624-632. [PMID: 30731892 DOI: 10.1094/pdis-10-10-0745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past several years, southern corn rust (SCR) outbreaks caused by the fungus Puccinia polysora have become increasingly problematic for corn growers in the United States. SCR is currently diagnosed through the visual examination of disease symptoms and pathogen morphology, including pigmentation, size, shape, and location of fruiting structures. However, these characteristics are similar to those produced by the common corn rust fungus P. sorghi, confounding accurate visual diagnosis of SCR. Here we report the development of a real-time polymerase chain reaction assay that discriminates between P. polysora and P. sorghi. Sequences of the rDNA internal transcribed spacer region were determined for P. polysora and P. sorghi. 5-Carboxyfluorescein fluorophore-labeled hydrolysis probes that differed at 14 nucleotide positions between the species were developed from these data and used to screen DNA extracted directly from rust-infected corn leaves. Species-specific, reproducible identifications of the pathogens were made from as little as 50 pg of DNA within 30 min, and were reliably performed from both recent collections and herbarium specimens. This assay will be useful for rapid and accurate diagnosis of SCR, and could serve as a tool to monitor the distribution and incidence of the disease in the United States.
Collapse
Affiliation(s)
- Jo Anne Crouch
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, University of Minnesota, St. Paul 55108
| | - Les J Szabo
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Disease Laboratory, University of Minnesota, St. Paul 55108
| |
Collapse
|
21
|
Haudenshield JS, Hartman GL. Exogenous Controls Increase Negative Call Veracity in Multiplexed, Quantitative PCR Assays for Phakopsora pachyrhizi. PLANT DISEASE 2011; 95:343-352. [PMID: 30743502 DOI: 10.1094/pdis-01-10-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantitative polymerase chain reaction (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5'-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi and P. meibomiae, two rust pathogens of soybean. Because of the extreme sensitivity of Q-PCR, the DNA of single urediniospores of these fungi can be detected from total DNA extracts of environmental samples. However, some DNA preparations unpredictably contain PCR inhibitors that increase the frequency of false negatives indistinguishable from true negatives. Three synthetic DNA molecules of arbitrary sequence were constructed as multiplexed internal controls (ICs) to cull false-negative results by producing a positive signal to validate the PCR process within each individual reaction. The first two, PpaIC and PmeIC, are a single-stranded oligonucleotide flanked by sequences complementary to the primers of either the P. pachyrhizi or P. meibomiae primary assay but hybridizing to a unique fluorogenic probe; the third contains unique primer- and probe-binding sequences, and was prepared as a cloned DNA fragment in a linearized plasmid. These ICs neither qualitatively nor quantitatively affected their primary assays. PpaIC and PmeIC were shown to successfully identify false-negative reactions resulting from endogenous or exogenous inhibitors, and can be readily adapted to function in a variety of diagnostic Q-PCR assays; the plasmid was found to successfully validate true negatives in similar Q-PCR assays for other soybean pathogens, as well as to function as a tracer molecule during DNA extraction and recovery.
Collapse
Affiliation(s)
- James S Haudenshield
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS)
| | - Glen L Hartman
- USDA-ARS and Department of Crop Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
22
|
Jordan SA, Mailhot DJ, Gevens AJ, Marois JJ, Wright DL, Harmon CL, Harmon PF. Characterization of kudzu (Pueraria spp.) resistance to Phakopsora pachyrhizi, the causal agent of soybean rust. PHYTOPATHOLOGY 2010; 100:941-8. [PMID: 20701492 DOI: 10.1094/phyto-100-9-0941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Kudzu (Pueraria spp.) is an accessory host for soybean rust (SBR) (caused by Phakopsora pachyrhizi) that is widespread throughout the southeastern United States. An expanded survey of kudzu sites was conducted in 2008 to determine the proportion of natural resistance in the north-Florida kudzu population. Of the 139 sites evaluated, approximately 18% were found to be free of SBR infection, while 23% had reduced sporulation. Ten accessions of kudzu from north-central Florida were characterized for their response to challenge by a single isolate of P. pachyrhizi under laboratory conditions. Three outcomes were observed: tan lesions with profuse sporulation (susceptible); reddish-brown lesions with delayed, reduced sporulation (resistant); and an immune response in which no lesions developed (immune). Of the 10 accessions, 6 were susceptible, 3 were immune, and 1 was resistant. Cytological examination revealed that resistant interactions were typified by early onset of a multicell hypersensitive response (HR) while typical immune interactions were the result of cell wall depositions that blocked penetration in combination with early onset of the HR. Quantitative real-time polymerase chain reaction was performed to determine the extent of colonization. After 15 days, there was 10-fold less P. pachyrhizi DNA present in resistant compared with susceptible kudzu, while the amount of P. pachyrhizi DNA present in the immune kudzu was below the detection level. Susceptible kudzu had approximately half the amount of P. pachyrhizi DNA present when compared with a susceptible soybean cultivar.
Collapse
Affiliation(s)
- Stephen A Jordan
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Stone CL, Buitrago MLP, Boore JL, Frederick RD. Analysis of the complete mitochondrial genome sequences of the soybean rust pathogens phakopsora pachyrhizi and p. meibomiae. Mycologia 2010; 102:887-97. [PMID: 20648755 DOI: 10.3852/09-198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The mitochondrial (mt) genomes of two soybean rust pathogens, Phakopsora pachyrhizi and P. meibomiae, have been sequenced. The mt genome of P. pachyrhizi is a circular 31 825-bp molecule with a mean GC content of 34.6%, while P. meibomiae possesses a 32 520-bp circular molecule with a mean GC content of 34.9%. Both mt genomes contain the genes encoding ATP synthase subunits 6, 8 and 9 (atp6, atp8 and atp9), cytochrome oxidase subunits I, II and III (cox1, cox2 and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5 and nad6), the large and small mt ribosomal RNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 24 tRNA genes that recognize codons for all amino acids. The order of the protein-coding genes and tRNA is identical in the two Phakopsora species, and all genes are transcribed from the same DNA strand clockwise. Introns were identified in the cox1, cob and mnl genes of both species, with three of the introns having ORFs with motifs similar to the LAGLIDADG endonucleases of other fungi. Phylogenetic analysis of the 14 shared protein-coding genes agrees with commonly accepted fungal taxonomy.
Collapse
Affiliation(s)
- Christine L Stone
- USDA-Agricultural Research Service, Foreign DiseaseWeed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland 21702, USA
| | | | | | | |
Collapse
|
24
|
Jang CS, Lim JH, Seo MW, Song JY, Kim HG. Direct Detection of Cylindrocarpon destructans, Root Rot Pathogen of Ginseng by Nested PCR from Soil Samples. MYCOBIOLOGY 2010; 38:33-38. [PMID: 23956622 PMCID: PMC3741592 DOI: 10.4489/myco.2010.38.1.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/03/2010] [Indexed: 06/02/2023]
Abstract
We have successfully applied the nested PCR to detect Cylindrocarpon destructans, a major pathogen causing root rot disease from ginseng seedlings in our former study. The PCR assay, in this study, was used to detect the pathogen from soils. The nested PCR using internal transcribed spacer (ITS) 1, 4 primer set and Dest 1, 4 primer set maintained the specificity in soils containing various microorganisms. For a soil DNA extraction method targeting chlamydospores, when several cell wall disrupting methods were tested, the combination of lyophilization and grinding with glass beads, which broke almost all the chlamydospores, was the strongest. The DNA extraction method which was completed based on the above was simple and time-saving because of exclusion of unnecessary stages, and efficient to apply in soils. As three ginseng fields whose histories were known were analyzed, the PCR assay resulted as our expectation derived from the field information. The direct PCR method will be utilized as a reliable and rapid tool for detecting and monitoring C. destructans in ginseng fields.
Collapse
Affiliation(s)
- Chang Soon Jang
- Department of Agricultural Biology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | |
Collapse
|
25
|
Goellner K, Loehrer M, Langenbach C, Conrath U, Koch E, Schaffrath U. Phakopsora pachyrhizi, the causal agent of Asian soybean rust. MOLECULAR PLANT PATHOLOGY 2010; 11:169-77. [PMID: 20447267 PMCID: PMC6640291 DOI: 10.1111/j.1364-3703.2009.00589.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED The plant pathogenic basidiomycete fungi Phakopsora pachyrhizi and Phakopsora meibomiae cause rust disease in soybean plants. Phakopsora pachyrhizi originated in Asia-Australia, whereas the less aggressive P. meibomiae originated in Latin America. In the New World, P. pachyrhizi was first reported in the 1990s to have spread to Hawaii and, since 2001, it has been found in South America. In 2004, the pathogen entered continental USA. This review provides detailed information on the taxonomy and molecular biology of the pathogen, and summarizes strategies to combat the threat of this devastating disease. TAXONOMY Phakopsora pachyrhizi Syd. & P. Syd; uredial anamorph: Malupa sojae (syn. Uredo sojae); Domain Eukaryota; Kingdom Fungi; Phylum Basidiomycota; Order Uredinales; Class Urediniomycetes; Family Phakopsoraceae; Genus Phakopsora (http://www.indexfungorum.org). The nomenclature of rust spores and spore-producing structures used within this review follows Agrios GN (2005) Plant Pathology, 5th edn. London: Elsevier/Academic Press. HOST RANGE In the field, P. pachyrhizi infects leaf tissue from a broad range (at least 31 species in 17 genera) of leguminous plants. Infection of an additional 60 species in other genera has been achieved under laboratory conditions. DISEASE SYMPTOMS At the beginning of the disease, small, tan-coloured lesions, restricted by leaf veins, can be observed on infected soybean leaves. Lesions enlarge and, 5-8 days after initial infection, rust pustules (uredia, syn. uredinia) become visible. Uredia develop more frequently in lesions on the lower surface of the leaf than on the upper surface. The uredia open with a round ostiole through which uredospores are released.
Collapse
Affiliation(s)
- Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, D-52056 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Pedley KF. PCR-Based Assays for the Detection of Puccinia horiana on Chrysanthemums. PLANT DISEASE 2009; 93:1252-1258. [PMID: 30759509 DOI: 10.1094/pdis-93-12-1252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Puccinia horiana, the causal agent of chrysanthemum white rust, is a pathogen of quarantine status in many countries where Chrysanthemum × morifolium cultivars are grown. Historically, identification protocols for white rust relied upon macroscopic symptom development and microscopic examination of infected leaves for teliospores. Symptoms become visible 7 to 10 days after initial infection under favorable conditions followed by the production of telia. Infected plants can therefore evade detection before symptoms and fruiting bodies are evident. Conventional and real-time polymerase chain reaction (PCR) assays were developed to detect P. horiana using primers designed to amplify portions of the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA (rDNA). The species-specific primers could detect the pathogen from 1 ng of DNA isolated from infected leaf tissue in conventional PCR assays and from 1 pg in real-time PCR assays. While both assays were capable of detecting P. horiana in symptomatic tissue, the greater sensitivity offered by the real-time PCR assay makes it more reliable for detecting the pathogen during the latent stage of infection. The P. horiana primers did not amplify the rDNA target using DNA isolated from leaf tissue infected with P. chrysanthemi.
Collapse
Affiliation(s)
- Kerry F Pedley
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Ave., Ft. Detrick, MD 21702
| |
Collapse
|
27
|
Twizeyimana M, Ojiambo PS, Sonder K, Ikotun T, Hartman GL, Bandyopadhyay R. Pathogenic variation of Phakopsora pachyrhizi infecting soybean in Nigeria. PHYTOPATHOLOGY 2009; 99:353-61. [PMID: 19271976 DOI: 10.1094/phyto-99-4-0353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soybean rust, caused by Phakopsora pachyrhizi, is an important disease in Nigeria and many other soybean-producing countries worldwide. To determine the geographical distribution of soybean rust in Nigeria, soybean fields were surveyed in the Derived Savanna (DS), Northern Guinea Savanna (NGS), and Southern Guinea Savanna (SGS) agroecological zones in Nigeria between 2004 and 2006. Disease severity in each zone was determined and analyzed using geostatistics. Prevalence of infected fields and disease severity in surveyed fields were significantly (P < 0.05) different between geographical zones with both variables being higher in the DS zone than in either NGS or SGS zones. Geostatistical analysis indicated that the spatial influence of disease severity at one location on severity at other locations was between 75 and 120 km. An exponential model best described the relationship between semivariance and lag distance when rust severity was high. Spatial interpolation of rust severity showed that locations in the DS zone were more conducive for the rust epidemic compared to areas in the NGS zone. In the 2005 survey, 116 purified isolates were established in culture on detached soybean leaves. To establish the nature of pathogenic variation in P. pachyrhizi, a set of four soybean accessions with Rpp(1), Rpp(2), Rpp(3), and Rpp(4) resistance genes, two highly resistant and two highly susceptible genotypes were inoculated with single uredinial isolates. Principal component analysis on the number of uredinia per square centimeter of leaf tissue for 116 isolates indicated that an adequate summary of pathogenic variation was obtained using only four genotypes. Of these four, PI 459025B (with Rpp(4) gene) and TGx 1485-1D had the lowest and highest number of uredinia per square centimeter, respectively. Based on cluster analysis of the number of uredinia per square centimeter, seven pathotype clusters were determined. Isolates in cluster III were the most virulent, while those in cluster IV were the least virulent. Shannon's index (H) revealed a more diverse pathogen population in the DS zone (H = 1.21) compared to the rust population in SGS and NGS with H values of 1.08 and 0.91, respectively. This work will be useful in breeding and management of soybean rust by facilitating identification of resistant genotypes and targeting cultivars with specific resistance to match prevailing P. pachyrhizi pathotypes in a given geographical zone.
Collapse
Affiliation(s)
- M Twizeyimana
- Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | | |
Collapse
|
28
|
Barnes CW, Szabo LJ, Bowersox VC. Identifying and quantifying Phakopsora pachyrhizi spores in rain. PHYTOPATHOLOGY 2009; 99:328-38. [PMID: 19271973 DOI: 10.1094/phyto-99-4-0328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In summers of 2005 and 2006, rain was collected weekly at over 100 selected National Atmospheric Deposition Program/National Trends Network sites across the soybean-growing region of the central and eastern United States. Rain samples were screened for Phakopsora pachyrhizi (causal agent of soybean rust) DNA using a nested real-time polymerase chain reaction assay. Over this time frame, P. pachyrhizi spores were detected in every state in the study, but more frequently in states along the Gulf and Atlantic coasts and along the Ohio River Valley westward to Kansas. A bimodal temporal distribution of samples testing positive for P. pachyrhizi was found in both years. However, there was a greater than threefold increase in the number of samples testing positive for P. pachyrhizi in 2006 compared with 2005, with the most significant increase in August. There was also an increase in the average number of spores per sample in 2006 relative to 2005. Sequence analysis of a subset of positive samples was used to validate the assay results. From the sequence analysis, two reliable polymorphic regions were found, resulting in six distinct genotypes. One genotype was found in 56% of the samples tested, whereas the other genotypes were found less frequently.
Collapse
Affiliation(s)
- C W Barnes
- Cereal Disease Laboratory, U S Department of Agriculture-Agriculture Service, and University of Minnesota, St. Paul MN, USA.
| | | | | |
Collapse
|
29
|
Hoefle C, Loehrer M, Schaffrath U, Frank M, Schultheiss H, Hückelhoven R. Transgenic suppression of cell death limits penetration success of the soybean rust fungus Phakopsora pachyrhizi into epidermal cells of barley. PHYTOPATHOLOGY 2009; 99:220-6. [PMID: 19203273 DOI: 10.1094/phyto-99-3-0220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The basidiomycete Phakopsora pachyrhizi (P. pachyrhizi) causes Asian soybean rust, one of the most devastating plant diseases on soybean. When inoculated on the nonhost barley P. pachyrhizi caused only very small necrotic spots, typical for an incompatible interaction, which involves a hypersensitive cell death reaction. A microscopic inspection of the interaction of barley with P. pachyrhizi revealed that the fungus germinated on barley and formed functional appressoria on epidermal cells. The fungus attempted to directly penetrate through periclinal cell walls but often failed, arrested in plant cell wall appositions that stained positively for callose. Penetration resistance depends on intact ROR1(REQUIRED FOR mlo-SPECIFIED RESISTANCE 1) and ROR2 genes of barley. If the fungus succeeded in penetration, epidermal cell death took place. Dead epidermal cells did not generally restrict fungal development but allowed for mesophyll invasion, which was followed by mesophyll cell death and fungal arrest. Transient or stable over expression of the barley cell death suppressor BAX inhibitor-1 reduced both epidermal cell death and fungal penetration success. Data suggest that P. pachyrhizi provokes a programmed cell death facilitating fungal entry into epidermal cells of barley.
Collapse
Affiliation(s)
- Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Panthee DR, Marois JJ, Wright DL, Narváez D, Yuan JS, Stewart CN. Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:359-70. [PMID: 18853130 DOI: 10.1007/s00122-008-0905-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/23/2008] [Indexed: 05/07/2023]
Abstract
Understanding plant host response to a pathogen such as Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), under different environmental conditions and growth stages is crucial for developing a resistant plant variety. The main objective of this study was to perform global transcriptome profiling of P. pachyrhizi-exposed soybean (Glycine max) with susceptible reaction to the pathogen from two distinct developmental growth stages using whole genome Affymetrix microarrays of soybean followed by confirmation using a resistant genotype. Soybean cv. 5601T (susceptible to ASR) at the V(4) and R(1) growth stages and Glycine tomentella (resistant to ASR) plants were inoculated with P. pachyrhizi and leaf samples were collected after 72 h of inoculation for microarray analysis. Upon analyzing the data using Array Assist software at 5% false discovery rate (FDR), a total of 5,056 genes were found significantly differentially expressed at V(4) growth stage, of which 2,401 were up-regulated, whereas 579 were found differentially expressed at R(1) growth stage, of which 264 were up-regulated. There were 333 differentially expressed common genes between the V(4) and R(1) growth stages, of which 125 were up-regulated. A large difference in number of differentially expressed genes between the two growth stages indicates that the gene expression is growth-stage-specific. We performed real-time RT-PCR analysis on nine of these genes from both growth stages and both plant species and found results to be congruent with those from the microarray analysis.
Collapse
Affiliation(s)
- Dilip R Panthee
- Department of Plant Sciences, 252 Ellington Plant Sciences, The University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Miller SA, Beed FD, Harmon CL. Plant disease diagnostic capabilities and networks. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:15-38. [PMID: 19385729 DOI: 10.1146/annurev-phyto-080508-081743] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Emerging, re-emerging and endemic plant pathogens continue to challege our ability to safeguard plant health worldwide. Further, globalization, climate change, increased human mobility, and pathogen and vector evolution have combined to increase the spread of invasive plant pathogens. Early and accurate diagnoses and pathogen surveillance on local, regional, and global scales are necessary to predict outbreaks and allow time for development and application of mitigation strategies. Plant disease diagnostic networks have developed worldwide to address the problems of efficient and effective disease diagnosis and pathogen detection, engendering cooperation of institutions and experts within countries and across national borders. Networking maximizes impact in the face of shrinking government investments in agriculture and diminishing human resource capacity in diagnostics and applied pathology. New technologies promise to improve the speed and accuracy of disease diagnostics and pathogen detection. Widespread adoption of standard operating procedures and diagnostic laboratory accreditation serve to build trust and confidence among institutions. Case studies of national, regional, and international diagnostic networks are presented.
Collapse
Affiliation(s)
- Sally A Miller
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691-4096, USA.
| | | | | |
Collapse
|
32
|
Freire MCM, Oliveira LOD, Almeida ÁMRD, Schuster I, Moreira MA, Liebenberg MM, Mienie CMS. Evolutionary history of Phakopsora pachyrhizi (the Asian soybean rust) in Brazil based on nucleotide sequences of the internal transcribed spacer region of the nuclear ribosomal DNA. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008005000026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Maíra C. M. Freire
- Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Brazil
| | - Luiz O. de Oliveira
- Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Brazil
| | | | | | - Maurilio A. Moreira
- Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Brazil
| | | | | |
Collapse
|
33
|
Alaei H, Baeyen S, Maes M, Höfte M, Heungens K. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. J Microbiol Methods 2008; 76:136-45. [PMID: 18940207 DOI: 10.1016/j.mimet.2008.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 11/30/2022]
Abstract
Puccinia horiana Henn. is a quarantine organism and one of the most important fungal pathogens of Chrysanthemum x morifolium cultivars grown for cut flower or potted plant production (florist's chrysanthemum) in several regions of the world. Highly specific primer pairs were identified for conventional, nested, and real-time PCR detection of P. horiana based on the specific and sensitive PCR amplification of selected regions in the internal transcribed spacers (ITS1 and ITS2) of the nuclear ribosomal DNA (rDNA). Using these different PCR versions, 10 pg, 10 fg, and 5 fg genomic DNA could be detected, respectively. When using cloned target DNA as template, the detection limits were 5000, 50, and 5 target copies, respectively. These detection limits were not affected by a background of chrysanthemum plant DNA. The DNA extraction method was optimized to maximize the recoverability of the pathogen from infected plant tissue. A CTAB extraction protocol or a selection of commercial DNA extraction methods allowed the use of 10 ng total (plant+pathogen) DNA without interference of PCR inhibitors. Due to the specificity of the primers, SYBR Green I technology enabled reliable real time PCR signal detection. However, an efficient TaqMan probe is available. The lowest proportion of infected plant material that could still be detected when mixed with healthy plant material was 0.001%. The real-time PCR assay could detect as few as eight pure P. horiana basidiospores, demonstrating the potential of the technique for aerial detection of the pathogen. The amount of P. horiana DNA in plant tissue was determined at various time points after basidiospore inoculation. Using the real-time PCR protocol, it was possible to detect the pathogen immediately after the inoculation period, even though the accumulation of pathogen DNA was most pronounced near the end of the latent period. The detection system proved to be accurate and sensitive and could help not only in pathogen diagnosis but also in pathogen monitoring and disease forecasting systems.
Collapse
Affiliation(s)
- Hossein Alaei
- Institute for Agricultural and Fisheries Research, Unit Plant-Crop Protection, Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
34
|
Baysal-Gurel F, Ivey MLL, Dorrance A, Luster D, Frederick R, Czarnecki J, Boehm M, Miller SA. An Immunofluorescence Assay to Detect Urediniospores of Phakopsora pachyrhizi. PLANT DISEASE 2008; 92:1387-1393. [PMID: 30769566 DOI: 10.1094/pdis-92-10-1387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An indirect immunofluorescence spore assay (IFSA) was developed to detect urediniospores of Phakopsora pachyrhizi, utilizing rabbit polyclonal antisera produced in response to intact nongerminated (SBR1A) or germinated (SBR2) urediniospores of P. pachyrhizi. Both antisera were specific to Phakopsora spp. and did not react with other common soybean pathogens or healthy soybean leaf tissue in enzyme-linked immunosorbent assay (ELISA). SBR1A and SBR2 bound to P. pachyrhizi and P. meibomiae urediniospores were detected with goat anti-rabbit Alexa Fluor 488-tagged antiserum using a Leica DM IRB epifluorescent microscope with an I3 blue filter (excitation 450 to 490 nm, emission 515 nm). The assay was performed on standard glass microscope slides; double-sided tape was superior to a thin coating of petroleum jelly both in retaining spores and in immunofluorescence. The IFSA was used to confirm the identity of P. pachyrhizi urediniospores captured on glass slides from passive air samplers from Georgia, Kentucky, and Ohio during 2006.
Collapse
Affiliation(s)
- Fulya Baysal-Gurel
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster
| | - Melanie L Lewis Ivey
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster
| | - Anne Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster
| | - Douglas Luster
- USDA ARS Foreign Diseases and Weed Science Research Unit, Ft. Detrick, MD
| | - Reid Frederick
- USDA ARS Foreign Diseases and Weed Science Research Unit, Ft. Detrick, MD
| | - Jill Czarnecki
- Naval Medical Research Center, Biological Defense Research Directorate, Silver Spring, MD
| | - Michael Boehm
- Department of Plant Pathology, The Ohio State University, Columbus
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster
| |
Collapse
|
35
|
Tapia-Tussell R, Quijano-Ramayo A, Cortes-Velazquez A, Lappe P, Larque-Saavedra A, Perez-Brito D. PCR-Based Detection and Characterization of the Fungal Pathogens Colletotrichum gloeosporioides and Colletotrichum capsici Causing Anthracnose in Papaya (Carica papaya L.) in the Yucatan Peninsula. Mol Biotechnol 2008; 40:293-8. [DOI: 10.1007/s12033-008-9093-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/21/2008] [Indexed: 11/28/2022]
|
36
|
Silva DCG, Yamanaka N, Brogin RL, Arias CAA, Nepomuceno AL, Di Mauro AO, Pereira SS, Nogueira LM, Passianotto ALL, Abdelnoor RV. Molecular mapping of two loci that confer resistance to Asian rust in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:57-63. [PMID: 18392802 DOI: 10.1007/s00122-008-0752-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 03/17/2008] [Indexed: 05/04/2023]
Abstract
Asian soybean rust (ASR) is caused by the fungal pathogen Phakopsora pachyrhizi Sydow & Sydow. It was first identified in Brazil in 2001 and quickly infected soybean areas in several countries in South America. Primary efforts to combat this disease must involve the development of resistant cultivars. Four distinct genes that confer resistance against ASR have been reported: Rpp1, Rpp2, Rpp3, and Rpp4. However, no cultivar carrying any of those resistance loci has been released. The main objective of this study was to genetically map Rpp2 and Rpp4 resistance genes. Two F(2:3) populations, derived from the crosses between the resistant lines PI 230970 (Rpp2), PI 459025 (Rpp4) and the susceptible cultivar BRS 184, were used in this study. The mapping populations and parental lines were inoculated with a field isolate of P. pachyrhizi and evaluated for lesion type as resistant (RB lesions) or susceptible (TAN lesions). The mapping populations were screened with SSR markers, using the bulk segregant analysis (BSA) to expedite the identification of linked markers. Both resistance genes showed an expected segregation ratio for a dominant trait. This study allowed mapping Rpp2 and Rpp4 loci on the linkage groups J and G, respectively. The associated markers will be of great value on marker assisted selection for this trait.
Collapse
Affiliation(s)
- Danielle C G Silva
- Brazilian Agricultural Research Corporation-Embrapa Soybean, Caixa Postal 231, 86001-970 Londrina, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Slaminko TL, Miles MR, Frederick RD, Bonde MR, Hartman GL. New Legume Hosts of Phakopsora pachyrhizi Based on Greenhouse Evaluations. PLANT DISEASE 2008; 92:767-771. [PMID: 30769579 DOI: 10.1094/pdis-92-5-0767] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phakopsora pachyrhizi, the causal organism of soybean rust, was first found in the continental United States in 2004 and has been found on soybean, kudzu, Florida beggarweed, and three Phaseolus species in the field. The pathogen has been reported to occur on more than 90 legume species worldwide and it is likely to infect native and introduced legume species in the United States. The objective of this study was to determine if 176 species representing 57 genera of legumes, the majority of which are either native or naturalized to soybean-growing areas of the United States, could be hosts of P. pachyrhizi. Between one and three accessions of each species, a total of 264 accessions, were inoculated with a mixture of four isolates of P. pachyrhizi. Severity and sporulation were rated on a 1-to-5 scale at 14 and 28 days after inoculation. P. pachyrhizi was confirmed by the presence of sporulating uredinia and/or immunological assay on 65 new species in 25 genera; 12 of these genera have not been reported previously as hosts. Many of the newly identified hosts grow in the southern United States, and like kudzu, could serve as overwintering hosts for P. pachyrhizi.
Collapse
Affiliation(s)
- T L Slaminko
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - M R Miles
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Urbana, IL 61801
| | - R D Frederick
- USDA-ARS Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702
| | - M R Bonde
- USDA-ARS Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702
| | - G L Hartman
- USDA-ARS and Department of Crop Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
38
|
Chatasiri S, Ono Y. Phylogeny and taxonomy of the Asian grapevine leaf rust fungus, Phakopsora euvitis, and its allies (Uredinales). MYCOSCIENCE 2008. [DOI: 10.1007/s10267-007-0390-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Chen YY, Conner RL, Gillard CL, Boland GJ, Babcock C, Chang KF, Hwang SF, Balasubramanian PM. A Specific and Sensitive Method for the Detection of Colletotrichum lindemuthianum in Dry Bean Tissue. PLANT DISEASE 2007; 91:1271-1276. [PMID: 30780518 DOI: 10.1094/pdis-91-10-1271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To facilitate early diagnosis and improve control of bean anthracnose, a rapid, specific, and sensitive polymerase chain reaction (PCR)-based method was developed to detect the causal agent, Colletotrichum lindemuthianum, in bean (Phaseolus vulgaris) seed. Based on sequence data of the rDNA region consisting of the 5.8S gene and internal transcribed spacers (ITS) 1 and 2 of four C. lindemuthianum races and 17 Colletotrichum species downloaded from GenBank, five forward primers were designed and evaluated for their specificity. Among them, one forward primer was selected for use in combination with ITS4 to specifically detect C. lindemuthianum. A 461-bp specific band was amplified from the genomic DNA template of 16 representative isolates of C. lindemuthianum, but not from 58 representative isolates of 17 other Colletotrichum species or 10 bean pathogens. Moreover, to enhance the sensitivity of detection, nested PCR was applied, which allowed the detection of as little as 10 fg of C. lindemuthianum genomic DNA and 1% infected seed powder, which was mixed with 99% healthy seed powder. The diagnostic analysis can be completed within 24 h, compared with about 2 weeks required for culturing. Furthermore, this method can be performed and interpreted by personnel with no specialized taxonomic expertise.
Collapse
Affiliation(s)
- Yong-Yan Chen
- Agriculture and Agri-Food Canada (AAFC), Morden Research Station, Unit 100-101, Route 100, Morden, MB, R6M 1Y5; and College of Bioengineering, Dalian University, Dalian 116622, China
| | - R L Conner
- AAFC, Morden Research Station, Unit 100-101, Route 100, Morden, MB, R6M 1Y5
| | - C L Gillard
- Ridgetown Campus of the University of Guelph, 120 Main St. East, Ridgetown, ON, N0P 2C0
| | - G J Boland
- Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1
| | - C Babcock
- Canadian Collection of Fungal Cultures, AAFC, Room 1015, K.W. Neatby Bldg., Ottawa, ON, K1A OC6
| | - Kan-Fa Chang
- Field Crop Development Center, Alberta Agriculture, Food and Rural Development (AAFRD), Lacombe, AB, T4L 1W1
| | - S F Hwang
- Crop Diversification Centre North, AAFRD, Edmonton, AB, T5Y 6H3
| | | |
Collapse
|
40
|
Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN. Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genomics 2007; 7:291-301. [PMID: 17318271 DOI: 10.1007/s10142-007-0045-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 01/13/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi Sydow is a potentially devastating disease posing a serious threat to the soybean industry. Understanding plant host response at the molecular level is certainly important for control of the disease. The main objective of this study was to perform a transcriptome profiling of P. pachyrhizi-exposed young soybean plants (V2 growth stage) using whole genome Affymetrix microarrays of soybean. Three-week-old soybean cv. 5601 T plants at the V2 growth stage were inoculated with P. pachyrhizi, and leaf samples were collected 72 h post inoculation with subsequent microarray analysis performed. A total of 112 genes were found to be differentially expressed from P. pachyrhizi exposure, of which 46 were upregulated, and 66 were downregulated. Most of the differentially expressed genes were general defense and stress-related genes, and 34 of these were unknown. Confirmational real-time reverse transcription-polymerase chain reaction was performed on a subset of 5 out of 112 differentially expressed genes. These results were congruent with the microarray analysis. Our results indicated that low and nonspecific innate response to the pathogen may account for the failure to develop rust resistance in the soybean variety studied. To our knowledge, this is the first microarray analysis of soybean in response to ASR.
Collapse
Affiliation(s)
- D R Panthee
- Department of Plant Sciences, University of Tennessee, Rm 252, Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
41
|
KHAERUNI ANDI, SUWANTO ANTONIUS, TJAHJONO BUDI, SINAGA MEITYSURADJI. Deteksi Cepat Penyakit Pustul Bakteri pada Kedelai Menggunakan Teknik PCR dengan Primer Spesifik. HAYATI JOURNAL OF BIOSCIENCES 2007. [DOI: 10.4308/hjb.14.2.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
Barnes CW, Szabo LJ. Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. PHYTOPATHOLOGY 2007; 97:717-27. [PMID: 18943603 DOI: 10.1094/phyto-97-6-0717] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT Puccinia spp. are widespread pathogens of cereals and grasses that annually cause significant yield losses worldwide, especially in barley, oat, and wheat. Urediniospore morphology and early symptom development have limited usefulness for distinguishing Puccinia spp. Therefore, we developed real-time polymerase chain reaction assays for rapid detection of the four rust pathogen species, Puccinia graminis (Pers.:Pers.), P. striiformis (Westend.), P. triticina (Eriks.), and P. recondita (Roberge ex Desmaz.). Duplex assays were constructed for the nuclear rDNA gene, using the variable internal transcribed spacer 1 (ITS1) region to distinguish between species, and the conserved 28S region as an internal control. Species-specific ITS1 primer/probe sets were highly specific and could detect <1 pg of DNA. The species-specific primer/probe sets showed positive results over a linear range of DNA five orders of magnitude or greater. Specificity of the assays was tested using multiple collections representing a range of races and formae speciales within a species. Additionally, assay specificity was evaluated by testing a range of other grass rust pathogens, as well as other fungi. The 28S primer/probe combination was successful in detecting all Puccinia spp. tested within the duplex assays, validating the integrity of each assay. Finally, the assays were used to identify unknown rust fungi infecting pasture grasses.
Collapse
|
43
|
Miles MR, Pastor-Corrales MA, Hartman GL, Frederick RD. Differential Response of Common Bean Cultivars to Phakopsora pachyrhizi. PLANT DISEASE 2007; 91:698-704. [PMID: 30780478 DOI: 10.1094/pdis-91-6-0698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean rust (Phakopsora pachyrhizi) has been reported on common bean (Phaseolus vulgaris) in Asia, South Africa, and the United States. However, there is little information on the interaction of individual isolates of Phakopsora pachyrhizi with common bean germplasm. A set of 16 common bean cultivars with known genes for resistance to Uromyces appendiculatus, the causal agent of common bean rust, three soybean accessions that were sources of the single gene resistance to P. pachyrhizi, and the moderately susceptible soybean 'Ina' were evaluated using seedlings inoculated with six isolates of P. pachyrhizi. Among the common bean cultivars, Aurora, Compuesto Negro Chimaltenango, and Pinto 114, were the most resistant to all six P. pachyrhizi isolates, with lower severity, less sporulation, and consistent reddish-brown (RB) lesions associated with resistance in soybean. A differential response was observed among the common bean cultivars, with a cultivar-isolate interaction for both severity and sporulation levels, as well as the presence or absence of the RB lesion type. This differential response was independent of the known genes that condition resistance to U. appendiculatus, suggesting that resistance to P. pachyrhizi was independent of resistance to U. appendiculatus.
Collapse
Affiliation(s)
- M R Miles
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Soybean Research Center, University of Illinois, Urbana 61801
| | | | - G L Hartman
- USDA-ARS, National Soybean Research Center, Department of Crop Sciences, University of Illinois, Urbana
| | - R D Frederick
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Ft. Detrick, MD 21702
| |
Collapse
|
44
|
|
45
|
Krupa S, Bowersox V, Claybrooke R, Barnes CW, Szabo L, Harlin K, Kurle J. Introduction of Asian Soybean Rust Urediniospores into the Midwestern United States-A Case Study. PLANT DISEASE 2006; 90:1254-1259. [PMID: 30781110 DOI: 10.1094/pd-90-1254] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In 2005, weekly rain samples collected at 124 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites in the eastern and central United States were screened for Asian soybean rust (ASR; Phakopsora pachyrhizi) urediniospores. Application of a quantitative polymerase chain reaction method detected P. pachyrhizi DNA in the filter residue of rain samples collected during the week of 19 to 26 July 2005 in Minnesota, Missouri, and South Dakota. To determine the geographic origin of ASR urediniospores in those weekly composite samples, back air trajectories of the lifted condensation and mixed boundary layers were calculated for each rain event within the week, by sampling site. The calculations, based on the hybrid single-particle lagrangian integrated trajectory model, pointed to source areas in eastern and southern Texas. In a separate case, DNA of P. pachyrhizi was detected in a 28 June to 5 July 2005 rain sample from an eastern Texas site. Back trajectories pointed to southern Texas and the Yucatan Peninsula in Mexico as potential source areas of ASR urediniospores. Vertical motions of those back trajectories indicated a ventilation of the boundary layer in the upwind areas, suggesting the possible injection of urediniospores into the free troposphere where they can be transported for long distances before wet deposition.
Collapse
Affiliation(s)
- Sagar Krupa
- Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Van Bowersox
- Illinois State Water Survey, National Atmospheric Deposition Program & National Trends Network (NADP & NTN) Programs, Champaign, IL 61820
| | - Roger Claybrooke
- Illinois State Water Survey, National Atmospheric Deposition Program & National Trends Network (NADP & NTN) Programs, Champaign, IL 61820
| | - Charles W Barnes
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108
| | - Les Szabo
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108
| | - Karen Harlin
- Illinois State Water Survey, NADP & NTN Programs, Champaign
| | - James Kurle
- Department of Plant Pathology, University of Minnesota, St. Paul
| |
Collapse
|
46
|
Bonde MR, Nester SE, Austin CN, Stone CL, Frederick RD, Hartman GL, Miles MR. Evaluation of Virulence of Phakopsora pachyrhizi and P. meibomiae Isolates. PLANT DISEASE 2006; 90:708-716. [PMID: 30781228 DOI: 10.1094/pd-90-0708] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi and recently discovered for the first time in continental United States, has been of concern to the U.S. agricultural industry for more than 30 years. Since little soybean rust resistance is known, and resistance is often difficult to detect or quantitate, we initiated a project to develop a better, more quantitative, method. The methodology determined the average numbers and diameters of uredinia in lesions that developed on leaves of inoculated plants 14 days after inoculation. It was used to compare virulence of P. pachyrhizi isolates from Asia and Australia and P. meibomiae from Puerto Rico and Brazil, collected as many as 30 years earlier, with isolates of P. pachyrhizi recently collected from Africa or South America. Susceptible reactions to P. pachyrhizi resulted in tan-colored lesions containing 1 to 14 uredinia varying greatly in size within individual lesions. In contrast, on these same genotypes at the same time of year, resistance to other P. pachyrhizi isolates was typified by 0 to 6 small uredinia in reddish-brown to dark-brown lesions. Using appropriate rust resistant and rust susceptible genotypes as standards, examination of uredinia 14 days after inoculation allowed quantitative comparisons of sporulation capacities, one measure of susceptibility or resistance to soybean rust. The study verified the presence and ability to detect all known major genes for resistance to soybean rust in the original sources of resistance. It demonstrated that soybean lines derived from the original PI sources, and presumed to possess the resistance genes, in actuality may lack the gene or express an intermediate reaction to the rust pathogen. We suggest that a determination of numbers and sizes of uredinia will detect both major gene and partial resistance to soybean rust.
Collapse
Affiliation(s)
- M R Bonde
- USDA-ARS, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702-5023
| | - S E Nester
- USDA-ARS, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702-5023
| | - C N Austin
- USDA-ARS, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702-5023
| | - C L Stone
- USDA-ARS, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702-5023
| | - R D Frederick
- USDA-ARS, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702-5023
| | - G L Hartman
- USDA-ARS and Dept. of Crop Sciences, University of Illinois, Urbana 61801
| | - M R Miles
- USDA-ARS, University of Illinois, Urbana 61801
| |
Collapse
|
47
|
Tooley PW, Martin FN, Carras MM, Frederick RD. Real-Time Fluorescent Polymerase Chain Reaction Detection of Phytophthora ramorum and Phytophthora pseudosyringae Using Mitochondrial Gene Regions. PHYTOPATHOLOGY 2006; 96:336-345. [PMID: 18943415 DOI: 10.1094/phyto-96-0336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT A real-time fluorescent polymerase chain reaction (PCR) detection method for the sudden oak death pathogen Phytophthora ramorum was developed based on mitochondrial DNA sequence with an ABI Prism 7700 (TaqMan) Sequence Detection System. Primers and probes were also developed for detecting P. pseudosyringae, a newly described species that causes symptoms similar to P. ramorum on certain hosts. The species-specific primer-probe systems were combined in a multiplex assay with a plant primer-probe system to allow plant DNA present in extracted samples to serve as a positive control in each reaction. The lower limit of detection of P. ramorum DNA was 1 fg of genomic DNA, lower than for many other described PCR procedures for detecting Phytophthora species. The assay was also used in a three-way multiplex format to simultaneously detect P. ramorum, P. pseudosyringae, and plant DNA in a single tube. P. ramorum was detected down to a 10(-5) dilution of extracted tissue of artificially infected rhododendron 'Cunningham's White', and the amount of pathogen DNA present in the infected tissue was estimated using a standard curve. The multiplex assay was also used to detect P. ramorum in infected California field samples from several hosts determined to contain the pathogen by other methods. The real-time PCR assay we describe is highly sensitive and specific, and has several advantages over conventional PCR assays used for P. ramorum detection to confirm positive P. ramorum finds in nurseries and elsewhere.
Collapse
|
48
|
Posada-Buitrago ML, Frederick RD. Expressed sequence tag analysis of the soybean rust pathogen Phakopsora pachyrhizi. Fungal Genet Biol 2005; 42:949-62. [PMID: 16291502 DOI: 10.1016/j.fgb.2005.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 05/05/2005] [Accepted: 06/10/2005] [Indexed: 11/15/2022]
Abstract
Soybean rust is caused by the obligate fungal pathogen Phakopsora pachyrhizi Sydow. A unidirectional cDNA library was constructed using mRNA isolated from germinating P. pachyrhizi urediniospores to identify genes expressed at this physiological stage. Single pass sequence analysis of 908 clones revealed 488 unique expressed sequence tags (ESTs, unigenes) of which 107 appeared as multiple copies. BLASTX analysis identified 189 unigenes with significant similarities (Evalue<10(-5)) to sequences deposited in the NCBI non-redundant protein database. A search against the NCBI dbEST using the BLASTN algorithm revealed 32 ESTs with high or moderate similarities to plant and fungal sequences. Using the Expressed Gene Anatomy Classification, 31.7% of these ESTs were involved in primary metabolism, 14.3% in gene/protein expression, 7.4% in cell structure and growth, 6.9% in cell division, 4.8% in cell signaling/cell communication, and 4.8% in cell/organism defense. Approximately 29.6% of the identities were to hypothetical proteins and proteins with unknown function.
Collapse
Affiliation(s)
- Martha Lucia Posada-Buitrago
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD 21702, USA
| | | |
Collapse
|
49
|
Feau N, Weiland JE, Stanosz GR, Bernier L. Specific and sensitive PCR-based detection of Septoria musiva, S. populicola and S. populi, the causes of leaf spot and stem canker on poplars. ACTA ACUST UNITED AC 2005; 109:1015-28. [PMID: 16209307 DOI: 10.1017/s0953756205003242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development of a PCR assay for the detection of the poplar pathogenic fungi Septoria musiva (teleomorph Mycosphaerella populorum), S. populicola (M. populicola) and S. populi (M. populi) is described. Three pairs of species-specific PCR primers were designed using interspecific polymorphisms in the internal transcribed spacer (ITS) of nuclear ribosomal RNA gene (rDNA) repeats. The specificity of the three primer pairs was successfully tested on a collection of 40 S. musiva, 39 S. populicola and six S. populi isolates. Using stringent PCR conditions, no cross-reaction was observed with any of the isolates tested. The specificity of the PCR assay was further confirmed with DNA extracted from 12 additional Septoria species and 17 other fungal species obtained from stems or leaves of poplars. Specific amplification of the fragments for S. musiva and S. populicola was sensitive relatively to the technique used, detecting as low as 1 pg template DNA, and 10 pg of DNA of the target species in a background of 1 ng of DNA of the other species. Moreover, using DNA purified directly from disrupted conidia, it was possible to detect with a probability of 90%, using one unique PCR assay, the DNA equivalent of 166 conidia per microl of S. musiva and 156 conidia per microl of S. populicola. The procedures developed in this work can thus be applied for rapid and accurate detection and identification of Septoria species from poplars.
Collapse
Affiliation(s)
- Nicolas Feau
- Centre de Recherche en Biologie Forestière, Université Laval, Sainte-Foy, Quebec G1K 7P4, Canada
| | | | | | | |
Collapse
|
50
|
Zhang Z, Zhang J, Wang Y, Wang Y, Zheng X. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiol Lett 2005; 249:39-47. [PMID: 16019161 DOI: 10.1016/j.femsle.2005.05.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 05/17/2005] [Accepted: 05/28/2005] [Indexed: 11/19/2022] Open
Abstract
We developed two species-specific PCR assays for rapid and accurate detection of the pathogenic fungi Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in diseased plant tissues and soil. Based on differences in internal transcribed spacer (ITS) sequences of Fusarium spp. and Mycosphaerella spp., two pairs of species-specific primers, Fn-1/Fn-2 and Mn-1/Mn-2, were synthesized. After screening 24 isolates of F. oxysporum f. sp. niveum, 22 isolates of M. melonis, and 72 isolates from the Ascomycota, Basidiomycota, Deuteromycota, and Oomycota, the Fn-1/Fn-2 primers amplified only a single PCR band of approximately 320 bp from F. oxysporum f. sp.niveum, and the Mn-1/Mn-2 primers yielded a PCR product of approximately 420 bp from M. melonis. The detection sensitivity with primers Fn-1/Fn-2 and Mn-1/Mn-2 was 1fg of genomic DNA. Using ITS1/ITS4 as the first-round primers, combined with either Fn-1/Fn-2 and or Mn-1/Mn-2, two nested PCR procedures were developed, and the detection sensitivity increased 1000-fold to 1ag. The detection sensitivity for the soil pathogens was 100-microconidia/g soil. A duplex PCR method, combining primers Fn-1/Fn-2 and Mn-1/Mn-2, was used to detect F. oxysporum f. sp. niveum and M. melonis in plant tissues infected by the pathogens. Real-time fluorescent quantitative PCR assays were developed to detect and monitor the pathogens directly in soil samples. The PCR-based methods developed here could simplify both plant disease diagnosis and pathogen monitoring as well as guide plant disease management.
Collapse
Affiliation(s)
- Zhenggang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | |
Collapse
|