1
|
Scavone G, Ottonello S, Blondeaux E, Arecco L, Scaruffi P, Stigliani S, Cardinali B, Borea R, Paudice M, Vellone VG, Condorelli M, Demeestere I, Lambertini M. The Role of Cyclin-Dependent Kinases (CDK) 4/6 in the Ovarian Tissue and the Possible Effects of Their Exogenous Inhibition. Cancers (Basel) 2023; 15:4923. [PMID: 37894292 PMCID: PMC10605229 DOI: 10.3390/cancers15204923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The combination of cyclin-dependent kinase (CDK) 4/6 inhibitors with endocrine therapy is the standard treatment for patients with HR+/HER2- advanced breast cancer. Recently, this combination has also entered the early setting as an adjuvant treatment in patients with HR+/HER2- disease at a high risk of disease recurrence following (neo)adjuvant chemotherapy. Despite their current use in clinical practice, limited data on the potential gonadotoxicity of CDK4/6 inhibitors are available. Hence, fully informed treatment decision making by premenopausal patients concerned about the potential development of premature ovarian insufficiency and infertility with the proposed therapy remains difficult. The cell cycle progression of granulosa and cumulus cells is a critical process for ovarian function, especially for ensuring proper follicular growth and acquiring competence. Due to the pharmacological properties of CDK4/6 inhibitors, there could be a potentially negative impact on ovarian function and fertility in women of reproductive age. This review aims to summarize the role of the cyclin D-CDK4 and CDK6 complexes in the ovary and the potential impact of CDK4/6 inhibition on its physiological processes.
Collapse
Affiliation(s)
- Graziana Scavone
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Silvia Ottonello
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Eva Blondeaux
- U.O. Epidemiologia Clinica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Luca Arecco
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy
| | - Paola Scaruffi
- S.S. Fisiopatologia della Riproduzione Umana, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sara Stigliani
- S.S. Fisiopatologia della Riproduzione Umana, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Barbara Cardinali
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Roberto Borea
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy
| | - Michele Paudice
- Department of Integrated Diagnostic and Surgical Sciences (DISC), IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Valerio G. Vellone
- Department of Integrated Diagnostic and Surgical Sciences (DISC), IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Pathological Anatomy, IRCCS Ospedale Gaslini, 16132 Genova, Italy
| | - Margherita Condorelli
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Fertility Clinic, Department of Obstetrics and Gynecology, H.U.B—Erasme Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Fertility Clinic, Department of Obstetrics and Gynecology, H.U.B—Erasme Hospital, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, 16132 Genova, Italy
| |
Collapse
|
2
|
Follicle-stimulating Hormone (FSH) Action on Spermatogenesis: A Focus on Physiological and Therapeutic Roles. J Clin Med 2020; 9:jcm9041014. [PMID: 32260182 PMCID: PMC7230878 DOI: 10.3390/jcm9041014] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human reproduction is regulated by the combined action of the follicle-stimulating hormone (FSH) and the luteinizing hormone (LH) on the gonads. Although FSH is largely used in female reproduction, in particular in women attending assisted reproductive techniques to stimulate multi-follicular growth, its efficacy in men with idiopathic infertility is not clearly demonstrated. Indeed, whether FSH administration improves fertility in patients with hypogonadotropic hypogonadism, the therapeutic benefit in men presenting alterations in sperm production despite normal FSH serum levels is still unclear. In the present review, we evaluate the potential pharmacological benefits of FSH administration in clinical practice. METHODS This is a narrative review, describing the FSH physiological role in spermatogenesis and its potential therapeutic action in men. RESULTS The FSH role on male fertility is reviewed starting from the physiological control of spermatogenesis, throughout its mechanism of action in Sertoli cells, the genetic regulation of its action on spermatogenesis, until the therapeutic options available to improve sperm production. CONCLUSION FSH administration in infertile men has potential benefits, although its action should be considered by evaluating its synergic action with testosterone, and well-controlled, powerful trials are required. Prospective studies and new compounds could be developed in the near future.
Collapse
|
3
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Deng SL, Wang ZP, Jin C, Kang XL, Batool A, Zhang Y, Li XY, Wang XX, Chen SR, Chang CS, Cheng CY, Lian ZX, Liu YX. Melatonin promotes sheep Leydig cell testosterone secretion in a co-culture with Sertoli cells. Theriogenology 2017; 106:170-177. [PMID: 29073541 DOI: 10.1016/j.theriogenology.2017.10.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Leydig cells synthesize and secrete testosterone, and are regulated by Sertoli cells. These two cell types may work together to regulate testicular androgen production. Studies have shown that Leydig cell androgen synthesis can be dramatically enhanced by Sertoli cells in the presence of melatonin, which can regulate the secretory function of Leydig and Sertoli cells. However, the molecular mechanism of melatonin-regulated Leydig cell androgen production via Sertoli cells remains unclear. Here, we found that 10-7 M melatonin increased testosterone production in co-cultured Leydig and Sertoli cells isolated from sheep. Melatonin increased the expression of stem cell factor and insulin-like growth factor-1 and decreased estrogen synthesis in Sertoli cells. Melatonin promoted insulin-like growth factor-1 and decreased estrogen content via the membrane melatonin receptor 1. It also enhanced stem cell factor expression via the retinoic acid receptor-related orphan receptor alpha. Addition of PD98059, a MEK inhibitor, to Sertoli cell culture demonstrated that the melatonin upregulation of insulin-like growth factor-1 and downregulation of estrogen may be through the MEK/extracellular signal-regulated kinase pathway. Together, these results suggest that melatonin may function through modulating melatonin receptor 1-regulated insulin-like growth factor-1 expression, as well as melatonin receptor 1-induced suppression of estrogen synthesis to increase androgen production in co-cultured Leydig and Sertoli cells.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Long Kang
- College of Agriculture, Ningxia University, Yinchuan 750021, PR China
| | - Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chawn-Shang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, NY 10065, USA
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
5
|
Wang Y, Liu W, Du J, Yu Y, Liang N, Liang M, Yao G, Cui S, Huang H, Sun F. NGF promotes mouse granulosa cell proliferation by inhibiting ESR2 mediated down-regulation of CDKN1A. Mol Cell Endocrinol 2015; 406:68-77. [PMID: 25737208 DOI: 10.1016/j.mce.2015.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/02/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
Nerve growth factor (NGF) is known to play key roles in ovarian follicular development, such as the assembly of early follicles and follicular ovulation through its high-affinity receptor, tyrosine kinase receptor A (trkA). Herein, the molecular mechanism controlling NGF-induced granulosa cell (GC) proliferation was not clear. In this study, we found that NGF is abundant in preantral GCs and knockdown of trkA in GCs attenuated NGF-induced GC proliferation and further decreased the levels of phosphorylated extracellular regulated protein kinases 1/2 (ERK1/2). Cyclin-dependent kinase inhibitor 1A (CDKN1A), also named p21, a factor which could be either a negative or a positive regulator via transformation related protein 53 (TRP53, also named p53)-dependent or independent pathways in cell proliferation, was up-regulated during the process of NGF-induced GC proliferation. Blockade of trkA (K252α) and ERK1/2 (U0126) in GCs decreased NGF-induced expression of CDKN1A and did not alter the expression of TRP53, indicating that NGF stimulates CDKN1A expression via the trkA-ERK1/2 pathway in a TRP53-independent manner. Meanwhile, ESR2, a tumor suppressor which is exclusively expressed in GCs, was suppressed in NGF-induced GC proliferation, and this effect was abrogated by U0126. Blockade of ESR2 (ICI182,780) caused the promotion of GC proliferation and CDKN1A expression, indicating that ESR2 may be downstream of the ERK1/2 pathway in mediating the effect of CDKN1A on NGF-induced GC proliferation. Therefore, ESR2 may be involved in the integration of intracellular signal cascades and cell cycle proteins in affecting GC proliferation. Here, we provide mechanistic insights into the roles of CDKN1A in NGF-induced GC proliferation. Understanding potential cross-points between CDKN1A and ESR2 affecting GC proliferation will help in the discovery of new therapeutic targets in some female infertility disorders.
Collapse
Affiliation(s)
- Yong Wang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Wenjing Liu
- College of Life Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Juan Du
- Xinxiang Medical College, Henan 453003, China
| | - Yang Yu
- Jinzhou Medical College, Liaoning 121001, China
| | - Ning Liang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Meng Liang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Guidong Yao
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Sheng Cui
- China Agricultural University, Beijing 100094, China
| | - Hefeng Huang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Chakraborty P, Roy SK. Expression of FSH receptor in the hamster ovary during perinatal development. Mol Cell Endocrinol 2015; 400:41-7. [PMID: 25462586 PMCID: PMC4274197 DOI: 10.1016/j.mce.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/10/2023]
Abstract
FSH plays an important role in ovarian follicular development, and it functions via the G-protein coupled FSH receptor. The objectives of the present study were to determine if full-length FSHR mRNA and corresponding protein were expressed in fetal through postnatal hamster ovaries to explain the FSH-induced primordial follicle formation, and if FSH or estrogen (E) would affect the expression. A full-length and two alternately spliced FSHR transcripts were expressed from E14 through P20. The level of the full-length FSHR mRNA increased markedly through P7 before stabilizing at a lower level with the formation and activation of primordial follicles. A predicted 87 kDa FSHR protein band was detected in fetal through P4 ovaries, but additional bands appeared as ovary developed. FSHR immunosignal was present in undifferentiated somatic cells and oocytes in early postnatal ovaries, but was granulosa cells specific after follicles formed. Both eCG and E significantly up-regulated full-length FSHR mRNA levels. Therefore, FSHR is expressed in the hamster ovary from the fetal life to account for FSH-induced primordial follicle formation and cAMP production. Further, FSH or E regulates the receptor expression.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shyamal K Roy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE 68198.
| |
Collapse
|
7
|
Li Y, Jin Y, Liu Y, Shen C, Dong J, Xu J. SMAD3 regulates the diverse functions of rat granulosa cells relating to the FSHR/PKA signaling pathway. Reproduction 2013; 146:169-79. [PMID: 23690627 DOI: 10.1530/rep-12-0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The function of Smad3, a downstream signaling protein of the transforming growth factor β (TGFβ) pathway, in ovarian follicle development remains to be elucidated. The effects of Smad3 on ovarian granulosa cells (GCs) in rat were studied. Female rats (21 days of age Sprague-Dawley) received i.p. injections of pregnant mare serum gonadotropin, and GCs were harvested for primary culture 48 h later. These cells were engineered to overexpress or knockdown Smad3, which were validated by immunohistochemistry and western blot. The expression of proliferating cell nuclear antigen (PCNA), cyclin D2, TGFβ receptor II (TGFβRII), protein kinase A (PKA), and FSH receptor (FSHR) was also detected by western blotting. Cell cycle and apoptosis of GCs were assayed by flow cytometry. The level of estrogen secreted by GCs was detected by ELISA. Smad3 overexpression promoted estrogen production and proliferation while inhibiting apoptosis of GCs. Reduction in Smad3 by RNAi resulted in reduced estrogen production and proliferation and increased apoptosis of GCs. Manipulation of Smad3 expression also resulted in changes in FSHR and PKA expression, suggesting that the effects of Smad3 on follicle development are related to FSHR-mediated cAMP signaling.
Collapse
Affiliation(s)
- Yexia Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Hernández-Ochoa I, Gao L, Peretz J, Basavarajappa MS, Bunting SL, Karman BN, Paulose T, Flaws JA. Follicle-stimulating hormone responsiveness in antral follicles from aryl hydrocarbon receptor knockout mice. Reprod Biol Endocrinol 2013; 11:26. [PMID: 23548098 PMCID: PMC3621516 DOI: 10.1186/1477-7827-11-26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that pre-pubertal aryl hydrocarbon receptor knockout (AHRKO) mice have slow antral follicle growth and reduced capacity to produce estradiol compared to wild-type (WT) mice. Although previous studies have suggested that this is likely due to a reduced ability of the AHRKO follicles to respond to follicle-stimulating hormone (FSH), this possibility was not directly tested. Thus, the goal of these studies was to test the hypothesis that low FSH responsiveness is responsible for the slow growth and reduced estradiol production observed in pre-pubertal AHRKO versus WT antral follicles. METHODS Antral follicles from WT and AHRKO mice were cultured with varying amounts of FSH (0-15 IU/mL) for up to 7 days, and subjected to measurements of growth, FSH receptor and steroidogenic regulator expression, sex steroid hormone levels, and inhibin beta-A expression. General linear models (GLM) for repeated measures were used to compare follicle diameters over time among treatments. If the global tests from GLM were significant, Tukey's tests were used for pairwise comparisons. Remaining comparisons among groups were performed using one-way analysis of variance followed by Tukey's post hoc test. RESULTS The results indicate that FSH stimulated growth in both WT and AHRKO follicles, but that high levels of FSH (10-15 IU/mL) were required for AHRKO follicles to reach maximal growth, whereas lower levels of FSH (5 IU/mL) were required for WT follicles to reach maximal growth. Further, FSH stimulated expression of FSH receptor, steroidogenic factors, and inhibin beta-A as well as production of steroid hormones in both WT and AHRKO follicles, but the degree of stimulation differed between WT and AHRKO follicles. Interestingly, FSH treatment increased expression of FSH receptor, some steroidogenic regulators, inhibin beta-A, and steroid hormone production more in AHRKO follicles compared to WT follicles. CONCLUSIONS Collectively, these data suggest that the slow growth, but not reduced steroidogenesis in AHRKO follicles, is due to their reduced ability to respond to FSH compared to WT follicles. These data also suggest that the AHR may contribute to the ability of FSH to stimulate proper follicle growth, but it may not contribute to FSH-induced steroidogenesis.
Collapse
Affiliation(s)
- Isabel Hernández-Ochoa
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Illinois 61802, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cyclin Y, a novel membrane-associated cyclin, interacts with PFTK1. FEBS Lett 2009; 583:2171-8. [PMID: 19524571 DOI: 10.1016/j.febslet.2009.06.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 01/11/2023]
Abstract
A novel cyclin, CCNY, was identified as a PFTK1 interacting protein in a yeast two-hybrid screen. The cyclin box in CCNY and the PFTAIRE motif in PFTK1 are both required for the interaction which was confirmed by in vivo and in vitro assays. Two transcripts (4 and 2kb), of CCNY were detected by Northern blot analysis and CCNY was enriched at the plasma membrane due to an N-terminal myristoylation signal. We propose that binding of CCNY to PFTK1 enhances PFTK1 kinase activity and changes its intracellular location.
Collapse
|
10
|
Abstract
The role of E2 on primordial follicle formation was examined by treating neonatal hamsters with 1 or 2 microg estradiol cypionate (ECP) at age postnatal d 1 (P1) and P4 or by in vitro culture of embryonic d 15 (E15) ovaries with 1, 5, or 10 ng/ml estradiol-17beta (E2). The specificity of E2 action was examined by ICI 182,780. One microgram of ECP maintained serum levels of E2 within the physiological range, significantly reduced apoptosis, and stimulated the formation and development of primordial follicles. In contrast, 2 microg ECP increased serum E2 levels to 400 pg/ml and had significantly less influence on primordial follicle formation. In vivo, ICI 182,780 significantly increased apoptosis and caused a modest reduction in primordial follicle formation. The formation and development of primordial follicles in vitro increased markedly with 1 ng/ml E2, and the effect was blocked by ICI 182,780. Higher doses of E2 had no effect on primordial follicle formation but significantly up-regulated apoptosis, which was blocked by ICI 182,780. CYP19A1 mRNA expression occurred by E13 and increased with the formation of primordial follicles. P4 ovaries synthesized E2 from testosterone, which increased further by FSH. Both testosterone and FSH maintained ovarian CYP19A1 mRNA, but FSH up-regulated the expression. These results suggest that neonatal hamster ovaries produce E2 under FSH control and that E2 action is essential for the survival and differentiation of somatic cells and the oocytes leading to the formation and development of primordial follicles. This supportive action of E2 is lost when hormone levels increase above a threshold.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Obstetrics, Durham Research Center, University of Nebraska Medical Center, 984515 Nebraska Medical Center, Omaha, Nebraska 68198-4515, USA
| | | |
Collapse
|
11
|
Cannon JD, Cherian-Shaw M, Lovekamp-Swan T, Chaffin CL. Granulosa cell expression of G1/S phase cyclins and cyclin-dependent kinases in PMSG-induced follicle growth. Mol Cell Endocrinol 2007; 264:6-15. [PMID: 17084963 DOI: 10.1016/j.mce.2006.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 12/24/2022]
Abstract
Follicular development involves a complex orchestration of granulosa cell proliferation and differentiation. It is becoming increasingly apparent that the rate of granulosa cell proliferation declines as follicles reach the large antral status, prior to an ovulatory gonadotropin stimulus, although a precise time course and mechanism for this decline has not been described. The goal of the present study was to characterize granulosa cell proliferation following the onset of antral follicle growth in PMSG-primed immature rats, with emphasis on G1/S phase cyclins and cyclin-dependent kinases. Flow cytometric analysis demonstrated that the percentage of granulosa cells in S phase peaked 24-30 h post-PMSG and declined to control levels 48 h after PMSG administration. Expression of both Cyclin D2 and Cdk 4 was highest 12h post-PMSG and decreased to control levels by 48 h. In addition, Cdk 2 protein increased transiently 12-24h after PMSG. Cyclin E expression increased significantly by 12h but remained elevated through 48 h, and multiple isoforms of Cyclin E were observed with increased proliferation. Both Cdk 4 and Cdk 2 activity parallel protein expression, although, changes in Cdk 2 were more marked. Levels of mRNA for the cell cycle inhibitors p21CIP1 and p27KIP1 increased significantly by 48 h post-PMSG. These results demonstrate that PMSG-stimulated movement of granulosa cells across the G1/S boundary during follicle growth is transient. In addition, the control of granulosa cell proliferation may reside through the regulation of both Cdk 2 and Cdk 4.
Collapse
Affiliation(s)
- Jennifer D Cannon
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
12
|
Nechamen CA, Thomas RM, Dias JA. APPL1, APPL2, Akt2 and FOXO1a interact with FSHR in a potential signaling complex. Mol Cell Endocrinol 2007; 260-262:93-9. [PMID: 17030088 PMCID: PMC1782224 DOI: 10.1016/j.mce.2006.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 08/17/2006] [Indexed: 11/23/2022]
Abstract
A number of signaling proteins have been demonstrated to interact with follicle stimulating hormone (FSH) receptor (FSHR), including APPL1, 14-3-3tau and Akt2. To further define the repertoire of proteins involved in FSH-induced signal transduction, several signaling and adapter proteins were examined for the ability to associate with FSHR. This report shows that, in addition to APPL1, FSHR interacts with FOXO1a and APPL2. Moreover, APPL1 and APPL2 associate with one another via the N-terminus of APPL1, presumably via the Bin-Amphiphysin-Rvs (BAR) domain. The interactions between FSHR and APPL2 and between FSHR and FOXO1a evidently are distinct since FOXO1a does not associate with either APPL1 or with APPL2. Though APPL1 and APPL2 show some similarity in primary sequence, APPL1 associates with Akt2, whereas APPL2 does not. This is the first documented difference in function between APPL1 and APPL2. These results suggest that FSHR, APPL1, APPL2, Akt2 and FOXO1a are organized into distinct scaffolding networks in the cell. Accordingly, the spatial organization of signaling and adapter proteins with FSHR likely facilitates and finely regulates the signal transduction induced by FSH.
Collapse
Affiliation(s)
- Cheryl A. Nechamen
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12208
| | - Richard M. Thomas
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12208
| | - James A. Dias
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12208
- Department of Biomedical Sciences, State University of New York at Albany, Albany, New York
| |
Collapse
|
13
|
Bockstaele L, Coulonval K, Kooken H, Paternot S, Roger PP. Regulation of CDK4. Cell Div 2006; 1:25. [PMID: 17092340 PMCID: PMC1647274 DOI: 10.1186/1747-1028-1-25] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/08/2006] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase (CDK)4 is a master integrator that couples mitogenic and antimitogenic extracellular signals with the cell cycle. It is also crucial for many oncogenic transformation processes. In this overview, we address various molecular features of CDK4 activation that are critical but remain poorly known or debated, including the regulation of its association with D-type cyclins, its subcellular location, its activating Thr172-phosphorylation and the roles of Cip/Kip CDK "inhibitors" in these processes. We have recently identified the T-loop phosphorylation of CDK4, but not of CDK6, as a determining target for cell cycle control by extracellular factors, indicating that CDK4-activating kinase(s) might have to be reconsidered.
Collapse
Affiliation(s)
- Laurence Bockstaele
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Katia Coulonval
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hugues Kooken
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Sabine Paternot
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Pierre P Roger
- Institute of Interdisciplinary Research (IRIBHM), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| |
Collapse
|
14
|
Yang P, Roy SK. Transforming growth factor B1 stimulated DNA synthesis in the granulosa cells of preantral follicles: negative interaction with epidermal growth factor. Biol Reprod 2006; 75:140-8. [PMID: 16525033 PMCID: PMC1482803 DOI: 10.1095/biolreprod.105.050294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
EGF or TGFB1 alone stimulates but together attenuate granulosa cell DNA synthesis. Intact preantral follicles from hamsters were cultured with TGFB1, EGF, or both to reveal the mechanisms of such unique regulation. Follicular CCND2 (also known as cyclin D2), CDKN1B (also known as p27(kip1)), and the involvement of appropriate signaling intermediaries and kinases were examined. TGFB1, acting via SMAD2 and SMAD3, antagonized the degradation of CCND2 protein by blocking its phosphorylation. In contrast, TGFB1 supported CDKN1B degradation by involving MAPK14 (also known as p38 Map Kinase) and PKC, resulting in CDK4 activation and DNA synthesis. EGF via MAPK3/1 maintained functional levels of CCND2 through CCND2 synthesis as well as degradation. EGF and TGFB1 together inhibited CDK4 activation and DNA synthesis. EGF attenuated TGFB1 stimulated phosphorylation of SMAD3, TGFB1-induced activation of MAPK14 and PKC, and TGFB1 suppression of CCND2 degradation. In contrast, TGFB1 suppressed EGF-induced increase in CCND2 mRNA levels. The final outcome was CCND2 degradation without replenishment and decreased activities of MAPK14 and PKC leading to suppression of CDK4 activation. The results indicate that each growth factor involves a separate mechanism to maintain an effective level of CCND2 in granulosa cells for the activation of CDK4 and induction of DNA synthesis. However, their simultaneous action is inhibitory to follicular DNA synthesis because they counteract each other's activity by interfering at specific sites. Because both EGF and TGFB1 are present in granulosa cells, this mechanism may explain how their effects are temporally modulated for granulosa cell proliferation and folliculogenesis.
Collapse
Affiliation(s)
| | - Shyamal K. Roy
- Departments of Ob/GYN and
- Cellular and Integrative Physiology, University of Nebraska Medical center, 984515 Nebraska Medical Center, Omaha, NE 68198-4515
- Sent all correspondence to: Shyamal K. Roy, Ph. D., DRC 5013, Departments of Ob/GYN and Cellular and Integrative Physiology, University of Nebraska Medical Center, 984515 Nebraska Medical Center, Omaha, NE 68198-4515, Tel: 402-559-4515, Fax: 402-559-6164,
| |
Collapse
|
15
|
Yang P, Roy SK. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles: involvement of a protein kinase C-mediated MAP kinase 3/1 self-activation loop. Biol Reprod 2006; 75:149-57. [PMID: 16525034 PMCID: PMC1482802 DOI: 10.1095/biolreprod.105.050153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective was to reveal whether a protein kinase C (PKC [all isozymes])-mediated self-sustaining MAPK3/1 (3/1 extracellular signal regulated kinase 2/1, also known as ERK2/1) activation loop was necessary for FSH- or epidermal growth factor (EGF)-induced DNA synthesis in the granulosa cells of intact preantral follicles. For this purpose, hamster preantral follicles were cultured with FSH or EGF in the presence of selective kinase inhibitors FSH or EGF phosphorylated RAF1, MAP2K1, and MAPK3/1. However, a relatively higher dose of EGF was necessary to sustain the MAPK3/1 activity, which was essential for cyclin-dependent kinase 4 (CDK4) activation and DNA synthesis. In intact preantral follicles, FSH or EGF stimulated DNA synthesis only in the granulosa cells. Sustained activation of MAPK3/1 beyond 3 h was independent of EGFR kinase activity but dependent on PKC activity, which appeared to form a self-sustaining MAPK3/1 activation loop by activating RAF1, MAP2K1, and PLA2G4 (phospholipase A2 [all cytosolic isozymes]). Inhibition of PKC activity as late as 4 h after the administration of FSH or EGF arrested DNA synthesis, which corresponded with attenuated phosphorylation of RAF1 and MAPK3/1, thus suggesting an essential role of PKC in MAPK3/1 activation. Collectively, these data present a novel self-sustaining mechanism comprised of MAPK3/1, PLA2G4, PKC, and RAF1 for CDK4 activation leading to DNA synthesis in granulosa cells. Either FSH or EGF can activate the loop to activate CDK4 and initiate DNA synthesis; however, consistent with our previous findings, FSH effect seems to be mediated by EGF, which initiates the event by stimulating EGFR kinase.
Collapse
Affiliation(s)
- Peixin Yang
- Departments of Obstetrics and Gynecology, and Cellular and Integrative Physiology, University of Nebraska Medical Center, 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Shyamal K. Roy
- Send all correspondence to: Shyamal K. Roy, Ph. D., DRC5013, Departments of OB/GYN and Cellular and Integrative, Physiology, University of Nebraska Medical Center, 984515 Nebraska Medical Center, Omaha, NE 68198-4515, Tel: 402-559-6163, Fax: 402-559-6164, E-mail:
| |
Collapse
|