1
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
2
|
D’Occhio MJ, Campanile G, Baruselli PS, Porto Neto LR, Hayes BJ, Snr AC, Fortes MRS. Pleomorphic adenoma gene1 in reproduction and implication for embryonic survival in cattle: a review. J Anim Sci 2024; 102:skae103. [PMID: 38586898 PMCID: PMC11056886 DOI: 10.1093/jas/skae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
The pleomorphic adenoma gene1 (PLAG1) encodes a DNA-binding, C2H2 zinc-finger protein which acts as a transcription factor that regulates the expression of diverse genes across different organs and tissues; hence, the name pleomorphic. Rearrangements of the PLAG1 gene, and/or overexpression, are associated with benign tumors and cancers in a variety of tissues. This is best described for pleomorphic adenoma of the salivary glands in humans. The most notable expression of PLAG1 occurs during embryonic and fetal development, with lesser expression after birth. Evidence has accumulated of a role for PLAG1 protein in normal early embryonic development and placentation in mammals. PLAG1 protein influences the expression of the ike growth factor 2 (IGF2) gene and production of IGF2 protein. IGF2 is an important mitogen in ovarian follicles/oocytes, embryos, and fetuses. The PLAG1-IGF2 axis, therefore, provides one pathway whereby PLAG1 protein can influence embryonic survival and pregnancy. PLAG1 also influences over 1,000 other genes in embryos including those associated with ribosomal assembly and proteins. Brahman (Bos indicus) heifers homozygous for the PLAG1 variant, rs109815800 (G > T), show greater fertility than contemporary heifers with either one, or no copy, of the variant. Greater fertility in heifers homozygous for rs109815800 could be the result of early puberty and/or greater embryonic survival. The present review first looks at the broader roles of the PLAG1 gene and PLAG1 protein and then focuses on the emerging role of PLAG1/PLAG1 in embryonic development and pregnancy. A deeper understanding of factors which influence embryonic development is required for the next transformational increase in embryonic survival and successful pregnancy for both in vivo and in vitro derived embryos in cattle.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Faculty of Veterinary Medicine and Animal Science, Department of Animal Reproduction, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Alf Collins Snr
- CBV Brahman, Marlborough, Central Queensland, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Zhao X, Yan J, Chu H, Wu Z, Li W, Zhang Q, Zhang Y, Guo Y, Fan Z. The polymorphism of the ovine insulin like growth factor-2 (IGF2) gene and their associations with growth related traits in Tibetan sheep. Trop Anim Health Prod 2023; 56:19. [PMID: 38110604 DOI: 10.1007/s11250-023-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
In the current study, the role of the ovine IGF2 as a potential candidate gene was investigated as though marker-assisted selection in Chinese Tibetan sheep. The Sanger DNA sequencing method explored five single nucleotide polymorphisms (SNPs) in 5'UTR of the ovine IGF2 gene (C15640T, G15801A, G15870A, C15982G and G15991A) in Chinese Tibetan sheep. The frequencies of four SNPs were within the Hardy-Weinberg Equilibrium (chi-square test) except C15982G. The statistical analysis indicated that the C15640T and G15801A were significantly associated with body height, body length, chest circumference, and body weight (P < 0.05 or P < 0.01). Furthermore, C15982G variant exhibited significant correlation with the body weight (P < 0.01). These findings suggests that the promoter variants of IGF2 gene could be used as a candidate gene through marker-assisted selection for the body weight and body measurement traits in Tibetan sheep breeding program.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Jinyun Yan
- Gaoqing County Black Cattle Industry Development Center, Gaoqing County Bureau of Agriculture and Rural Affairs, Zibo, Shandong Province, 255000, People's Republic of China
| | - Hanping Chu
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Wendi Li
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Qing Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Yanmin Guo
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China.
| | - Zhaobin Fan
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China.
| |
Collapse
|
4
|
Zhang ZP, Zhang JT, Huang SC, He XY, Deng LX. Double sperm cloning (DSC) is a promising strategy in mammalian genetic engineering and stem cell research. Stem Cell Res Ther 2020; 11:388. [PMID: 32894201 PMCID: PMC7487873 DOI: 10.1186/s13287-020-01907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) derived from somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) are promising tools for meeting the personalized requirements of regenerative medicine. However, some obstacles need to be overcome before clinical trials can be undertaken. First, donor cells vary, and the reprogramming procedures are diverse, so standardization is a great obstacle regarding SCNT and iPSCs. Second, somatic cells derived from a patient may carry mitochondrial DNA mutations and exhibit telomere instability with aging or disease, and SCNT-ESCs and iPSCs retain the epigenetic memory or epigenetic modification errors. Third, reprogramming efficiency has remained low. Therefore, in addition to improving their success rate, other alternatives for producing ESCs should be explored. Producing androgenetic diploid embryos could be an outstanding strategy; androgenic diploid embryos are produced through double sperm cloning (DSC), in which two capacitated sperms (XY or XX, sorted by flow cytometer) are injected into a denucleated oocyte by intracytoplasmic sperm injection (ICSI) to reconstruct embryo and derive DSC-ESCs. This process could avoid some potential issues, such as mitochondrial interference, telomere shortening, and somatic epigenetic memory, all of which accompany somatic donor cells. Oocytes are naturally activated by sperm, which is unlike the artificial activation that occurs in SCNT. The procedure is simple and practical and can be easily standardized. In addition, DSC-ESCs can overcome ethical concerns and resolve immunological response matching with sperm providers. Certainly, some challenges must be faced regarding imprinted genes, epigenetics, X chromosome inactivation, and dosage compensation. In mice, DSC-ESCs have been produced and have shown excellent differentiation ability. Therefore, the many advantages of DSC make the study of this process worthwhile for regenerative medicine and animal breeding.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun-Tao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiu-Yuan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Li-Xin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Wang Y, Liu Q, Kang J, Zhang Y, Quan F. Overexpression of PGC7 in donor cells maintains the DNA methylation status of imprinted genes in goat embryos derived from somatic cell nuclear transfer technology. Theriogenology 2020; 151:86-94. [PMID: 32344274 DOI: 10.1016/j.theriogenology.2020.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 11/27/2022]
Abstract
Abnormal methylation of imprinted genes is commonly observed in the embryos cloned by somatic cell nuclear transfer (SCNT) procedure and is one of the primary reasons for their abnormal development and high mortality. Primordial germ cell 7 (PGC7), a developmentally regulated gene highly expressed in primordial germ cells, maintains the methylation level of imprinted genes by reducing the levels of 5-hydroxy-methylcytosine(5hmC) and increasing the levels of 5-methylcytosine(5 mC) during embryonic development. In this study, we explored the methylation status of H19 differentially methylated regions (DMRs) in the organs of SCNT-cloned goat fetuses. Our results showed abnormal methylation patterns of the imprinted genes in the lungs and placenta of dead cloned goat fetuses than those in normal goat fetuses. The Igf2r DMRs were hypomethylated in the heart, liver, spleen, lungs, kidneys, and placenta of dead cloned goat fetuses compared with normal goat fetuses (P < 0.05). In addition, imprinted gene Igf2r DMRs were hypomethylated in the early-stage SCNT embryos than the IVF embryos. In contrast, imprinted gene Xist DMRs were hypermethylated in SCNT embryos than the IVF embryos. Significantly, the use of PGC7 overexpressing donor cells corrected the abnormal methylation of imprinted genes Igf2r and Xist in SCNT embryos (P < 0.05). Our results suggested that PGC7 plays a vital role in maintaining the methylation of imprinted genes during goat early embryonic development. Moreover, PGC7 overexpression in donor cells may reduce the developmental abnormalities associated with the SCNT embryos, while significantly enhancing both the pregnancy and kids born rates (P < 0.05) thereby increasing SCNT efficiency in livestock.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Muhammad T, Li M, Wang J, Huang T, Zhao S, Zhao H, Liu H, Chen ZJ. Roles of insulin-like growth factor II in regulating female reproductive physiology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:849-865. [PMID: 32291558 DOI: 10.1007/s11427-019-1646-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
The number of growth factors involved in female fertility has been extensively studied, but reluctance to add essential growth factors in culture media has limited progress in optimizing embryonic growth and implantation outcomes, a situation that has ultimately led to reduced pregnancy outcomes. Insulin-like growth factor II (IGF-II) is the most intricately regulated of all known reproduction-related growth factors characterized to date, and is perhaps the predominant growth factor in human ovarian follicles. This review aims to concisely summarize what is known about the role of IGF-II in follicular development, oocyte maturation, embryonic development, implantation success, placentation, fetal growth, and in reducing placental cell apoptosis, as well as present strategies that use growth factors in culture systems to improve the developmental potential of oocytes and embryos in different species. Synthesizing the present knowledge about the physiological roles of IGF-II in follicular development, oocyte maturation, and early embryonic development should, on the one hand, deepen our overall understanding of the potential beneficial effects of growth factors in female reproduction and on the other hand support development (optimization) of improved outcomes for assisted reproductive technologies.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China. .,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.
| |
Collapse
|
7
|
A novel approach to differentiate rat embryonic stem cells in vitro reveals a role for RNF12 in activation of X chromosome inactivation. Sci Rep 2019; 9:6068. [PMID: 30988473 PMCID: PMC6465393 DOI: 10.1038/s41598-019-42246-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
X chromosome inactivation (XCI) is a mammalian specific, developmentally regulated process relying on several mechanisms including antisense transcription, non-coding RNA-mediated silencing, and recruitment of chromatin remodeling complexes. In vitro modeling of XCI, through differentiation of embryonic stem cells (ESCs), provides a powerful tool to study the dynamics of XCI, overcoming the need for embryos, and facilitating genetic modification of key regulatory players. However, to date, robust initiation of XCI in vitro has been mostly limited to mouse pluripotent stem cells. Here, we adapted existing protocols to establish a novel monolayer differentiation protocol for rat ESCs to study XCI. We show that differentiating rat ESCs properly downregulate pluripotency factor genes, and present female specific Xist RNA accumulation and silencing of X-linked genes. We also demonstrate that RNF12 seems to be an important player in regulation of initiation of XCI in rat, acting as an Xist activator. Our work provides the basis to investigate the mechanisms directing the XCI process in a model organism different from the mouse.
Collapse
|
8
|
Zhao X, Ruan Z, Qin X, Feng Y, Yu Q, Xu J, Deng Y, Shen P, Shi D, Lu F. The Role of 5-aza-2'-Deoxycytidine on Methylation Status of Xist Gene in Different Genders of Buffalo (Bubalus bubalis) Bone Marrow Mesenchymal Stem Cells. Cell Reprogram 2019; 21:89-98. [PMID: 30785778 DOI: 10.1089/cell.2018.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have demonstrated that proper concentration of 5-aza-2'-deoxycytidine (5-aza-CdR) treatment was advantageous to decrease DNA methylation level, but the relationships between 5-aza-CdR treatment and methylation status of imprinted genes are seldom detected. The aim of this study was to investigate the effect of low concentration 5-aza-CdR treatment on the methylation status of imprinted gene Xist in different genders of buffalo bone marrow mesenchymal stem cells (BMSCs). BMSCs were isolated and the cell gender was identified through polymerase chain reaction (PCR). Then different concentrations of 5-aza-CdR (0, 0.02, 0.1 μM) were applied for the treatment. The results showed cellular morphology, growth, Xist gene expression pattern, and adherent ability were not significantly affected with the treatment of 5-aza-CdR for 24 hours. Meanwhile, immunofluorescence analysis indicated that the expression of 5-methylcytosine (5-mC) was also not influenced after the treatment. However, bisulfite sequence PCR (BS-PCR) analysis revealed that the methylation level of Xist differentially methylated region (DMR) decreased significantly when the concentration of 5-aza-CdR increased to 0.1 μM in the ♀BMSCs group (p < 0.05), while there was no significant difference among the ♂BMSCs-treated groups. Our results implied that low concentrations of 5-aza-CdR treatment had little impacts on cellular morphology, growth Xist gene expression pattern, adherent ability, and global DNA methylation level of BMSCs in both genders, but the treatment could significantly decrease the methylation level of Xist DMR in ♀BMSCs. Thus, we conclude 5-aza-CdR treatment can affect the methylation status of Xist DMR, furthermore, the influence is also related to sex differences.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiling Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Penglei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Successful cloning of animals by somatic cell nuclear transfer (SCNT) requires epigenetic transcriptional reprogramming of the differentiated state of the donor cell nucleus to a totipotent embryonic ground state. It means that the donor nuclei must cease its own program of gene expression and restore a particular program of the embryonic genome expression regulation that is necessary for normal development. Transcriptional activity of somatic cell-derived nuclear genome during embryo pre- and postimplantation development as well as foetogenesis is correlated with the frequencies for spatial remodeling of chromatin architecture and reprogramming of cellular epigenetic memory. This former and this latter process include such covalent modifications as demethylation/re-methylation of DNA cytosine residues and acetylation/deacetylation as well as demethylation/re-methylation of lysine residues of nucleosomal core-derived histones H3 and H4. The main cause of low SCNT efficiency in mammals turns out to be an incomplete reprogramming of transcriptional activity for donor cell-descended genes. It has been ascertained that somatic cell nuclei should undergo the wide DNA cytosine residue demethylation changes throughout the early development of cloned embryos to reset their own overall epigenetic and parental genomic imprinting memories that have been established by re-methylation of the nuclear donor cell-inherited genome during specific pathways of somatic and germ cell lineage differentiation. A more extensive understanding of the molecular mechanisms and recognition of determinants for epigenetic transcriptional reprogrammability of somatic cell nuclear genome will be helpful to solve the problems resulting from unsatisfactory SCNT effectiveness and open new possibilities for common application of this technology in transgenic research focused on human biomedicine.
Collapse
|
10
|
Kikuchi K, Sasaki K, Akizawa H, Tsukahara H, Bai H, Takahashi M, Nambo Y, Hata H, Kawahara M. Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses. J Reprod Dev 2018; 64:57-64. [PMID: 29151450 PMCID: PMC5830359 DOI: 10.1262/jrd.2017-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and
3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The
complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did
not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and
analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which
caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was
found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal
development of mammals, including horses.
Collapse
Affiliation(s)
- Kohta Kikuchi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Keisuke Sasaki
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Present: Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hiroki Akizawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hayato Tsukahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Yasuo Nambo
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan.,Present: Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Hiroshi Hata
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido 060-0811, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| |
Collapse
|
11
|
Ruan Z, Zhao X, Qin X, Luo C, Liu X, Deng Y, Zhu P, Li Z, Huang B, Shi D, Lu F. DNA methylation and expression of imprinted genes are associated with the viability of different sexual cloned buffaloes. Reprod Domest Anim 2017; 53:203-212. [PMID: 29076549 DOI: 10.1111/rda.13093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023]
Abstract
The DNA methylation of imprinted genes is an important way to regulate epigenetic reprogramming of donor cells in somatic cell nuclear transfer (SCNT). However, the effects of sexual distinction on the DNA methylation of imprinted genes in cloned animals have seldom been reported. In this study, we analysed the DNA methylation status of three imprinted genes (Xist, IGF2 and H19) from liveborn cloned buffaloes (L group, three female and three male), stillborn cloned buffaloes (S group, three female and three male) and natural reproduction buffaloes (N group, three female and three male), using bisulphite sequencing polymerase chain reaction (BS-PCR). The expression levels of these imprinted genes were also investigated by quantitative real-time PCR (QRT-PCR). The DNA methylation levels of H19 were not significantly different among the groups. However, the Xist in female and IGF2 in male of the S group were found to be significantly hypomethylated in comparison with the same sexual buffaloes in L group and N group (p < .05). Furthermore, the expression levels of Xist, IGF2 and H19 in the stillborn female cloned buffaloes of S group were significantly higher than that of the female buffaloes in the L group and N group (p < .05). The expression levels of IGF2 and H19 in the stillborn male cloned buffaloes in the S group were significantly higher than that of the male buffaloes in the L group and N group (p < .05). These results indicate that Xist may be associated with the viability of female cloned buffaloes, and IGF2 may also be related to the viability of male cloned buffaloes.
Collapse
Affiliation(s)
- Z Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - C Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Y Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - P Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Z Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - D Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - F Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
12
|
Anckaert E, Fair T. DNA methylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models. Reprod Fertil Dev 2017; 27:739-54. [PMID: 25976160 DOI: 10.1071/rd14333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/01/2015] [Indexed: 12/24/2022] Open
Abstract
The use of assisted reproductive technology (ART) to overcome fertility problems has continued to increase since the birth of the first baby conceived by ART over 30 years ago. Similarly, embryo transfer is widely used as a mechanism to advance genetic gain in livestock. Despite repeated optimisation of ART treatments, pre- and postnatal outcomes remain compromised. Epigenetic mechanisms play a fundamental role in successful gametogenesis and development. The best studied of these is DNA methylation; the appropriate establishment of DNA methylation patterns in gametes and early embryos is essential for healthy development. Superovulation studies in the mouse indicate that specific ARTs are associated with normal imprinting establishment in oocytes, but abnormal imprinting maintenance in embryos. A similar limited impact of ART on oocytes has been reported in cattle, whereas the majority of embryo-focused studies have used cloned embryos, which do exhibit aberrant DNA methylation. The present review discusses the impact of ART on oocyte and embryo DNA methylation with regard to data available from mouse and bovine models.
Collapse
Affiliation(s)
- Ellen Anckaert
- Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Trudee Fair
- School of Agriculture and Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
14
|
Mendonça ADS, Guimarães ALS, da Silva NMA, Caetano AR, Dode MAN, Franco MM. Characterization of the IGF2 Imprinted Gene Methylation Status in Bovine Oocytes during Folliculogenesis. PLoS One 2015; 10:e0142072. [PMID: 26517264 PMCID: PMC4627647 DOI: 10.1371/journal.pone.0142072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/17/2015] [Indexed: 02/07/2023] Open
Abstract
DNA methylation reprogramming occurs during mammalian gametogenesis and embryogenesis. Sex-specific DNA methylation patterns at specific CpG islands controlling imprinted genes are acquired during this window of development. Characterization of the DNA methylation dynamics of imprinted genes acquired by oocytes during folliculogenesis is essential for understanding the physiological and genetic aspects of female gametogenesis and to determine the parameters for oocyte competence. This knowledge can be used to improve in vitro embryo production (IVP), specifically because oocyte competence is one of the most important aspects determining the success of IVP. Imprinted genes, such as IGF2, play important roles in embryo development, placentation and fetal growth. The aim of this study was to characterize the DNA methylation profile of the CpG island located in IGF2 exon 10 in oocytes during bovine folliculogenesis. The methylation percentages in oocytes from primordial follicles, final secondary follicles, small antral follicles, large antral follicles, MII oocytes and spermatozoa were 73.74 ± 2.88%, 58.70 ± 7.46%, 56.00 ± 5.58%, 65.77 ± 5.10%, 56.35 ± 7.45% and 96.04 ± 0.78%, respectively. Oocytes from primordial follicles showed fewer hypomethylated alleles (15.5%) than MII oocytes (34.6%) (p = 0.039); spermatozoa showed only hypermethylated alleles. Moreover, MII oocytes were less methylated than spermatozoa (p<0.001). Our results showed that the methylation pattern of this region behaves differently between mature oocytes and spermatozoa. However, while this region has a classical imprinted pattern in spermatozoa that is fully methylated, it was variable in mature oocytes, showing hypermethylated and hypomethylated alleles. Furthermore, our results suggest that this CpG island may have received precocious reprogramming, considering that the hypermethylated pattern was already found in growing oocytes from primordial follicles. These results may contribute to our understanding of the reprogramming of imprinted genes during bovine oogenesis.
Collapse
Affiliation(s)
- Anelise dos Santos Mendonça
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Luíza Silva Guimarães
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- School of Agriculture and Veterinary Medicine, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | | | - Margot Alves Nunes Dode
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- School of Agriculture and Veterinary Medicine, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
15
|
A comparative study on expression profile of developmentally important genes during pre-implantation stages in buffalo hand-made cloned embryos derived from adult fibroblasts and amniotic fluid derived stem cells. Cytotechnology 2015. [PMID: 26224482 DOI: 10.1007/s10616-015-9904-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abnormal gene expression in somatic cell nuclear transfer embryos due to aberrant epigenetic modifications of the donor nucleus may account for much of the observed diminished viability and developmental abnormalities. The present study compared the developmentally important gene expression pattern at 4-cell, 8- to 16-cell, morula, and blastocyst stages of buffalo nuclear transfer (NT) embryos from adult fibroblasts (AFs) and amniotic fluid stem cells (AFSCs). In vitro fertilized embryos were used as control embryos. Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling, and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), oxidative stress (MnSOD), metabolism (GLUT1) regulation were observed in cloned embryos. The expression of transcripts in AFSC-NT embryos more closely followed that of the in vitro fertilized embryos compared with AF-NT embryos. It is concluded that AFSCs with a relatively undifferentiated genome may serve as suitable donors which could be reprogrammed more efficiently to reactivate expression of early embryonic genes in buffalo NT.
Collapse
|
16
|
Couldrey C, Maclean P, Wells DN. Identification of Animals Produced by Somatic Cell Nuclear Transfer Using DNA Methylation in the Retrotransposon-Like 1 Promoter. Cell Reprogram 2014; 16:411-7. [DOI: 10.1089/cell.2014.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Paul Maclean
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - David N. Wells
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
17
|
Endocrine Profiles and Blood Chemistry Patterns of Cloned Miniature Pigs in the Post-Puberty Period. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
18
|
Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics 2014; 9:803-15. [PMID: 24709985 DOI: 10.4161/epi.28711] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders.
Collapse
Affiliation(s)
- Rodrigo Urrego
- Grupo CENTAURO; Universidad de Antioquia; Medellín, Colombia; Facultad de Medicina Veterinaria y Zootecnia; Grupo INCA-CES; Universidad CES; Medellín, Colombia
| | | | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Mariensee, Germany
| |
Collapse
|
19
|
Effects of a novel SNP of IGF2R gene on growth traits and expression rate of IGF2R and IGF2 genes in gluteus medius muscle of Egyptian buffalo. Gene 2014; 540:133-9. [PMID: 24613755 DOI: 10.1016/j.gene.2014.02.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/03/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor 2 receptor (IGF2R) is responsible for degradation of the muscle development initiator, IGF2, and thus it can be used as a marker for selection strategies in the farm animals. The aim of this study was to search for polymorphisms in three coding loci of IGF2R, and to analyze their effect on the growth traits and on the expression levels of IGF2R and IGF2 genes in the gluteus medius muscle of Egyptian buffaloes. A novel A266C SNP was detected in the coding sequences of the third IGF2R locus (at nucleotide number 51 of exon 23) among Egyptian water buffaloes. This SNP was non-synonymous mutation and led to replacement of Y (tyrosine) amino acid (aa) by D (aspartic acid) aa. Three different single-strand conformation polymorphism patterns were observed in the third IGF2R locus: AA, AC, and CC with frequencies of 0.555, 0.195, and 0.250, respectively. Statistical analysis showed that the homozygous AA genotype significantly associated with the average daily gain than AC and CC genotypes from birth to 9 mo of age. Expression analysis showed that the A266C SNP was correlated with IGF2, but not with IGF2R, mRNA levels in the gluteus medius muscle of Egyptian buffaloes. The highest IGF2 mRNA level was estimated in the muscle of animals with the AA homozygous genotype as compared to the AC heterozygotes and CC homozygotes. We conclude that A266C SNP at nucleotide number 51 of exon 23 of the IGF2R gene is associated with the ADG during the early stages of life (from birth to 9 mo of age) and this effect is accompanied by, and may be caused by, increased expression levels of the IGF2 gene.
Collapse
|
20
|
LONG CHARLESR, WESTHUSIN MARKE, GOLDING MICHAELC. Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 2014; 81:183-93. [PMID: 24167064 PMCID: PMC3953569 DOI: 10.1002/mrd.22271] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/20/2013] [Indexed: 12/11/2022]
Abstract
Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection.
Collapse
Affiliation(s)
- CHARLES R. LONG
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MARK E. WESTHUSIN
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MICHAEL C. GOLDING
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
21
|
Huang YZ, Zhan ZY, Li XY, Wu SR, Sun YJ, Xue J, Lan XY, Lei CZ, Zhang CL, Jia YT, Chen H. SNP and haplotype analysis reveal IGF2 variants associated with growth traits in Chinese Qinchuan cattle. Mol Biol Rep 2013; 41:591-8. [PMID: 24374893 DOI: 10.1007/s11033-013-2896-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor 2 (IGF2) is a potent cell growth and differentiation factor and is implicated in mammals' growth and development. The objective of this study was to evaluate the effects of the mutations in the bovine IGF2 with growth traits in Chinese Qinchuan cattle. Four single nucleotide polymorphisms (SNPs) were detected of the bovine IGF2 by DNA pool sequencing and forced polymerase chain reaction-restriction fragment length polymorphism (forced PCR-RFLP) methods. We also investigated haplotype structure and linkage disequilibrium (LD) coefficients for four SNPs in 817 individuals representing two main cattle breeds from China. The result of haplotype analysis showed eight different haplotypes and 27 combined genotypes within the study population. The statistical analyses indicated that the four SNPs, combined genotypes and haplotypes are associated with the withers height, body length, chest breadth, chest depth and body weight in Qinchuan cattle population (P < 0.05 or <0.01). The mutant-type variants and mutant haplotype (Hap 8: ATGG; likely to be the beneficial QTN allele) was superior for growth traits; the heterozygote diplotype was associated with higher growth traits compared to wild-type homozygote. Our results provide evidence that polymorphisms in the IGF2 gene are associated with growth traits, and may be used for marker-assisted selection in beef cattle breeding program.
Collapse
Affiliation(s)
- Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The mouse is the first species in which genomic imprinting was studied. Imprinting research in farm species has lagged behind owing to a lack of sequencing and genetic background information, as well as long generation intervals and high costs in tissue collection. Since the creation of Dolly, the first cloned mammal from an adult sheep, studies on genomic imprinting in domestic species have accelerated because animals from cloning and other assisted reproductive technologies exhibit phenotypes of imprinting disruptions. Although this review focuses on new developments in farm animals, most of the imprinting mechanism information was derived from the mouse.
Collapse
Affiliation(s)
- Xiuchun Cindy Tian
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut 06269-4163;
| |
Collapse
|
23
|
Franco MM, Fagundes NS, Michalczechen-Lacerda VA, Caixeta ES, de Castro Rodrigues F, Machado GM, Ferreira AR, Dode MAN. Characterisation of the methylation pattern in the intragenic CpG island of the IGF2 gene in Bos taurus indicus cumulus cells during in vitro maturation. J Assist Reprod Genet 2013; 31:115-20. [PMID: 24174298 DOI: 10.1007/s10815-013-0106-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/23/2013] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The aim of this study was to characterise the methylation pattern in a CpG island of the IGF2 gene in cumulus cells from 1-3 mm and ≥ 8.0 mm follicles and to evaluate the effects of in vitro maturation on this pattern. METHODS Genomic DNA was treatment with sodium bisulphite. Nested PCR using bisulphite-treated DNA was performed, and DNA methylation patterns have been characterised. RESULTS There were no differences in the methylation pattern among groups (P > 0.05). Cells of pre-IVM and post-IVM from small follicles showed methylation levels of 78.17 ± 14.11 % and 82.93±5.86 %, respectively, and those from large follicles showed methylation levels of 81.81 ± 10.40 % and 79.64 ± 13.04 %, respectively. Evaluating only the effect of in vitro maturation, cells of pre-IVM and post-IVM COCs showed methylation levels of 80.17 ± 12.01 % and 81.19 ± 10.15 %. CONCLUSIONS In conclusion, the methylation levels of the cumulus cells of all groups were higher than that expected from the imprinted pattern of somatic cells. As the cumulus cells from the pre-IVM follicles were not subjected to any in vitro manipulation, the hypermethylated pattern that was observed may be the actual physiological methylation pattern for this particular locus in these cells. Due the importance of DNA methylation in oogenesis, and to be a non-invasive method for determining oocyte quality, the identification of new epigenetic markers in cumulus cells has great potential to be used to support reproductive biotechniques in humans and other mammals.
Collapse
Affiliation(s)
- Maurício Machaim Franco
- Embrapa Genetic Research and Biotechnology, Laboratory of Animal Reproduction, Parque Estacão Biológica, W5 Norte Final, Brasília, 70770-917, DF, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shen CJ, Lin CC, Shen PC, Cheng WTK, Chen HL, Chang TC, Liu SS, Chen CM. Imprinted genes and satellite loci are differentially methylated in bovine somatic cell nuclear transfer clones. Cell Reprogram 2013; 15:413-24. [PMID: 23961768 DOI: 10.1089/cell.2013.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammals, genome-wide epigenetic reprogramming systems exist in primordial germ cells and zygotes. These reprogramming systems play crucial roles in regulating genome functions during critical stages of embryonic development, and they confer the stability of gene expression during mammalian development. The frequent unexpected loss of progeny from somatic cell nuclear transfer (SCNT) is an ongoing problem. In this study, we used six cloned bovines (named NT-1 to NT-6), which were created by ear fibroblast nuclear transfer and displayed short life spans with multiple organ defects, as an experimental model. We focus here on three imprinted genes (IGF2, H19, and XIST) and four satellite loci (Satellite I, Satellite II, Art2, and VNTR) to investigate their methylation changes. The results revealed that aberrant methylation frequently occurred in the analyzed imprinted genes, but not in the satellite loci, of the cloned bovines. After the bovine fibroblast cells were treated with the 5-aza-2(')-deoxycytidine (5-Aza-dc) demethylation agent, the methylation percentages of the XIST and H19 putative differentially methylated region (DMR) were significantly decreased (XIST, p<0.01; H19, p<0.05) followed by an increase in their mRNA expression levels (p<0.01). Furthermore, we found that five short-lived cloned bovines (NT-1 to NT-5) exhibited more severe aberrant methylation changes in the three imprinted genes examined than the little longer-lived clone (NT-6) compared with wild-type (WT) cows. Our data suggest that the reprogramming of the methylation-controlled regions between the imprinted genes and satellite loci are differences and may be involved with additional mechanisms that need further elucidation.
Collapse
Affiliation(s)
- Chih-Jie Shen
- 1 Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University , Taichung, 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang YZ, Wang J, Zhan ZY, Cao XK, Sun YJ, Lan XY, Lei CZ, Zhang CL, Chen H. Assessment of association between variants and haplotypes of the IGF2 gene in beef cattle. Gene 2013; 528:139-45. [PMID: 23900197 DOI: 10.1016/j.gene.2013.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/20/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation. The aim of this study was to examine the association of the IGF2 polymorphism with growth traits in beef cattle breed. Four single nucleotide polymorphisms (SNPs: 1-4) were identified in the bovine IGF2 by sequencing pooled DNA samples (Pool-Seq) and forced polymerase chain reaction-restriction fragment length polymorphism (Forced PCR-RFLP) methods. The result of haplotype analysis of four SNPs showed that eight haplotypes and eighteen combined genotypes were revealed, and the linkage disequilibrium and evolutionary relationship were assessed in 1522 individuals representing four purebred cattle breeds from China. The statistical analyses indicated that the 4 SNPs and 18 combined genotypes or haplotypes are associated with the body weight at 18 and 24 months in Jiaxian cattle population (P<0.05 or P<0.01). Our results provide evidence that polymorphisms in the IGF2 gene are associated with growth traits, and may be used for marker-assisted selection in beef cattle breeding program.
Collapse
Affiliation(s)
- Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gupta MK, Das ZC, Heo YT, Joo JY, Chung HJ, Song H, Kim JH, Kim NH, Lee HT, Ko DH, Uhm SJ. Transgenic chicken, mice, cattle, and pig embryos by somatic cell nuclear transfer into pig oocytes. Cell Reprogram 2013; 15:322-8. [PMID: 23808879 DOI: 10.1089/cell.2012.0074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study explored the possibility of producing transgenic cloned embryos by interspecies somatic cell nuclear transfer (iSCNT) of cattle, mice, and chicken donor cells into enucleated pig oocytes. Enhanced green florescent protein (EGFP)-expressing donor cells were used for the nuclear transfer. Results showed that the occurrence of first cleavage did not differ significantly when pig, cattle, mice, or chicken cells were used as donor nuclei (p>0.05). However, the rate of blastocyst formation was significantly higher in pig (14.9±2.1%; p<0.05) SCNT embryos than in cattle (6.3±2.5%), mice (4.2±1.4%), or chicken (5.1±2.4%) iSCNT embryos. The iSCNT embryos also contained a significantly less number of cells per blastocyst than those of SCNT pig embryos (p<0.05). All (100%) iSCNT embryos expressed the EGFP gene, as evidenced by the green florescence under ultraviolet (UV) illumination. Microinjection of purified mitochondria from cattle somatic cells into pig oocytes did not have any adverse effect on their postfertilization in vitro development and embryo quality (p>0.05). Moreover, NCSU23 medium, which was designed for in vitro culture of pig embryos, was able to support the in vitro development of cattle, mice, and chicken iSCNT embryos up to the blastocyst stage. Taken together, these data suggest that enucleated pig oocytes may be used as a universal cytoplast for production of transgenic cattle, mice, and chicken embryos by iSCNT. Furthermore, xenogenic transfer of mitochondria to the recipient cytoplast may not be the cause for poor embryonic development of cattle-pig iSCNT embryos.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 220-713, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang YZ, Zhan ZY, Sun YJ, Wang J, Li MX, Lan XY, Lei CZ, Zhang CL, Chen H. Comparative analysis of the IGF2 and ZBED6 gene variants and haplotypes reveals significant effect of growth traits in cattle. Genome 2013; 56:327-34. [DOI: 10.1139/gen-2013-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle growth is a complex phenomenon regulated by many factors, whereby net growth results from the combined action of synthesis and turnover. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation; Zinc finger, BED-type containing 6 (ZBED6) is a novel transcription factor that was identified and shown to act as a repressor of IGF2 transcription in skeletal muscle. In this study, a total of seven single nucleotide polymorphisms (SNPs) were identified, four SNPs in intron 8 of IGF2 and one promoter SNP and two missense mutations in the coding region of ZBED6, two of which were in complete linkage disequilibrium (LD) in the bovine IGF2. The 58 haplotypes were inferred in 1522 individuals representing four purebred cattle breeds from China. The seven SNPs, 79 and 66 combined diplotypes were revealed for association with body mass in Nanyang and Jiaxian cattle populations at five different ages (P < 0.05 or 0.01). The mutant-type variants and haplotype 58 (likely in LD with the beneficial quantitative trait nucleotide allele) was superior for body mass; the heterozygote diplotype of the most common haplotypes 58 was associated with higher body mass compared to either heterozygote or homozygote. The statistical analyses indicated that the mutant-type variants and haplotypes are significantly associated with body mass in study cattle populations at different ages. These data demonstrate that variants and haplotypes are associated with growth traits, and these results may provide important biological insights into the phenotypic differentiation that is associated with adaptation and specialization of cattle breeds.
Collapse
Affiliation(s)
- Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dupont C, Gribnau J. Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 2013; 25:314-21. [PMID: 23578369 DOI: 10.1016/j.ceb.2013.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Dosage compensation of X-linked gene products between the sexes in therians has culminated in the inactivation of one of the two X chromosomes in female cells. Over the years, the mouse has been the preferred animal model to study this X-chromosome inactivation (XCI) process in placental mammals (eutherians). Similar to the imprinted inactivation of the paternally inherited X chromosome (Xp) in marsupials (methatherians), the Xp is inactivated during early mouse development. In this eutherian model, cell derivatives of the primitive endoderm (PE) and trophectoderm (TE) will continue to display this imprinted form of XCI. Cells developing from the mouse epiblast will reactivate the Xp, and subsequently initiate XCI of either the Xp or the maternally inherited Xm, in a random manner. Examination of XCI in other eutherians and in metatherians, however, indicates clear differences in the form and timing of XCI. This review highlights and discusses imprinted and random XCI from such a comparative viewpoint.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3015GE Rotterdam, The Netherlands
| | | |
Collapse
|
29
|
Couldrey C, Wells DN. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer. PLoS One 2013; 8:e55153. [PMID: 23383311 PMCID: PMC3562336 DOI: 10.1371/journal.pone.0055153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022] Open
Abstract
Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a differentiated somatic cell is reset to a state resembling totipotency, the efficiency of SCNT is likely to remain low.
Collapse
Affiliation(s)
- Christine Couldrey
- Animal Productivity, AgResearch Ruakura Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
30
|
Olbromski R, Siadkowska E, Zelazowska B, Zwierzchowski L. Allelic gene expression imbalance of bovine IGF2, LEP and CCL2 genes in liver, kidney and pituitary. Mol Biol Rep 2012. [PMID: 23184004 PMCID: PMC3538019 DOI: 10.1007/s11033-012-2161-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allelic expression imbalance (AEI) is an important genetic factor being the cause of differences in phenotypic traits that can be heritable. Studying AEI can be useful in searching for factors that modulate gene expression and help to understand molecular mechanisms underlying phenotypic changes. Although it was commonly recognized in many species and we know many genes show allelic expression imbalance, this phenomena was not studied on a larger scale in cattle. Using the pyrosequencing method we analyzed a set of 29 bovine genes in order to find those that have preferential allelic expression. The study was conducted in three tissues: liver, pituitary and kindey. Out of the studied group of genes 3 of them—LEP (leptin), IGF2 (insulin-like growth factor 2), CCL2 (chemokine C–C motif ligand 2) showed allelic expression imbalance.
Collapse
Affiliation(s)
- R Olbromski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences (IGAB PAS), Jastrzębiec, 05-552, Magdalenka, Poland.
| | | | | | | |
Collapse
|
31
|
Zhao LX, Zhao GP, Guo RQ, Zhang D, Li XH, Zhou HM. DNA methylation status in tissues of sheep clones. Reprod Domest Anim 2011; 47:504-12. [PMID: 22039959 DOI: 10.1111/j.1439-0531.2011.01911.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genomic imprinting and DNA methylation play an important role in mammalian development. Many cloned animals showed heterogeneous DNA methylation profiles. However, there are fewer reports in cloned lambs because of a lack of genomic imprinting information. In this study, we investigated DNA methylation patterns in CpG islands and differentially methylated regions of putative imprinted gene Peg10 and imprinted genes Dlk1, Igf2R and H19 in cloned lambs. Five organs from two cloned lambs died shortly after birth and two normal controls were investigated. We observed normal DNA methylation profiles in cloned lambs. The imprinted genes Dlk1, Igf2R and H19 in livers, kidneys, hearts, muscles and lungs of the two cloned lambs exhibited relatively normal DNA methylation, except for Peg10 showing some differences between controls and cloned lambs. Our results indicate that somatic cell nuclear transfer-produced sheep exhibited relatively normal DNA methylation pattern and experienced normal DNA methylation reprogramming at imprinted loci.
Collapse
Affiliation(s)
- L X Zhao
- College of Bioengineering, Inner Mongolia Agricultural University, Hohhot, China
| | | | | | | | | | | |
Collapse
|
32
|
Pandey A, Gupta SC, Singh N, Rana JS, Gupta N. Efficiency of SCNT buffalo (Bubalus bubalis) embryos in different culture medium and analysis of mRNA expression of insulin-like growth factors during embryogenesis. Reprod Domest Anim 2011; 45:786-95. [PMID: 19392670 DOI: 10.1111/j.1439-0531.2009.01353.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth factors in culture media are known to affect the embryo production rates in in vitro production cultures. To improve the efficiency of somatic cell nuclear transfer (SCNT) derived embryos in Indian buffaloes (Bubalus bubalis), embryos were cultured in three different culture mediums viz. Group-A; TCM-199 + FBS, Group-B; TCM-199 + Poly vinyl alcohol (PVA) and Group-C; CR1aa + BSA. Embryo production rate and expression level of insulin-like growth factor genes (IGF-1, IGF-1R, IGF-2 and IGF-2R) were analysed in embryo culture. Cleavage and blastocyst production rates were 62.5% and 22.3% in Group-A, 53.8% and 13.0% in Group-B and 62.0% and 19.2% in Group-C respectively, whereas in in vitro fertilization (IVF) control cultured in TCM-199 plus 10% FBS, rates were 79.1% and 29.4%. Relative gene expression of SCNT embryos was compared with that in IVF control. IGF-1 and IGF-2 mRNA expression at blastocyst stage was up-regulated (p ≤ 0.05) in all culture groups, while IGF-1R and IGF-2R expression was down regulated (p ≤ 0.05) in Group-B and Group-C. In conclusion, the higher mRNA levels at certain stages in different culture conditions affected in vitro development of SCNT embryos. These results show that the transcript level of the insulin-like growth factor genes was significantly altered by in vitro culture condition. Culture medium TCM-199 with 10% FBS produced higher number of embryos and was able to co-op with gene expression of IVF control. Differences continue to be observed between SCNT cultured and IVF embryos, and until these differences are minimized, aberrations in SCNT embryonic development will continue to arise.
Collapse
Affiliation(s)
- A Pandey
- Transgenic Research Laboratory, National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | | | |
Collapse
|
33
|
Couldrey C, Wells DN, Lee RSF. DNA methylation patterns are appropriately established in the sperm of bulls generated by somatic cell nuclear transfer. Cell Reprogram 2011; 13:171-7. [PMID: 21473693 DOI: 10.1089/cell.2010.0065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cloning of animals by somatic cell nuclear transfer (SCNT) has the potential to allow rapid dissemination of desirable traits from elite animals. However, concern has been expressed that aberrant epigenetic marks in SCNT-derived animals may be passed onto the next generation, even though the offspring of clones appear to be mainly normal. Here, we compared the DNA methylation patterns at 10 genomic regions in sperm from SCNT bulls with that from normal, naturally conceived bulls and with the nuclear donor somatic cells. Eight of the 10 genomic regions were differentially methylated in sperm compared with the donor cell DNA. All three satellite sequences examined here were less methylated in sperm than in the donor cells, contradicting the belief that the sperm genome is always highly methylated. The DNA methylation patterns at all 10 regions were almost identical between SCNT and control sperm, with only one out of the 175 CpG sites/groups of sites examined showing significant difference. These results provide the first molecular evidence that the donor cell genome is correctly reprogrammed upon passage through the germ line in males, and that any epigenetic aberrations harbored by SCNT bulls are unlikely to be passed onto their offspring.
Collapse
|
34
|
Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. ACTA ACUST UNITED AC 2011; 91:682-92. [PMID: 21648055 DOI: 10.1002/bdra.20795] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 01/26/2011] [Indexed: 12/20/2022]
Abstract
Epigenetics, and in particular imprinted genes, have a critical role in the development and function of the placenta, which in turn has a central role in the regulation of fetal growth and development. A unique characteristic of imprinted genes is their expression from only one allele, maternal or paternal and dependent on parent of origin. This unique expression pattern may have arisen as a mechanism to control the flow of nutrients from the mother to the fetus, with maternally expressed imprinted genes reducing the flow of resources and paternally expressed genes increasing resources to the fetus. As a result, any epigenetic deregulation affecting this balance can result in fetal growth abnormalities. Imprinting-associated disorders in humans, such as Beckwith-Wiedemann and Angelman syndrome, support the role of imprinted genes in fetal growth. Similarly, assisted reproductive technologies in animals have been shown to affect the epigenome of the early embryo and the expression of imprinted genes. Their role in disorders such as intrauterine growth restriction appears to be more complex, in that imprinted gene expression can be seen as both causative and protective of fetal growth restriction. This protective or compensatory effect needs to be explored more fully.
Collapse
Affiliation(s)
- Jorge A Piedrahita
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
35
|
Al Nadaf S, Waters PD, Koina E, Deakin JE, Jordan KS, Graves JA. Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic. Genome Biol 2010; 11:R122. [PMID: 21182760 PMCID: PMC3046482 DOI: 10.1186/gb-2010-11-12-r122] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
Background X chromosome inactivation is a spectacular example of epigenetic silencing. In order to deduce how this complex system evolved, we examined X inactivation in a model marsupial, the tammar wallaby (Macropus eugenii). In marsupials, X inactivation is known to be paternal, incomplete and tissue-specific, and occurs in the absence of an XIST orthologue. Results We examined expression of X-borne genes using quantitative PCR, revealing a range of dosage compensation for different loci. To assess the frequency of 1X- or 2X-active fibroblasts, we investigated expression of 32 X-borne genes at the cellular level using RNA-FISH. In female fibroblasts, two-color RNA-FISH showed that genes were coordinately expressed from the same X (active X) in nuclei in which both loci were inactivated. However, loci on the other X escape inactivation independently, with each locus showing a characteristic frequency of 1X-active and 2X-active nuclei, equivalent to stochastic escape. We constructed an activity map of the tammar wallaby inactive X chromosome, which identified no relationship between gene location and extent of inactivation, nor any correlation with the presence or absence of a Y-borne paralog. Conclusions In the tammar wallaby, one X (presumed to be maternal) is expressed in all cells, but genes on the other (paternal) X escape inactivation independently and at characteristic frequencies. The paternal and incomplete X chromosome inactivation in marsupials, with stochastic escape, appears to be quite distinct from the X chromosome inactivation process in eutherians. We find no evidence for a polar spread of inactivation from an X inactivation center.
Collapse
Affiliation(s)
- Shafagh Al Nadaf
- Research School of Biology, The Australian National University, Biology Place, Canberra 0200, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Single nucleotide polymorphisms at the imprinted bovine insulin-like growth factor 2 (IGF2) locus are associated with dairy performance in Irish Holstein-Friesian cattle. J DAIRY RES 2010; 78:1-8. [PMID: 20822563 DOI: 10.1017/s0022029910000567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The imprinted insulin-like growth factor 2 gene (IGF2) encodes a fetal mitogenic hormone protein (IGF-II) and has previously been shown to be associated with performance in dairy cattle. In this study we assessed genotype-phenotype associations between four single nucleotide polymorphisms (SNPs) located within the bovine IGF2 locus on chromosome 29 and a range of performance traits related to milk production, animal growth and body size, fertility and progeny survival in 848 progeny-tested Irish Holstein-Friesian sires. Two of the four SNPs (rs42196909 and IGF2.g-3815A>G), which were in strong linkage disequilibrium (r2 = 0·995), were associated with milk yield (P ≤ 0·01) and milk protein yield (P ≤ 0·05); the rs42196901 SNP was also associated (P ≤ 0·05) with milk fat yield. Associations (P ≤ 0·05) with milk fat percentage and milk protein percentage were observed at the rs42196901 and IGF2.g-3815A>G SNPs, respectively. The rs42196909 and IGF2.g-3815A>G SNPs were also associated with progeny carcass conformation (P ≤ 0·05), while an association (P ≤ 0·01) with progeny carcass weight was observed at the rs42194733 SNP locus. None of the four SNPs were associated with body size, fertility and progeny survival. These findings support previous work which suggests that the IGF2 locus is an important biological regulator of milk production in dairy cattle and add to an accumulating body of research showing that imprinted genes influence many complex performance traits in cattle.
Collapse
|
37
|
Niemann H, Carnwath JW, Herrmann D, Wieczorek G, Lemme E, Lucas-Hahn A, Olek S. DNA methylation patterns reflect epigenetic reprogramming in bovine embryos. Cell Reprogram 2010; 12:33-42. [PMID: 20132011 DOI: 10.1089/cell.2009.0063] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To understand the epigenetic alterations associated with assisted reproduction technology (ART) and the reprogramming of gene expression that follows somatic cell nuclear transfer (SCNT), we screened a panel of 41 amplicons representing 25 developmentally important genes on 15 different chromosomes (a total of 1079 CpG sites). Methylation analysis was performed on DNA from pools of 80 blastocysts representing three classes of embryos. This revealed a subset of amplicons that distinguish between embryos developing in vivo, produced in vitro, or reconstructed by SCNT. Following SCNT, we observed massive epigenetic reprogramming evidenced by reduced levels of methylation in the resultant embryos. Analysis of data from the 28 most informative amplicons (hotspot loci), representing more than 523 individual CpG sites, we discovered subsets of amplicons with methylation patterns that were unique to each class of embryo and may indicate metastable epialleles. Analysis of eight genes with respect to mRNA expression did not reveal a direct correlation with DNA methylation levels. In conclusion, this approach revealed a subset of amplicons that can be used to evaluate blastocyst quality and reprogramming following SCNT, and can also be employed for the localization of the epigenetic control regions within individual genes and for more general studies of stem cell differentiation.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Couldrey C, Lee RS. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming. BMC DEVELOPMENTAL BIOLOGY 2010; 10:27. [PMID: 20205951 PMCID: PMC2848150 DOI: 10.1186/1471-213x-10-27] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 03/07/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI). RESULTS Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1) showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. CONCLUSION These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a good predictor of whether the foetus would develop to term or not.
Collapse
Affiliation(s)
- Christine Couldrey
- AgResearch, Reproductive Technologies Group, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand
| | | |
Collapse
|
39
|
Campos DB, Papa PC, Marques JEB, Garbelotti F, Fátima LA, Artoni LP, Birgel EH, Meirelles FV, Buratini J, Leiser R, Pfarrer C. Somatic cell nuclear transfer is associated with altered expression of angiogenic factor systems in bovine placentomes at term. GENETICS AND MOLECULAR RESEARCH 2010; 9:309-23. [PMID: 20198587 DOI: 10.4238/vol9-1gmr729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Low efficiency of somatic cell cloning by nuclear transfer has been associated with alterations of placental vascular architecture. Placental growth and function depend on the growth of blood vessels; VEGF-A and bFGF are the most important factors controlling neovascularization and vascular permeability in the placenta. We hypothesize that the VEGF-A and bFGF systems are disrupted in placentomes from cloned animals, contributing to the placental abnormalities that are common in these clones. We determined mRNA expression and protein tissue localization of VEGF-A, bFGF, and their receptors in placentomes from cloned and non-cloned bovine fetuses at term. Real-time RT-PCR revealed that VEGFR-2 mRNA was increased in cloned male-derived placentomes, while mRNA of bFGF and its receptors were decreased in placentomes of cloned females. VEGF-A system proteins were found to be located in placentomal endothelial, maternal and fetal epithelial and stromal cells; there was a variable pattern of cellular distribution of these proteins in both cloned and non-cloned animals. Alterations in the expression of VEGF-A and bFGF systems suggest that angiogenic factors are involved in abnormal placental development in cloned gestations, contributing to impaired fetal development and poor survival rates.
Collapse
Affiliation(s)
- D B Campos
- Departamento de Cirurgia, Setor de Anatomia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lelièvre JM, Le Bourhis D, Breton A, Hayes H, Servely JL, Vignon X. Heat-induced and spontaneous expression of Hsp70.1Luciferase transgene copies localized on Xp22 in female bovine cells. BMC Res Notes 2010; 3:17. [PMID: 20180997 PMCID: PMC2832894 DOI: 10.1186/1756-0500-3-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/22/2010] [Indexed: 12/03/2022] Open
Abstract
Background Expression of several copies of the heat-inducible Hsp70.1Luciferase (LUC) transgene inserted at a single X chromosome locus of a bull (Bos taurus) was assessed in females after X-chromosome inactivation (XCI). Furthermore, impact of the chromosomal environment on the spontaneous expression of these transgene copies before XCI was studied during early development in embryos obtained after in vitro fertilization (IVF), when the locus was carried by the X chromosome inherited from the bull, and after somatic cell nuclear transfer (SCNT) cloning, when the locus could be carried by the inactive Xi or the active Xa chromosome in a female donor cell, or by the (active) X in a male donor cell. Findings Transgene copies were mapped to bovine Xp22. In XXLUC female fibroblasts, i.e. after random XCI, the proportions of late-replicating inactive and early-replicating active XLUC chromosomes were not biased and the proportion of cells displaying an increase in the level of immunostained luciferase protein after heat-shock induction was similar to that in male fibroblasts. Spontaneous transgene expression occurred at the 8-16-cell stage both in transgenic (female) embryos obtained after IVF and in male and female embryos obtained after SCNT. Conclusions The XLUC chromosome is normally inactivated but at least part of the inactivated X-linked Hsp70.1Luciferase transgene copies remains heat-inducible after random XCI in somatic cells. Before XCI, the profile of the transgenes' spontaneous expression is independent of the epigenetic origin of the XLUC chromosome since it is similar in IVF female, SCNT male and SCNT female embryos.
Collapse
Affiliation(s)
- Jean-Marc Lelièvre
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France.
| | | | | | | | | | | |
Collapse
|
41
|
Kuznetsova IS, Noniashvili EM, Gavrilova EV, Dyban AP. Modifications in major satellite methylation in the nucleus of a two-cell mouse embryo with respect to developmental conditions. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Association of polymorphisms in exons 2 and 10 of the insulin-like growth factor 2 ( IGF2) gene with milk production traits in Polish Holstein-Friesian cattle. J DAIRY RES 2009; 77:37-42. [PMID: 19785908 DOI: 10.1017/s0022029909990197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor 2 (IGF2) is considered to be a regulator of post-natal growth and differentiation of the mammary gland. In the present work, associations of two single nucleotide polymorphisms in the bovine IGF2 gene with milk production traits were studied in dairy Holstein-Friesian cows: the already described g.8656C>T transition in exon 2 (RFLP-BsrI) and the newly found g.24507G>T transversion in exon 10 (RFLP-HaeIII), found by sequencing 273-bp exon 10 of the IGF2 gene in six individuals. Associations were analysed individually and in combination with the multi-trait repeatability test-day animal model. The CT/GT haplotype appeared to be associated with most of the milk traits studied (differences were significant at P < or = 0.001). The most frequent CT/GG haplotype seemed inferior to others in fat and protein content and daily yield of fat and protein but superior (together with the TT/GG genotype) when the daily milk yield is considered.
Collapse
|
43
|
Song BS, Lee SH, Kim SU, Kim JS, Park JS, Kim CH, Chang KT, Han YM, Lee KK, Lee DS, Koo DB. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells. BMC DEVELOPMENTAL BIOLOGY 2009; 9:44. [PMID: 19635167 PMCID: PMC2734572 DOI: 10.1186/1471-213x-9-44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/28/2009] [Indexed: 01/29/2023]
Abstract
Background Interspecies somatic cell nuclear transfer (iSCNT) has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF) and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB)-iSCNT, and bovine-bovine (BB)-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA) at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM), we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.
Collapse
Affiliation(s)
- Bong-Seok Song
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahangno, Yuseong-gu, Daejeon, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Qu L. Non-coding RNAs and the acquisition of genomic imprinting in mammals. ACTA ACUST UNITED AC 2009; 52:195-204. [PMID: 19294344 DOI: 10.1007/s11427-009-0035-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/24/2008] [Indexed: 12/16/2022]
Abstract
Genomic imprinting, representing parent-specific expression of alleles at a locus, is mainly evident in flowering plants and placental mammals. Most imprinted genes, including numerous non-coding RNAs, are located in clusters regulated by imprinting control regions (ICRs). The acquisition and evolution of genomic imprinting is among the most fundamental genetic questions. Discoveries about the transition of mammalian imprinted gene domains from their non-imprinted ancestors, especially recent studies undertaken on the most ancient mammalian clades - the marsupials and monotremes from which model species genomes have recently been sequenced, are of high value. By reviewing and analyzing these studies, a close connection between non-coding RNAs and the acquisition of genomic imprinting in mammals is demonstrated. The evidence comes from two observations accompanied with the acquisition of the imprinting: (i) many novel non-coding RNA genes emerged in imprinted regions; (ii) the expressions of some conserved non-coding RNAs have changed dramatically. Furthermore, a systematical analysis of imprinted snoRNA (small nucleolar RNA) genes from 15 vertebrates suggests that the origination of imprinted snoRNAs occurred after the divergence between eutherians and marsupials, followed by a rapid expansion leading to the fixation of major gene families in the eutherian ancestor prior to the radiation of modern placental mammals. Involved in the regulation of imprinted silencing and mediating the chromatins epigenetic modification may be the major roles that non-coding RNAs play during the acquisition of genomic imprinting in mammals.
Collapse
Affiliation(s)
- YiJun Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yan-Sen University, Guangzhou, 510275, China
| | | |
Collapse
|
45
|
Suzuki J, Therrien J, Filion F, Lefebvre R, Goff AK, Smith LC. In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC DEVELOPMENTAL BIOLOGY 2009; 9:9. [PMID: 19200381 PMCID: PMC2645379 DOI: 10.1186/1471-213x-9-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/06/2009] [Indexed: 11/10/2022]
Abstract
Background Embryo in vitro manipulations during early development are thought to increase mortality by altering the epigenetic regulation of some imprinted genes. Using a bovine interspecies model with a single nucleotide polymorphism, we assessed the imprinting status of the small nuclear ribonucleoprotein polypeptide N (SNRPN) gene in bovine embryos produced by artificial insemination (AI), in vitro culture (IVF) and somatic cell nuclear transfer (SCNT) and correlated allelic expression with the DNA methylation patterns of a differentially methylated region (DMR) located on the SNRPN promoter. Results In the AI group, SNRPN maternal expression is silenced at day 17 and 40 of development and a third of the alleles analyzed are methylated in the DMR. In the IVF group, maternal transcripts were identified at day 17 but methylation levels were similar to the AI group. However, day-40 fetuses in the IVF group showed significantly less methylation when compared to the AI group and SNRPN expression was mostly paternal in all fetal tissues studied, except in placenta. Finally, the SCNT group presented severe loss of DMR methylation in both day-17 embryos and 40 fetuses and biallelic expression was observed in all stages and tissues analyzed. Conclusion Together these results suggest that artificial reproductive techniques, such as prolonged in vitro culture and SCNT, lead to abnormal reprogramming of imprinting of SNRPN gene by altering methylation levels at this locus.
Collapse
Affiliation(s)
- Joao Suzuki
- Centre de recherche en reproduction animale, Faculty of veterinary medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Beyhan Z, Iager AE, Cibelli JB. Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell 2008; 1:502-12. [PMID: 18371390 DOI: 10.1016/j.stem.2007.10.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accessibility of human oocytes for research poses a serious ethical challenge to society. This fact categorically holds true when pursuing some of the most promising areas of research, such as somatic cell nuclear transfer and embryonic stem cell studies. One approach to overcoming this limitation is to use an oocyte from one species and a somatic cell from another. Recently, several attempts to capture the promises of this approach have met with varying success, ranging from establishing human embryonic stem cells to obtaining live offspring in animals. This review focuses on the challenges and opportunities presented by the formidable task of overcoming biological differences among species.
Collapse
Affiliation(s)
- Zeki Beyhan
- Cellular Reprogramming Laboratory, Department of Animal Science, Michigan State University, B270 Anthony Hall, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
48
|
Liu J, Liang X, Zhu J, Wei L, Hou Y, Chen DY, Sun QY. Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones. J Genet Genomics 2008; 35:559-68. [DOI: 10.1016/s1673-8527(08)60076-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/10/2008] [Accepted: 07/12/2008] [Indexed: 11/24/2022]
|
49
|
Hore TA, Deakin JE, Marshall Graves JA. The evolution of epigenetic regulators CTCF and BORIS/CTCFL in amniotes. PLoS Genet 2008; 4:e1000169. [PMID: 18769711 PMCID: PMC2515639 DOI: 10.1371/journal.pgen.1000169] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/15/2008] [Indexed: 11/19/2022] Open
Abstract
CTCF is an essential, ubiquitously expressed DNA-binding protein responsible for insulator function, nuclear architecture, and transcriptional control within vertebrates. The gene CTCF was proposed to have duplicated in early mammals, giving rise to a paralogue called "brother of regulator of imprinted sites" (BORIS or CTCFL) with DNA binding capabilities similar to CTCF, but testis-specific expression in humans and mice. CTCF and BORIS have opposite regulatory effects on human cancer-testis genes, the anti-apoptotic BAG1 gene, the insulin-like growth factor 2/H19 imprint control region (IGF2/H19 ICR), and show mutually exclusive expression in humans and mice, suggesting that they are antagonistic epigenetic regulators. We discovered orthologues of BORIS in at least two reptilian species and found traces of its sequence in the chicken genome, implying that the duplication giving rise to BORIS occurred much earlier than previously thought. We analysed the expression of CTCF and BORIS in a range of amniotes by conventional and quantitative PCR. BORIS, as well as CTCF, was found widely expressed in monotremes (platypus) and reptiles (bearded dragon), suggesting redundancy or cooperation between these genes in a common amniote ancestor. However, we discovered that BORIS expression was gonad-specific in marsupials (tammar wallaby) and eutherians (cattle), implying that a functional change occurred in BORIS during the early evolution of therian mammals. Since therians show imprinting of IGF2 but other vertebrate taxa do not, we speculate that CTCF and BORIS evolved specialised functions along with the evolution of imprinting at this and other loci, coinciding with the restriction of BORIS expression to the germline and potential antagonism with CTCF.
Collapse
Affiliation(s)
- Timothy A Hore
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
50
|
Chen J, Li D, Liu Y, Zhang C, Dai Y, Li S, Li N. DNA methylation status of H19 and Xist genes in lungs of somatic cell nuclear transfer bovines. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|