1
|
Ou K, Zhang S, Lei X, Liu X, Zhang N, Wang C, Yuan X. Prenatal exposure to environmentally relevant levels of PAHs inhibits spermatogenesis in adult mice and the mechanism involved. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124914. [PMID: 39245200 DOI: 10.1016/j.envpol.2024.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of contaminants that cannot be banned. Exposure to PAHs has been reported to alter spermatogenesis in mammals, but little is known about prenatal exposure to a mixture of PAHs on the reproductive toxicity of adult offspring. In this study, we investigated the associations between prenatal exposure to environmentally relevant levels of PAHs in mice and testicular dysfunction, including impaired spermatogenesis and steroid hormone dysfunction in male offspring on postnatal day 180. The percentage of testicular apoptotic cells was significantly increased, which was further verified by the up-regulated BAX protein. The expression of Ar and the Leydig cell marker Cyp11a1 was down-regulated, suggesting an impairment in the synthesis of steroid hormones. DNA hypermethylation of the Tnp1 and Sohlh2 promoters suppresses transcriptional expression, consequently altering the sperm production process. This study shows that prenatal exposure to PAHs may induce long-term reproductive toxicity.
Collapse
Affiliation(s)
- Kunlin Ou
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Siqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Xinxing Lei
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiao Liu
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Ningfang Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
2
|
Fujiwara Y, Hada M, Fukuda Y, Koga C, Inoue E, Okada Y. Isolation of stage-specific spermatogenic cells by dynamic histone incorporation and removal in spermatogenesis. Cytometry A 2024; 105:297-307. [PMID: 38087848 DOI: 10.1002/cyto.a.24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 04/19/2024]
Abstract
Due to the lack of an efficient in vitro spermatogenesis system, studies on mammalian spermatogenesis require the isolation of specific germ cell populations for further analyses. BSA gradient and elutriation have been used for several decades to purify testicular germ cells; more recently, flow cytometric cell sorting has become popular. Although each method has its advantages and disadvantages and is used depending on the purpose of the experiment, reliance on flow cytometric cell sorting is expected to be more prevalent because fewer cells can be managed. However, the currently used flow cytometric cell sorting method for testicular germ cells relies on karyotypic differences via DNA staining. Thus, it remains challenging to separate post-meiotic haploid cells (spermatids) according to their differentiation stage despite significant variations in morphology and chromatin state. In this study, we developed a method for finely separating testicular germ cells using VC mice carrying fluorescently tagged histones. This method enables the separation of spermatogonia, spermatocytes, and spermatids based on the intensity of histone fluorescence and cell size. Combined with a DNA staining dye, this method separates spermatids after elongation according to each spermiogenic stage. Although the necessity for a specific transgenic mouse line is less versatile, this method is expected to be helpful for the isolation of testicular germ cell populations because it is highly reproducible and independent of complex cell sorter settings and staining conditions.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masashi Hada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Fukuda
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Chizuko Koga
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Erina Inoue
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Okada
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Saharkhiz S, Abdolmaleki Z, Eslampour MA. Hyaluronic acid/silicon nanoparticle scaffold induces proliferation and differentiation of mouse spermatogonial stem cells transplanted to epididymal adipose tissue. Cell Tissue Bank 2024; 25:231-243. [PMID: 37676366 DOI: 10.1007/s10561-023-10093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/18/2023] [Indexed: 09/08/2023]
Abstract
Spermatogonia stem cells (SSCs) are a unique cell population maintaining male spermatogenesis during life, through their potential for proliferation and differentiation. The application of silicon nanoparticles (SNs) and hyaluronic acid (HA) to induce the differentiation of SSCs seems promising. Herein, we investigate the effect of SN and HA scaffolds on the progression of SSCs spermatogenesis in mice. Initially SSCs were isolated from healthy immature mice and cultured on prepared scaffolds (HA, SN, and HA/SN) in a 3D culture system. Then viability of SSCs cultured on scaffolds was examined using MTT assay and Acridine Orange staining. Then SSCs cultured on scaffolds were transplanted into epididymal adipose tissue (EAT) in mature mice and the result was studied by H&E and IHC staining 8 weeks after transplantation. MTT and Acridine Orange analysis revealed that among three different scaffolds HA/SN based scaffold causes considerable toxicity on SSCs (P < 0.05) while H&E staining showed that culture of SSCs on HA, SN, and HA/SN scaffolds has a positive effect on the progression of SSCs spermatogenesis after transplantation into EAT. IHC staining identified TP1, TEKT1, and PLZF as crucial biomarkers in the spermatogenesis development of SSCs transplanted to EAT. According to the presence of these biomarkers in different experimental groups, we found the most spermatogenesis development in SSCs cultured on HA/SN scaffold (PLZF, P < 0.01) (TEKT1, P < 0.01) (TP1, P < 0.001). Our study showed that, although the cytotoxic effect of the HA/SN scaffold decreases the viability rate of SSCs; however, SSCs that survive on HA/SN scaffold showed more ability to progress in spermatogenesis after transplantation into EAT.
Collapse
Affiliation(s)
- Saber Saharkhiz
- Department of cellular and Molecular medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Amin Eslampour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Ma S, Wang L, Li S, Zhao S, Li F, Li X. Transcriptome and proteome analyses reveal the mechanisms involved in polystyrene nanoplastics disrupt spermatogenesis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123086. [PMID: 38061432 DOI: 10.1016/j.envpol.2023.123086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Nanoplastics have been demonstrated to be reproductively toxic to mammals. However, the mechanisms of nanoplastics induce reproductive damage in mammals, especially their effects on spermatogenesis, remain elusive. Herein, we explored the effects and underlying mechanisms of polystyrene nanoplastics (PS-NPs) on the testicular development of male mice after 28 days of exposure, representing the first systematic study of PS-NPs-induced male reproductive injury by integrating histomorphology, transcriptomics and proteomics. PS-NPs decreased the sperm concentration, sperm motility, and disrupted the structure of the seminiferous tubules of the mice. Besides, transcriptome and proteome analyses revealed that PS-NPs disrupted spermatogenesis by inhibiting the transcription of Prm3/Tnp1/Aurkc/Mea1/Mettl14 and the expression of Pmfbp1/Ggn/Fsip2. Furthermore, PS-NPs enabled Hsd3b5 protein expression to reduce dihydrotestosterone levels, and affected sperm flagellar assembly by decreasing the expression of Dnah8/Tekt5/Rsph6a. Moreover, PS-NPs induced testicular cell apoptosis by up-regulating the expression of cathepsins (B/F/H). In addition, PS-NPs destroyed tight junctions by reducing the expression of the Claudin family (3/5/15). In conclusion, PS-NPs can disrupt spermatogenesis by altering the expression patterns of transcriptome and proteome, inducing testicular cell apoptosis and destroying tight junctions.
Collapse
Affiliation(s)
- Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Shurui Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Feiyu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China.
| |
Collapse
|
5
|
Bashghareh A, Rastegar T, Modarresi P, Kazemzadeh S, Salem M, Hedayatpour A. Recovering Spermatogenesis By Protected Cryopreservation Using Metformin and Transplanting Spermatogonial Stem Cells Into Testis in an Azoospermia Mouse Model. Biopreserv Biobank 2024; 22:68-81. [PMID: 37582284 DOI: 10.1089/bio.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Cryopreservation and transplantation of spermatogonial stem cells (SSCs) may serve as a new method to restore male fertility in patients undergoing chemotherapy or radiotherapy. However, SSCs may be damaged during cryopreservation due to the production of reactive oxygen species (ROS). Therefore, different antioxidants have been used as protective agents. Studies have shown that metformin (MET) has antioxidant activity. The aim of this study was to assess the antioxidant and antiapoptotic effects of MET in frozen-thawed SSCs. In addition, the effect of MET on the proliferation and differentiation of SSCs was evaluated. To this end, SSCs were isolated from mouse pups aged 3-6 days old, cultured, identified by flow cytometry (ID4, INTEGRIN β1+), and finally evaluated for survival and ROS rate. SSCs were transplanted after busulfan and cadmium treatment. Cryopreserved SSCs with and without MET were transplanted after 1 month of cryopreservation. Eight weeks after transplantation, the recipient testes were evaluated for the expression of apoptosis (BAX, BCL2), proliferation (PLZF), and differentiation (SCP3, TP1, TP2, PRM1) markers using immunohistochemistry, Western blot, and quantitative real-time polymerase chain reaction. The findings revealed that the survival rate of SSCs was higher in the 500 μm/mL MET group compared to the other groups (50 and 5000 μm/mL). MET significantly decreased the intracellular ROS production. Transplantation of SSCs increased the expression level of proliferation (PLZF) and differentiation (SCP3, TP1, TP2, PRM1) markers compared to azoospermia group, and their levels were significantly higher in the MET group compared to the cryopreservation group containing basic freezing medium (p < 0.05). MET increased the survival rate of SSCs, proliferation, and differentiation and decreased the ROS production and the apoptosis rate. Cryopreservation by MET seems to be effective in treating infertility.
Collapse
Affiliation(s)
- Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Modarresi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, Faculty of Medicine, Shoushtar University of Medical Sciences, Shoushtar, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Pardede BP, Karja NWK, Said S, Kaiin EM, Agil M, Sumantri C, Purwantara B, Supriatna I. Bovine nucleoprotein transitions genes and protein abundance as valuable markers of sperm motility and the correlation with fertility. Theriogenology 2024; 215:86-94. [PMID: 38016305 DOI: 10.1016/j.theriogenology.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Bovine nucleoprotein transitions (TNPs), specifically TNP1 and TNP2, are essential molecules in sperm nucleus rich in arginine and lysine. These molecules act in the phase between histone expulsion and before incorporation of protamine in the spermatid nucleus. Therefore, this study aimed to analyze genes and protein abundance of TNP1 and TNP2 in sperm to determine the potential as motility markers and correlation with fertility in the field. An objective evaluation method, CASA-Sperm Vision, was used to separate 22 bulls into two groups (mg-A and mg-B) based on their increasing motility. Sperm quality parameters were also examined including velocity, mitochondrial membrane potential (MMP) by the JC-1 method, head defects using William staining, and DNA fragmentation by Halomax. TNPs genes abundance was performed using the RT-qPCR method, and the protein abundance was examined with the EIA approach. The fertility rate was also analyzed based on the conception rate generated from each bull in the field, with the data obtained from iSIKHNAS. The results showed that TNPs genes and protein abundance were significantly higher (P < 0.05) in mg-A compared to mg-B, followed by various sperm quality parameters and fertility rates (P < 0.05). Positive correlations were found in TNPs genes and protein abundance with motility, velocity, MMP, and fertility (P < 0.01). Meanwhile, a negative correlation (P < 0.01) was found between head defects and DNA fragmentation. These results showed the potential of TNPs as sperm motility markers and bull fertility.
Collapse
Affiliation(s)
- Berlin Pandapotan Pardede
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia; Research Center for Applied Zoology, National Research, and Innovation Agency (BRIN), Bogor, West Java, Indonesia.
| | - Ni Wayan Kurniani Karja
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research, and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Ekayanti Mulyawati Kaiin
- Research Center for Applied Zoology, National Research, and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Muhammad Agil
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia.
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Indonesia
| | - Bambang Purwantara
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Iman Supriatna
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
7
|
Potgieter S, Eddy C, Badrinath A, Chukrallah L, Lo T, Mohanty G, Visconti PE, Snyder EM. ADAD1 is required for normal translation of nuclear pore and transport protein transcripts in spermatids of Mus musculus†. Biol Reprod 2023; 109:340-355. [PMID: 37399121 PMCID: PMC10502568 DOI: 10.1093/biolre/ioad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
ADAD1 is a testis-specific RNA-binding protein expressed in post-meiotic spermatids whose loss leads to defective sperm and male infertility. However, the drivers of the Adad1 phenotype remain unclear. Morphological and functional analysis of Adad1 mutant sperm showed defective DNA compaction, abnormal head shaping, and reduced motility. Mutant testes demonstrated minimal transcriptome changes; however, ribosome association of many transcripts was reduced, suggesting ADAD1 may be required for their translational activation. Further, immunofluorescence of proteins encoded by select transcripts showed delayed protein accumulation. Additional analyses demonstrated impaired subcellular localization of multiple proteins, suggesting protein transport is also abnormal in Adad1 mutants. To clarify the mechanism giving rise to this, the manchette, a protein transport microtubule network, and the LINC (linker of nucleoskeleton and cytoskeleton) complex, which connects the manchette to the nuclear lamin, were assessed across spermatid development. Proteins of both displayed delayed translation and/or localization in mutant spermatids implicating ADAD1 in their regulation, even in the absence of altered ribosome association. Finally, ADAD1's impact on the NPC (nuclear pore complex), a regulator of both the manchette and the LINC complex, was examined. Reduced ribosome association of NPC encoding transcripts and reduced NPC protein abundance along with abnormal localization in Adad1 mutants confirmed ADAD1's impact on translation is required for a NPC in post-meiotic germ cells. Together, these studies lead to a model whereby ADAD1's influence on nuclear transport leads to deregulation of the LINC complex and the manchette, ultimately generating the range of physiological defects observed in the Adad1 phenotype.
Collapse
Affiliation(s)
- Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Christopher Eddy
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aditi Badrinath
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lauren Chukrallah
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Toby Lo
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gayatri Mohanty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Liu J, Hermo L, Ding D, Wei C, Mann JM, Yan X, Melnick AF, Wu Y, Withrow A, Cibelli J, Hess RA, Chen C. SYPL1 defines a vesicular pathway essential for sperm cytoplasmic droplet formation and male fertility. Nat Commun 2023; 14:5113. [PMID: 37607933 PMCID: PMC10444883 DOI: 10.1038/s41467-023-40862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
The cytoplasmic droplet is a conserved dilated area of cytoplasm situated at the neck of the sperm flagellum. Viewed as residual cytoplasm inherited from late spermatids, the cytoplasmic droplet contains numerous saccular elements as its key content. However, the origin of these saccules and the function of the cytoplasmic droplet have long been speculative. Here, we identify the molecular origin of these cytoplasmic droplet components by uncovering a vesicle pathway essential for formation and sequestration of saccules within the cytoplasmic droplet. This process is governed by a transmembrane protein SYPL1 and its interaction with VAMP3. Genetic ablation of SYPL1 in mice reveals that SYPL1 dictates the formation and accumulation of saccular elements in the forming cytoplasmic droplet. Derived from the Golgi, SYPL1 vesicles are critical for segregation of key metabolic enzymes within the forming cytoplasmic droplet of late spermatids and epididymal sperm, which are required for sperm development and male fertility. Our results uncover a mechanism to actively form and segregate saccules within the cytoplasmic droplet to promote sperm fertility.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Deqiang Ding
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Wei
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jeffrey M Mann
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Xiaoyuan Yan
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Ashley F Melnick
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Yingjie Wu
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Alicia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, MI, USA
| | - Jose Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA.
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
9
|
Malla AB, Rainsford SR, Smith ZD, Lesch BJ. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement. Development 2023; 150:dev201497. [PMID: 37082969 PMCID: PMC10259660 DOI: 10.1242/dev.201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Unique chromatin remodeling factors orchestrate dramatic changes in nuclear morphology during differentiation of the mature sperm head. A crucial step in this process is histone-to-protamine exchange, which must be executed correctly to avoid sperm DNA damage, embryonic lethality and male sterility. Here, we define an essential role for the histone methyltransferase DOT1L in the histone-to-protamine transition. We show that DOT1L is abundantly expressed in mouse meiotic and postmeiotic germ cells, and that methylation of histone H3 lysine 79 (H3K79), the modification catalyzed by DOT1L, is enriched in developing spermatids in the initial stages of histone replacement. Elongating spermatids lacking DOT1L fail to fully replace histones and exhibit aberrant protamine recruitment, resulting in deformed sperm heads and male sterility. Loss of DOT1L results in transcriptional dysregulation coinciding with the onset of histone replacement and affecting genes required for histone-to-protamine exchange. DOT1L also deposits H3K79me2 and promotes accumulation of elongating RNA Polymerase II at the testis-specific bromodomain gene Brdt. Together, our results indicate that DOT1L is an important mediator of transcription during spermatid differentiation and an indispensable regulator of male fertility.
Collapse
Affiliation(s)
- Aushaq B. Malla
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Zachary D. Smith
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Lu Y, Nagamori I, Kobayashi H, Kojima-Kita K, Shirane K, Chang HY, Nishimura T, Koyano T, Yu Z, Castañeda JM, Matsuyama M, Kuramochi-Miyagawa S, Matzuk MM, Ikawa M. ADAD2 functions in spermiogenesis and piRNA biogenesis in mice. Andrology 2023; 11:698-709. [PMID: 36698249 PMCID: PMC10073342 DOI: 10.1111/andr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Adenosine deaminase domain containing 2 (ADAD2) is a testis-specific protein composed of a double-stranded RNA binding domain and a non-catalytic adenosine deaminase domain. A recent study showed that ADAD2 is indispensable for the male reproduction in mice. However, the detailed functions of ADAD2 remain elusive. OBJECTIVES This study aimed to investigate the cause of male sterility in Adad2 mutant mice and to understand the molecular functions of ADAD2. MATERIALS AND METHODS Adad2 homozygous mutant mouse lines, Adad2-/- and Adad2Δ/Δ , were generated by CRISPR/Cas9. Western blotting and immunohistochemistry were used to reveal the expression and subcellular localization of ADAD2. Co-immunoprecipitation tandem mass spectrometry was employed to determine the ADAD2-interacting proteins in mouse testes. RNA-sequencing analyses were carried out to analyze the transcriptome and PIWI-interacting RNA (piRNA) populations in wildtype and Adad2 mutant testes. RESULTS Adad2-/- and Adad2Δ/Δ mice exhibit male-specific sterility because of abnormal spermiogenesis. ADAD2 interacts with multiple RNA-binding proteins involved in piRNA biogenesis, including MILI, MIWI, RNF17, and YTHDC2. ADAD2 co-localizes and forms novel granules with RNF17 in spermatocytes. Ablation of ADAD2 impairs the formation of RNF17 granules, decreases the number of cluster-derived pachytene piRNAs, and increases expression of ping-pong-derived piRNAs. DISCUSSION AND CONCLUSION In collaboration with RNF17 and other RNA-binding proteins in spermatocytes, ADAD2 directly or indirectly functions in piRNA biogenesis.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Ippei Nagamori
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Kanako Kojima-Kita
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hsin-Yi Chang
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toru Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama 701-0202, Japan
| | - Zhifeng Yu
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Julio M. Castañeda
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama 701-0202, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Martin M. Matzuk
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
11
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
12
|
Liu S, Ma X, Wang Z, Lin F, Li M, Li Y, Yang L, Rushdi HE, Riaz H, Gao T, Yang L, Fu T, Deng T. MAEL gene contributes to bovine testicular development through the m5C-mediated splicing. iScience 2023; 26:105941. [PMID: 36711243 PMCID: PMC9876746 DOI: 10.1016/j.isci.2023.105941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Knowledge of RNA molecules regulating testicular development and spermatogenesis in bulls is essential for elite bull selection and an ideal breeding program. Herein, we performed direct RNA sequencing (DRS) to explore the functional characterization of RNA molecules produced in the testicles of 9 healthy Simmental bulls at three testicular development stages (prepuberty, puberty, and postpuberty). We identified 5,043 differentially expressed genes associated with testicular weight. These genes exhibited more alternative splicing at sexual maturity, particularly alternative 3' (A3) and 5' (A5) splice sites usage and exon skipping (SE). The expression of hub genes in testicular developmental stages was also affected by both m6A and m5C RNA modifications. We found m5C-mediated splicing events significantly (p < 0.05) increased MAEL gene expression at the isoform level, likely promoting spermatogenesis. Our findings highlight the complexity of RNA processing and expression as well as the regulation of transcripts involved in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Shenhe Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Zichen Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yali Li
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Liu Yang
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Hossam E. Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Punjab, Pakistan
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Liguo Yang
- China Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Corresponding author
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China,Corresponding author
| |
Collapse
|
13
|
Sakamoto M, Ito D, Inoue R, Wakayama S, Kikuchi Y, Yang L, Hayashi E, Emura R, Shiura H, Kohda T, Namekawa SH, Ishiuchi T, Wakayama T, Ooga M. Paternally inherited H3K27me3 affects chromatin accessibility in mouse embryos produced by round spermatid injection. Development 2022; 149:276384. [DOI: 10.1242/dev.200696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Daiyu Ito
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rei Inoue
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Yasuyuki Kikuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Li Yang
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Erika Hayashi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rina Emura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Hirosuke Shiura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Takashi Kohda
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Satoshi H. Namekawa
- University of California Davis 3 Department of Microbiology and Molecular Genetics , , Davis, CA 95616 , USA
| | - Takashi Ishiuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Masatoshi Ooga
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| |
Collapse
|
14
|
Cable DM, Murray E, Shanmugam V, Zhang S, Zou LS, Diao M, Chen H, Macosko EZ, Irizarry RA, Chen F. Cell type-specific inference of differential expression in spatial transcriptomics. Nat Methods 2022; 19:1076-1087. [PMID: 36050488 PMCID: PMC10463137 DOI: 10.1038/s41592-022-01575-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022]
Abstract
A central problem in spatial transcriptomics is detecting differentially expressed (DE) genes within cell types across tissue context. Challenges to learning DE include changing cell type composition across space and measurement pixels detecting transcripts from multiple cell types. Here, we introduce a statistical method, cell type-specific inference of differential expression (C-SIDE), that identifies cell type-specific DE in spatial transcriptomics, accounting for localization of other cell types. We model gene expression as an additive mixture across cell types of log-linear cell type-specific expression functions. C-SIDE's framework applies to many contexts: DE due to pathology, anatomical regions, cell-to-cell interactions and cellular microenvironment. Furthermore, C-SIDE enables statistical inference across multiple/replicates. Simulations and validation experiments on Slide-seq, MERFISH and Visium datasets demonstrate that C-SIDE accurately identifies DE with valid uncertainty quantification. Last, we apply C-SIDE to identify plaque-dependent immune activity in Alzheimer's disease and cellular interactions between tumor and immune cells. We distribute C-SIDE within the R package https://github.com/dmcable/spacexr .
Collapse
Affiliation(s)
- Dylan M Cable
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Evan Murray
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vignesh Shanmugam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Simon Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luli S Zou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard University, Boston, MA, USA
| | - Michael Diao
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Haiqi Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Rafael A Irizarry
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biostatistics, Harvard University, Boston, MA, USA.
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
15
|
Arévalo L, Merges GE, Schneider S, Oben FE, Neumann IS, Schorle H. Loss of the cleaved-protamine 2 domain leads to incomplete histone-to-protamine exchange and infertility in mice. PLoS Genet 2022; 18:e1010272. [PMID: 35763544 PMCID: PMC9273070 DOI: 10.1371/journal.pgen.1010272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/11/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Protamines are unique sperm-specific proteins that package and protect paternal chromatin until fertilization. A subset of mammalian species expresses two protamines (PRM1 and PRM2), while in others PRM1 is sufficient for sperm chromatin packaging. Alterations of the species-specific ratio between PRM1 and PRM2 are associated with infertility. Unlike PRM1, PRM2 is generated as a precursor protein consisting of a highly conserved N-terminal domain, termed cleaved PRM2 (cP2), which is consecutively trimmed off during chromatin condensation. The carboxyterminal part, called mature PRM2 (mP2), interacts with DNA and together with PRM1, mediates chromatin-hypercondensation. The removal of the cP2 domain is believed to be imperative for proper chromatin condensation, yet, the role of cP2 is not yet understood. We generated mice lacking the cP2 domain while the mP2 is still expressed. We show that the cP2 domain is indispensable for complete sperm chromatin protamination and male mouse fertility. cP2 deficient sperm show incomplete protamine incorporation and a severely altered protamine ratio, retention of transition proteins and aberrant retention of the testis specific histone variant H2A.L.2. During epididymal transit, cP2 deficient sperm seem to undergo ROS mediated degradation leading to complete DNA fragmentation. The cP2 domain therefore seems to be a key aspect in the complex crosstalk between histones, transition proteins and protamines during sperm chromatin condensation. Overall, we present the first step towards understanding the role of the cP2 domain in paternal chromatin packaging and open up avenues for further research. Protamines are small sperm-specific proteins crucial to packaging and protecting the paternal genome on its way to the fertilization site. Most mammalian species express only protamine 1. However, primates and rodents additionally express protamine 2. Protamine 2 differs mainly in its N-terminal domain (cP2), which is sequentially cleaved off during paternal chromatin packaging. Alteration in this process has been associated with infertility. However, the precise role of cP2 is still a mystery. We generated cP2 deficient mice and demonstrate, that loss of cP2 results in incomplete histone-to-protamine transition, resulting in sperm DNA degradation and infertility. Evidently, cP2 helps in orchestrating the fine-tuned dynamics of DNA-hypercondensation while protecting DNA integrity and aiding removal of DNA-bound transition proteins.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
- * E-mail: (LA); (HS)
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Franka Enow Oben
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Sophie Neumann
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
- * E-mail: (LA); (HS)
| |
Collapse
|
16
|
Citrylglutamate synthase deficient male mice are subfertile with impaired histone and transition protein 2 removal in late spermatids. Biochem J 2022; 479:953-972. [PMID: 35419597 DOI: 10.1042/bcj20210844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Chromatin remodelling in spermatids is an essential step in spermiogenesis and involves the exchange of most histones by protamines, which drives chromatin condensation in late spermatids. The gene Rimklb encodes a citrylglutamate synthase highly expressed in testes of vertebrates and the increase of its reaction product, β-citrylglutamate, correlates in time with the appearance of spermatids. Here we show that deficiency in a functional Rimklb gene leads to male subfertility, which could be partially rescued by in vitro fertilization. Rimklb-deficient mice are impaired in a late step of spermiogenesis and produce spermatozoa with abnormally shaped heads and nuclei. Sperm chromatin in Rimklb-deficient mice was less condensed and showed impaired histone to protamine exchange and retained transition protein 2. These observations suggest that citrylglutamate synthase, probably via its reaction product β-citrylglutamate, is essential for efficient chromatin remodelling during spermiogenesis and may be a possible candidate gene for male subfertility or infertility in humans.
Collapse
|
17
|
Peng Z, Yang Q, Yeerken R, Chen J, Liu X, Li X. Multi-omics analyses reveal the mechanisms of Arsenic-induced male reproductive toxicity in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127548. [PMID: 34741939 DOI: 10.1016/j.jhazmat.2021.127548] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As), a widespread environmental contaminant, can induce serious male reproductive injury; however, the underlying mechanisms remain unclear. Multi-omics analyses, including transcriptome, proteome, and phosphoproteome could promote our understanding of As-induced male reproductive toxicity. Here, we established the reproductive injured mice model by intraperitoneal injection of NaAsO2 (8 mg/kg body weight), which was validated by reduced reproductive cells, sperm motility, and litter size. The followed multi-omics analyses of mice revealed that As exposure inhibited ATP production by decreasing the expression of proteins HK1, and GAPDHS, and the enzymatic activities of PDH and SDH. The inhibition of mitochondrial activity and increase in HDAC2 and MTA3 dysregulated the lysine acetylation levels of histone and global proteins. Specifically, the downregulated histones H4K5ac and H4K12ac and upregulated histone H3K9ac disordered the distribution of TP1 to interfere with spermatogenesis. Moreover, As could reduce the expression of COL1A1, RAB13, and LSR to disrupt the junctions between seminiferous tubules, and thereinto, the inhibition of RAB13 increased PKA-dependent phosphorylation. Our study reveals that As causes male reproductive toxicity through decreasing energy production, altering histone acetylation, and impairing cell junctions. Our findings provide basic data for further studies on As reproductive toxicity.
Collapse
Affiliation(s)
- Zijun Peng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiangzhen Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ranna Yeerken
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Chen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xurui Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinhong Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Rezaei-Gazik M, Vargas A, Amiri-Yekta A, Vitte AL, Akbari A, Barral S, Esmaeili V, Chuffart F, Sadighi-Gilani MA, Couté Y, Eftekhari-Yazdi P, Khochbin S, Rousseaux S, Totonchi M. Direct visualization of pre-protamine 2 detects protamine assembly failures and predicts ICSI success. Mol Hum Reprod 2022; 28:6527641. [PMID: 35150275 DOI: 10.1093/molehr/gaac004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Histone-to-protamine transition is an essential step in the generation of fully functional spermatozoa in various mammalian species. In human and mouse, one of the two protamine-encoding genes produces a precursor pre-protamine 2 (pre-PRM2) protein, which is then processed and assembled. Here we design an original approach based on the generation of pre-PRM2-specific antibodies to visualize the unprocessed pre-PRM2 by microscopy, flow cytometry and immunoblotting. Using mouse models with characterized failures in histone-to-protamine replacement, we show that pre-Prm2 retention is tightly linked to nucleosome disassembly. Additionally, in elongating/condensing spermatids, we observe that pre-Prm2 and transition protein are co-expressed spatiotemporally, and their physical interaction suggests that these proteins act simultaneously rather than successively during histone replacement. By using our anti-human pre-PRM2 antibody we also measured pre-PRM2 retention rates in the spermatozoa from 49 men of a series of infertile couples undergoing ICSI, which shed new light on the debated relation between pre-PRM2 retention and sperm parameters. Finally, by monitoring 2-pronuclei (2PN) embryo formation following ICSI, we evaluated the fertilization ability of the sperm in these 49 patients. Our results suggest that the extent of pre-PRM2 retention in sperm, rather than pre-PRM2 accumulation per se, is associated with fertilization failure. Hence, anti-pre-PRM2/pre-Prm2 antibodies are valuable tools which could be used in routine monitoring of sperm parameters in fertility clinics, as well as in experimental research programmes to better understand the obscure process of histone-to-protamine transition.
Collapse
Affiliation(s)
- Maryam Rezaei-Gazik
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Alexandra Vargas
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Anne-Laure Vitte
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Arvand Akbari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Sophie Barral
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Florent Chuffart
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Mohammad Ali Sadighi-Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Yohann Couté
- Université Grenoble Alpes; Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, 38000, France
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Liu N, Qadri F, Busch H, Huegel S, Sihn G, Chuykin I, Hartmann E, Bader M, Rother F. Kpna6 deficiency causes infertility in male mice by disrupting spermatogenesis. Development 2021; 148:272018. [PMID: 34473250 PMCID: PMC8513612 DOI: 10.1242/dev.198374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Spermatogenesis is driven by an ordered series of events, which rely on trafficking of specific proteins between nucleus and cytoplasm. The karyopherin α family of proteins mediates movement of specific cargo proteins when bound to karyopherin β. Karyopherin α genes have distinct expression patterns in mouse testis, implying they may have unique roles during mammalian spermatogenesis. Here, we use a loss-of-function approach to determine specifically the role of Kpna6 in spermatogenesis and male fertility. We show that ablation of Kpna6 in male mice leads to infertility and has multiple cumulative effects on both germ cells and Sertoli cells. Kpna6-deficient mice exhibit impaired Sertoli cell function, including loss of Sertoli cells and a compromised nuclear localization of the androgen receptor. Furthermore, our data demonstrate devastating defects on spermiogenesis, including incomplete sperm maturation and a massive reduction in sperm number, accompanied by disturbed histone-protamine exchange, differential localization of the transcriptional regulator BRWD1 and altered expression of RFX2 target genes. Our work uncovers an essential role of Kpna6 in spermatogenesis and, hence, in male fertility. Summary: Two different mouse models delineate the morphological and functional impact of Kpna6 on spermatogenesis and Sertoli cell function and show that this protein is crucial for fertility in male mice.
Collapse
Affiliation(s)
- Na Liu
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | | | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Ilya Chuykin
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Enno Hartmann
- Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
20
|
Li JY, Liu YF, Xu HY, Zhang JY, Lv PP, Liu ME, Ying YY, Qian YQ, Li K, Li C, Huang Y, Xu GF, Ding GL, Mao YC, Xu CM, Liu XM, Sheng JZ, Zhang D, Huang HF. Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. J Mol Cell Biol 2021; 12:71-83. [PMID: 31065688 PMCID: PMC7052986 DOI: 10.1093/jmcb/mjz035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/19/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022] Open
Abstract
Basonuclin (BNC1) is expressed primarily in proliferative keratinocytes and gametogenic cells. However, its roles in spermatogenesis and testicular aging were not clear. Previously we discovered a heterozygous BNC1 truncation mutation in a premature ovarian insufficiency pedigree. In this study, we found that male mice carrying the truncation mutation exhibited progressively fertility loss and testicular premature aging. Genome-wide expression profiling and direct binding studies (by chromatin immunoprecipitation sequencing) with BNC1 in mouse testis identified several spermatogenesis-specific gene promoters targeted by BNC1 including kelch-like family member 10 (Klhl10), testis expressed 14 (Tex14), and spermatogenesis and centriole associated 1 (Spatc1). Moreover, biochemical analysis showed that BNC1 was associated with TATA-box binding protein-associated factor 7 like (TAF7L), a germ cell-specific paralogue of the transcription factor IID subunit TAF7, both in vitro and in testis, suggesting that BNC1 might directly cooperate with TAF7L to regulate spermatogenesis. The truncation mutation disabled nuclear translocation of the BNC1/TAF7L complex, thus, disturbing expression of related genes and leading to testicular premature aging. Similarly, expressions of BNC1, TAF7L, Y-box-binding protein 2 (YBX2), outer dense fiber of sperm tails 1 (ODF1), and glyceraldehyde-3-phosphate dehydrogenase, spermatogenic (GAPDHS) were significantly decreased in the testis of men with non-obstructive azoospermia. The present study adds to the understanding of the physiology of male reproductive aging and the mechanism of spermatogenic failure in infertile men.
Collapse
Affiliation(s)
- Jing-Yi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yi-Feng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jun-Yu Zhang
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ping-Ping Lv
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Miao-E Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yan-Yun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ye-Qing Qian
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Cheng Li
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Gu-Feng Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Guo-Lian Ding
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Chan Mao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chen-Ming Xu
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Mei Liu
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
21
|
Salian SR, Pandya RK, Laxminarayana SLK, Krishnamurthy H, Cheredath A, Tholeti P, Uppangala S, Kalthur G, Majumdar S, Schlatt S, Adiga SK. Impact of Temperature and Time Interval Prior to Immature Testicular-Tissue Organotypic Culture on Cellular Niche. Reprod Sci 2020; 28:2161-2173. [PMID: 33319342 PMCID: PMC8289760 DOI: 10.1007/s43032-020-00396-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Cryopreservation of immature-testicular-tissue (ITT) prior to gonadotoxic treatment, while experimental, is the only recommended option for fertility preservation in prepubertal boys. The handling and manipulation of ITT before cryopreservation could influence the functionality of cells during fertility restoration, which this study explored by evaluating cellular niche and quality of mouse ITT subjected to various temperatures and time durations in vitro. ITT from 6-day-old mice were handled at ultraprofound-hypothermic, profound-hypothermic, and mild-warm-ischemic temperatures for varying time periods prior to 14-day organotypic culture. Viability, functionality, synaptonemal complex and chromatin remodeling markers were assessed. Results have shown that cell viability, testosterone level, and in vitro proliferation ability did not change when ITT were held at ultraprofound-hypothermic-temperature up to 24 h, whereas cell viability was significantly reduced (P < 0.01), when held at profound-hypothermic-temperature for 24 h before culture. Further, cell viability and testosterone levels in cultured cells from profound-hypothermic group were comparable to corresponding ultraprofound-hypothermic group but with moderate reduction in postmeiotic cells (P < 0.01). In conclusion, holding ITT at ultraprofound-hypothermic-temperature is most suitable for organotypic culture, whereas short-term exposure at profound-hypothermic-temperature may compromise postmeiotic germ cell yield post in vitro culture. This data, albeit in mouse model, will have immense value in human prepubertal fertility restoration research.
Collapse
Affiliation(s)
- Sujith Raj Salian
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Riddhi Kirit Pandya
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | | | - Aswathi Cheredath
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Prathima Tholeti
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Subeer Majumdar
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Albert-Schweitzer Campus 11, 48149, Münster, Germany
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
22
|
Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020; 518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.
Collapse
Affiliation(s)
- Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N° 1 Est, L'Aigle, F-61300, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
23
|
Greither T, Schumacher J, Dejung M, Behre HM, Zischler H, Butter F, Herlyn H. Fertility Relevance Probability Analysis Shortlists Genetic Markers for Male Fertility Impairment. Cytogenet Genome Res 2020; 160:506-522. [PMID: 33238277 DOI: 10.1159/000511117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Impairment of male fertility is one of the major public health issues worldwide. Nevertheless, genetic causes of male sub- and infertility can often only be suspected due to the lack of reliable and easy-to-use routine tests. Yet, the development of a marker panel is complicated by the large quantity of potentially predictive markers. Actually, hundreds or even thousands of genes could have fertility relevance. Thus, a systematic method enabling a selection of the most predictive markers out of the many candidates is required. As a criterion for marker selection, we derived a gene-specific score, which we refer to as fertility relevance probability (FRP). For this purpose, we first categorized 2,753 testis-expressed genes as either candidate markers or non-candidates, according to phenotypes in male knockout mice. In a parallel approach, 2,502 genes were classified as candidate markers or non-candidates based on phenotypes in men. Subsequently, we conducted logistic regression analyses with evolutionary rates of genes (dN/dS), transcription levels in testis relative to other organs, and connectivity of the encoded proteins in a protein-protein interaction network as covariates. In confirmation of the procedure, FRP values showed the expected pattern, thus being overall higher in genes with known relevance for fertility than in their counterparts without corresponding evidence. In addition, higher FRP values corresponded with an increased dysregulation of protein abundance in spermatozoa of 37 men with normal and 38 men with impaired fertility. Present analyses resulted in a ranking of genes according to their probable predictive power as candidate markers for male fertility impairment. Thus, AKAP4, TNP1, DAZL, BRDT, DMRT1, SPO11, ZPBP, HORMAD1, and SMC1B are prime candidates toward a marker panel for male fertility impairment. Additional candidate markers are DDX4, SHCBP1L, CCDC155, ODF1, DMRTB1, ASZ1, BOLL, FKBP6, SLC25A31, PRSS21, and RNF17. FRP inference additionally provides clues for potential new markers, thereunder TEX37 and POU4F2. The results of our logistic regression analyses are freely available at the PreFer Genes website (https://prefer-genes.uni-mainz.de/).
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Schumacher
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mario Dejung
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hans Zischler
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB) Mainz, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany,
| |
Collapse
|
24
|
Devlin DJ, Nozawa K, Ikawa M, Matzuk MM. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol Reprod 2020; 103:205-222. [PMID: 32588889 PMCID: PMC7401401 DOI: 10.1093/biolre/ioaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Families with sequence similarity 170 members A and B (FAM170A and FAM170B) are testis-specific, paralogous proteins that share 31% amino acid identity and are conserved throughout mammals. While previous in vitro experiments suggested that FAM170B, an acrosome-localized protein, plays a role in the mouse sperm acrosome reaction and fertilization, the role of FAM170A in the testis has not been explored. In this study, we used CRISPR/Cas9 to generate null alleles for each gene, and homozygous null (-/-) male mice were mated to wild-type females for 6 months to assess fertility. Fam170b-/- males were found to produce normal litter sizes and had normal sperm counts, motility, and sperm morphology. In contrast, mating experiments revealed significantly reduced litter sizes and a reduced pregnancy rate from Fam170a-/- males compared with controls. Fam170a-/-;Fam170b-/- double knockout males also produced markedly reduced litter sizes, although not significantly different from Fam170a-/- alone, suggesting that Fam170b does not compensate for the absence of Fam170a. Fam170a-/- males exhibited abnormal spermiation, abnormal head morphology, and reduced progressive sperm motility. Thus, FAM170A has an important role in male fertility, as the loss of the protein leads to subfertility, while FAM170B is expendable. The molecular functions of FAM170A in spermatogenesis are as yet unknown; however, the protein localizes to the nucleus of elongating spermatids and may mediate its effects on spermatid head shaping and spermiation by regulating the expression of other genes. This work provides the first described role of FAM170A in reproduction and has implications for improving human male infertility diagnoses.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Toyko, Japan
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Torres-Flores U, Hernández-Hernández A. The Interplay Between Replacement and Retention of Histones in the Sperm Genome. Front Genet 2020; 11:780. [PMID: 32765595 PMCID: PMC7378789 DOI: 10.3389/fgene.2020.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
The genome of eukaryotes is highly organized within the cell nucleus, this organization per se elicits gene regulation and favors other mechanisms like cell memory throughout histones and their post-translational modifications. In highly specialized cells, like sperm, the genome is mostly organized by protamines, yet a significant portion of it remains organized by histones. This protamine-histone-DNA organization, known as sperm epigenome, is established during spermiogenesis. Specific histones and their post-translational modifications are retained at specific genomic sites and during embryo development these sites recapitulate their histone profile that harbored in the sperm nucleus. It is known that histones are the conduit of epigenetic memory from cell to cell, hence histones in the sperm epigenome may have a role in transmitting epigenetic memory from the sperm to the embryo. However, the exact function and mechanism of histone retention remains elusive. During spermatogenesis, most of the histones that organize the genome are replaced by protamines and their retention at specific regions may be deeply intertwined with the eviction and replacement mechanism. In this review we will cover some relevant aspects of histone replacement that in turn may help us to contextualize histone retention. In the end, we focus on the architectonical protein CTCF that is, so far, the only factor that has been directly linked to the histone retention process.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
26
|
Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S, Deemeh MR. Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia 2019; 52:e13463. [DOI: 10.1111/and.13463] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Peyman Salehi
- Infertility Center Shahid Beheshti Hospital Isfahan Iran
| | | | | | - Mohammad Reza Deemeh
- Andrology Department Nobel Laboratory Isfahan Iran
- Department of Clinical Biochemistry Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
27
|
Wang T, Gao H, Li W, Liu C. Essential Role of Histone Replacement and Modifications in Male Fertility. Front Genet 2019; 10:962. [PMID: 31649732 PMCID: PMC6792021 DOI: 10.3389/fgene.2019.00962] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Spermiogenesis is a complex cellular differentiation process that the germ cells undergo a distinct morphological change, and the protamines replace the core histones to facilitate chromatin compaction in the sperm head. Recent studies show the essential roles of epigenetic events during the histone-to-protamine transition. Defects in either the replacement or the modification of histones might cause male infertility with azoospermia, oligospermia or teratozoospermia. Here, we summarize recent advances in our knowledge of how epigenetic regulators, such as histone variants, histone modification and their related chromatin remodelers, facilitate the histone-to-protamine transition during spermiogenesis. Understanding the molecular mechanism underlying the modification and replacement of histones during spermiogenesis will enable the identification of epigenetic biomarkers of male infertility, and shed light on potential therapies for these patients in the future.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Phillips BT, Williams JG, Atchley DT, Xu X, Li JL, Adams AL, Johnson KL, Hall TMT. Mass spectrometric identification of candidate RNA-binding proteins associated with Transition Nuclear Protein mRNA in the mouse testis. Sci Rep 2019; 9:13618. [PMID: 31541158 PMCID: PMC6754440 DOI: 10.1038/s41598-019-50052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
Spermatogenesis is a differentiation process that requires dramatic changes to DNA architecture, a process governed in part by Transition Nuclear Proteins 1 and 2 (TNP1 and TNP2). Translation of Tnp1 and Tnp2 mRNAs is temporally disengaged from their transcription. We hypothesized that RNA regulatory proteins associate specifically with Tnp mRNAs to control the delayed timing of their translation. To identify potential regulatory proteins, we isolated endogenous mRNA/protein complexes from testis extract and identified by mass spectrometry proteins that associated with one or both Tnp transcripts. Five proteins showed strong association with Tnp transcripts but had low signal when Actin mRNA was isolated. We visualized the expression patterns in testis sections of the five proteins and found that each of the proteins was detected in germ cells at the appropriate stages to regulate Tnp RNA expression.
Collapse
Affiliation(s)
- Bart T Phillips
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Dustin T Atchley
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Xiaojiang Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jian-Liang Li
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrea L Adams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Katina L Johnson
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
29
|
The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019; 706:201-210. [DOI: 10.1016/j.gene.2019.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|
30
|
Ketchum CC, Larsen CD, McNeil A, Meyer-Ficca ML, Meyer RG. Early histone H4 acetylation during chromatin remodeling in equine spermatogenesis. Biol Reprod 2019; 98:115-129. [PMID: 29186293 DOI: 10.1093/biolre/iox159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin remodeling during spermatogenesis culminates in the exchange of nucleosomes for transition proteins and protamines as an important part of spermatid development to give rise to healthy sperm. Comparative immunofluorescence analyses of equine and murine testis histological sections were used to characterize nucleoprotein exchange in the stallion. Histone H4 hyperacetylation is considered a key event of histone removal during the nucleoprotein transition to a protamine-based sperm chromatin structure. In the stallion, but not the mouse, H4 was already highly acetylated in lysine residues K5, K8, and K12 in round spermatids almost immediately after meiotic division. Time courses of transition protein 1 (TP1), protamine 1, H2A histone family member Z (H2AFZ), and testis-specific histone H2B variant (TH2B) expression in stallion spermatogenesis were similar to the mouse where protamine 1 and TP1 were only expressed in elongating spermatids much later in spermatid development. The additional acetylation of H4 in K16 position (H4K16ac) was detected during a brief phase of spermatid elongation in both species, concomitant with the phosphorylation of the noncanonical histone variant H2AFX resulting from DNA strand break-mediated DNA relaxation. The results suggest that H4K16 acetylation, which is dependent on DNA damage signaling, may be more important for nucleosome replacement in spermiogenesis than indicated by data obtained in rodents and highlight the value of the stallion as an alternative animal model for investigating human spermatogenesis. A revised classification system of the equine spermatogenic cycle for simplified comparison with the mouse is proposed to this end.
Collapse
Affiliation(s)
- Chelsea C Ketchum
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA.,Utah Experimental Station, Utah State University, Logan, Utah, USA
| | - Casey D Larsen
- School of Veterinary Medicine (Washington-Idaho-Montana-Utah Regional Veterinary Medical Program, WIMU), Utah State University, Logan, Utah, USA
| | - Alexis McNeil
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA
| | - Mirella L Meyer-Ficca
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine (Washington-Idaho-Montana-Utah Regional Veterinary Medical Program, WIMU), Utah State University, Logan, Utah, USA
| | - Ralph G Meyer
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah Experimental Station, Utah State University, Logan, Utah, USA.,Utah Experimental Station, Utah State University, Logan, Utah, USA.,School of Veterinary Medicine (Washington-Idaho-Montana-Utah Regional Veterinary Medical Program, WIMU), Utah State University, Logan, Utah, USA
| |
Collapse
|
31
|
Ernst C, Eling N, Martinez-Jimenez CP, Marioni JC, Odom DT. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat Commun 2019; 10:1251. [PMID: 30890697 PMCID: PMC6424977 DOI: 10.1038/s41467-019-09182-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Male gametes are generated through a specialised differentiation pathway involving a series of developmental transitions that are poorly characterised at the molecular level. Here, we use droplet-based single-cell RNA-Sequencing to profile spermatogenesis in adult animals and at multiple stages during juvenile development. By exploiting the first wave of spermatogenesis, we both precisely stage germ cell development and enrich for rare somatic cell-types and spermatogonia. To capture the full complexity of spermatogenesis including cells that have low transcriptional activity, we apply a statistical tool that identifies previously uncharacterised populations of leptotene and zygotene spermatocytes. Focusing on post-meiotic events, we characterise the temporal dynamics of X chromosome re-activation and profile the associated chromatin state using CUT&RUN. This identifies a set of genes strongly repressed by H3K9me3 in spermatocytes, which then undergo extensive chromatin remodelling post-meiosis, thus acquiring an active chromatin state and spermatid-specific expression.
Collapse
Affiliation(s)
- Christina Ernst
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Nils Eling
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Celia P Martinez-Jimenez
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Wellcome Sanger Institute, Welcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Sanger Institute, Welcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Lin Z, Tong MH. m 6A mRNA modification regulates mammalian spermatogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:403-411. [PMID: 30391644 DOI: 10.1016/j.bbagrm.2018.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Mammalian spermatogenesis is a highly specialized differentiation process involving precise regulatory mechanisms at the transcriptional, posttranscriptional, and translational levels. Emerging evidence has shown that N6-methyladenosine (m6A), an epitranscriptomic regulator of gene expression, can influence pre-mRNA splicing, mRNA export, turnover, and translation, which are controlled in the male germline to ensure coordinated gene expression. In this review, we summarize the typical features of m6A RNA modification on mRNA during male germline development, and highlight the function of writers, erasers, and readers of m6A during mouse spermatogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
33
|
Wei YL, Yang WX. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene 2018; 660:28-40. [DOI: 10.1016/j.gene.2018.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
|
34
|
Hoghoughi N, Barral S, Vargas A, Rousseaux S, Khochbin S. Histone variants: essential actors in male genome programming. J Biochem 2018; 163:97-103. [PMID: 29165574 DOI: 10.1093/jb/mvx079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/13/2017] [Indexed: 02/03/2023] Open
Abstract
Prior to its transmission to the offspring, the male genome has to be tightly compacted. A genome-scale histone eviction and the subsequent repackaging of DNA by protamines (Prms) direct this essential genome condensation step. The requirement for male germ cells to undergo such a dramatic and unique genome reorganization explains why these cells express the largest number of histone variants, including many testis-specific ones. Indeed, an open chromatin, nucleosome instability and a facilitated process of histone disassembly are direct consequences of the presence of these histone variants in the chromatin of male germ cells. These histone-induced changes in chromatin first control a stage-specific gene expression program and then directly mediate the histone-to-Prm transition process. This review aims at summarizing and discussing a series of recent functional studies of male germ cell histone variants with a focus on their impact on the process of histone eviction and male genome compaction.
Collapse
Affiliation(s)
- Naghmeh Hoghoughi
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Sophie Barral
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Alexandra Vargas
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm, U1209, Université Grenoble Alpes, Institut Albert Bonniot, Grenoble F-38700, France
| |
Collapse
|
35
|
Alrahel A, Movahedin M, Mazaheri Z, Amidi F. Study of Tnp1, Tekt1, and Plzf Genes Expression During an in vitro Three-Dimensional Neonatal Male Mice Testis Culture. IRANIAN BIOMEDICAL JOURNAL 2018; 22:258-63. [PMID: 29397043 PMCID: PMC5949128 DOI: 10.22034/ibj.22.4.258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: In vitro spermatogenesis has a long research history beginning in the early 20th century. This organ culture method was therefore abandoned, and alternative cell culture methods were chosen by many researchers. Here, whether Tnp1, Tekt1, and Plzf, which play a crucial role in spermatogenesis, can be expressed during testis organ culture was assessed. Methods: Testes of 10 mouse pups were first removed, and the testis tissue was then separated into smaller pieces of seminiferous tubules. The size of the pieces was arbitrary; approximately 1 mg in weight or 1 mm3 in size when compacted. Afterwards, the testis tissue fragments (1–3) were transferred to the hexahedrons, incubated in a culture incubator and cultured for 12 weeks. Histological assessment and molecular evaluation were carried out at the end of the study. Results: The results showed that the expression of Tekt1 as a mitotic gene in mouse pups decreased significantly (p ≤ 0.05) in comparison to adult mouse testis. Meanwhile, the expression of Tnp1 as a meiotic gene increased significantly (p ≤ 0.05) as compared to neonate mouse testis at the beginning of the culture. The expression of Plzf showed no significant difference during the 12 weeks of culture (p ≥ 0.05). Based on histological study, different types of spermatocytes and post-meiotic stages of germ cells could not be detected. Conclusion: This kind of three-dimensional culture can induce expression of post-meiotic gene, Tnp1, but only at the molecular level and not beyond meiosis.
Collapse
Affiliation(s)
- Ahmad Alrahel
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohre Mazaheri
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fardin Amidi
- Anatomical Sciences Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Barral S, Morozumi Y, Hoghoughi N, Rousseaux S, Khochbin S. [The mystery of histone disappearance during spermatogenesis]. Med Sci (Paris) 2017; 33:588-590. [PMID: 28990555 DOI: 10.1051/medsci/20173306010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sophie Barral
- CNRS UMR 5309 ; Inserm, U1209 ; université Grenoble Alpes ; Institute for Advanced Biosciences, Grenoble, F-38700 France
| | - Yuichi Morozumi
- CNRS UMR 5309 ; Inserm, U1209 ; université Grenoble Alpes ; Institute for Advanced Biosciences, Grenoble, F-38700 France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309 ; Inserm, U1209 ; université Grenoble Alpes ; Institute for Advanced Biosciences, Grenoble, F-38700 France
| | - Sophie Rousseaux
- CNRS UMR 5309 ; Inserm, U1209 ; université Grenoble Alpes ; Institute for Advanced Biosciences, Grenoble, F-38700 France
| | - Saadi Khochbin
- CNRS UMR 5309 ; Inserm, U1209 ; université Grenoble Alpes ; Institute for Advanced Biosciences, Grenoble, F-38700 France
| |
Collapse
|
37
|
EPC1/TIP60-Mediated Histone Acetylation Facilitates Spermiogenesis in Mice. Mol Cell Biol 2017; 37:MCB.00082-17. [PMID: 28694333 DOI: 10.1128/mcb.00082-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
Global histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation-mediated histone replacement remains poorly understood. Here, we report that EPC1 and TIP60, two critical components of the mammalian nucleosome acetyltransferase of H4 (NuA4) complexes, are coexpressed in male germ cells. Strikingly, genetic ablation of either Epc1 or Tip60 disrupts hyperacetylation and impairs histone replacement, in turn causing aberrant spermatid development. Taking these observations together, we reveal an essential role of the NuA4 complexes for histone hyperacetylation and subsequent compaction of the spermatid genome.
Collapse
|
38
|
Low-dose tamoxifen treatment in juvenile males has long-term adverse effects on the reproductive system: implications for inducible transgenics. Sci Rep 2017; 7:8991. [PMID: 28827578 PMCID: PMC5566418 DOI: 10.1038/s41598-017-09016-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/17/2017] [Indexed: 11/08/2022] Open
Abstract
The tamoxifen-inducible Cre system is a popular transgenic method for controlling the induction of recombination by Cre at a specific time and in a specific cell type. However, tamoxifen is not an inert inducer of recombination, but an established endocrine disruptor with mixed agonist/antagonist activity acting via endogenous estrogen receptors. Such potentially confounding effects should be controlled for, but >40% of publications that have used tamoxifen to generate conditional knockouts have not reported even the minimum appropriate controls. To highlight the importance of this issue, the present study investigated the long-term impacts of different doses of a single systemic tamoxifen injection on the testis and the wider endocrine system. We found that a single dose of tamoxifen less than 10% of the mean dose used for recombination induction, caused adverse effects to the testis and to the reproductive endocrine system that persisted long-term. These data raise significant concerns about the widespread use of tamoxifen induction of recombination, and highlight the importance of including appropriate controls in all pathophysiological studies using this means of induction.
Collapse
|
39
|
Barral S, Morozumi Y, Tanaka H, Montellier E, Govin J, de Dieuleveult M, Charbonnier G, Couté Y, Puthier D, Buchou T, Boussouar F, Urahama T, Fenaille F, Curtet S, Héry P, Fernandez-Nunez N, Shiota H, Gérard M, Rousseaux S, Kurumizaka H, Khochbin S. Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells. Mol Cell 2017; 66:89-101.e8. [PMID: 28366643 DOI: 10.1016/j.molcel.2017.02.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 01/10/2023]
Abstract
Histone replacement by transition proteins (TPs) and protamines (Prms) constitutes an essential step for the successful production of functional male gametes, yet nothing is known on the underlying functional interplay between histones, TPs, and Prms. Here, by studying spermatogenesis in the absence of a spermatid-specific histone variant, H2A.L.2, we discover a fundamental mechanism involved in the transformation of nucleosomes into nucleoprotamines. H2A.L.2 is synthesized at the same time as TPs and enables their loading onto the nucleosomes. TPs do not displace histones but rather drive the recruitment and processing of Prms, which are themselves responsible for histone eviction. Altogether, the incorporation of H2A.L.2 initiates and orchestrates a series of successive transitional states that ultimately shift to the fully compacted genome of the mature spermatozoa. Hence, the current view of histone-to-nucleoprotamine transition should be revisited and include an additional step with H2A.L.2 assembly prior to the action of TPs and Prms.
Collapse
MESH Headings
- Animals
- COS Cells
- Chlorocebus aethiops
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Computational Biology
- Databases, Genetic
- Fertility
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Genome
- Histones/deficiency
- Histones/genetics
- Histones/metabolism
- Infertility, Male/genetics
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Infertility, Male/physiopathology
- Male
- Mice, 129 Strain
- Mice, Knockout
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Phenotype
- Protamines/metabolism
- Spermatogenesis/genetics
- Spermatozoa/metabolism
- Spermatozoa/pathology
- Transfection
Collapse
Affiliation(s)
- Sophie Barral
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Yuichi Morozumi
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France; Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroki Tanaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Emilie Montellier
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Jérôme Govin
- Université Grenoble Alpes, Inserm U1038, CEA, BIG-BGE, Grenoble 38000, France
| | - Maud de Dieuleveult
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Guillaume Charbonnier
- TGML, platform IbiSA, Aix Marseille Univ, Inserm U1090, TAGC, Marseille 13288, France
| | - Yohann Couté
- Université Grenoble Alpes, Inserm U1038, CEA, BIG-BGE, Grenoble 38000, France
| | - Denis Puthier
- TGML, platform IbiSA, Aix Marseille Univ, Inserm U1090, TAGC, Marseille 13288, France
| | - Thierry Buchou
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Fayçal Boussouar
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Takashi Urahama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - François Fenaille
- Laboratoire d'Etude du Métabolisme des Médicaments, DSV/iBiTec-S/SPI, CEA Saclay, Gif-sur-Yvette 91191 Cedex, France
| | - Sandrine Curtet
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Patrick Héry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | | | - Hitoshi Shiota
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Matthieu Gérard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Research Institute for Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38700, France.
| |
Collapse
|
40
|
Tarapore P, Hennessy M, Song D, Ying J, Ouyang B, Govindarajah V, Leung YK, Ho SM. High butter-fat diet and bisphenol A additively impair male rat spermatogenesis. Reprod Toxicol 2017; 68:191-199. [PMID: 27658648 PMCID: PMC5357593 DOI: 10.1016/j.reprotox.2016.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022]
Abstract
Exposure to xenoestrogens is a probable cause of male infertility in humans. Consumption of high-fat diets and exposure to bisphenol A (BPA) is pervasive in America. Here, we test the hypothesis that gestational exposure to high dietary fats and/or BPA disrupt spermatogenesis in adulthood. Sprague-Dawley rats were fed diets containing 10kcal% butter fat (AIN), 39kcal% butter fat (HFB), or 39kcal% olive oil (HFO), with or without BPA (25μg/kg body weight/day) during pregnancy. One group of male offspring received testosterone (T)- and estradiol-17β (E2)-filled implants or sham-implants from postnatal day (PND)70-210. Another group was naturally aged to 18 months. We found that adult males with gestational exposure to BPA, HFB, or HFB+BPA, in both the aged group and the T+E2-implanted group, exhibited impairment of spermatogenesis. In contrast, gestational exposure to HFO or HFO+BPA did not affect spermatogenesis. Sham-implanted, gestational exposed groups also had normal spermatogenesis. Loss of ERα expression in round spermatids and premature expression of protamine-1 in diplotene spermatocytes were features associated with impaired spermatogenesis. Compared with the single-treatment groups, the HFB+BPA group experienced more severe effects, including atrophy.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA; Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Cancer Center, Cincinnati, OH, USA.
| | - Max Hennessy
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Dan Song
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Jun Ying
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA; Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Bin Ouyang
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA; Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Vinothini Govindarajah
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA; Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA; Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA; Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Cancer Center, Cincinnati, OH, USA; Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
41
|
Pothana L, Devi L, Goel S. Cryopreservation of adult cervid testes. Cryobiology 2017; 74:103-109. [DOI: 10.1016/j.cryobiol.2016.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/21/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
|
42
|
Champroux A, Torres-Carreira J, Gharagozloo P, Drevet JR, Kocer A. Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 2016; 26:17. [PMID: 28031843 PMCID: PMC5175393 DOI: 10.1186/s12610-016-0044-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/12/2016] [Indexed: 01/07/2023] Open
Abstract
Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm chromatin structure. It is now well documented that DNA damage in sperm is linked to reproductive failures both in natural and assisted conception (Assisted Reproductive Technologies [ART]). This manuscript reviews recent important findings concerning - the unusual organization of mammalian sperm chromatin and its impact on reproductive success when modified. This review is focused on sperm chromatin damage and their impact on embryonic development and transgenerational inheritance.
Collapse
Affiliation(s)
- A. Champroux
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - J. Torres-Carreira
- Centro Universitário Rio Preto, UNIRP, Rodovia Br153, Km 69, CEP15093-450 São José do Rio Preto, São Paulo Brazil
| | - P. Gharagozloo
- CellOxess LLC, 830 Bear Tavern Road, Ewing, NJ 08628 USA
| | - J. R. Drevet
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - A. Kocer
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| |
Collapse
|
43
|
Zhang Z, Li W, Zhang Y, Zhang L, Teves ME, Liu H, Strauss JF, Pazour GJ, Foster JA, Hess RA, Zhang Z. Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice. Mol Biol Cell 2016; 27:mbc.E16-05-0318. [PMID: 27682589 PMCID: PMC5170554 DOI: 10.1091/mbc.e16-05-0318] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved mechanism thought to be essential for the assembly and maintenance of cilia and flagella. However, little is known about its role in mammalian sperm flagella formation. To fill this gap, we disrupted the Ift20 gene in male germ cells. Homozygous mutant mice were infertile with significantly reduced sperm counts and motility. In addition, abnormally shaped elongating spermatid heads and bulbous round spermatids were found in the lumen of the seminiferous tubules. Electron microscopy revealed increased cytoplasmic vesicles, fiber-like structures, abnormal accumulation of mitochondria and a decrease in mature lysosomes. The few developed sperm had disrupted axonemes and some retained cytoplasmic lobe components on the flagella. ODF2 and SPAG16L, two sperm flagella proteins failed to be incorporated into sperm tails of the mutant mice, and in the germ cells, both were assembled into complexes with lighter density in the absence of IFT20. Disrupting IFT20 did not significantly change expression levels of IFT88, a component of IFT-B complex, and IFT140, a component of IFT-A complex. Even though the expression level of an autophagy core protein that associates with IFT20, ATG16, was reduced in the testis of the Ift20 mutant mice, expression levels of other major autophagy markers, including LC3 and ubiquitin were not changed. Our studies suggest that IFT20 is essential for male fertility and spermiogenesis in mice, and its major function is to transport cargo proteins for sperm flagella formation. It also appears to be involved in removing excess cytoplasmic components.
Collapse
Affiliation(s)
- Zhengang Zhang
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030 Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Yong Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Hong Liu
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - James A Foster
- Department of Biology, Randolph-Macon College, Ashland, VA 23005
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802-6199
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| |
Collapse
|
44
|
Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 2016; 151:R55-70. [PMID: 26850883 DOI: 10.1530/rep-15-0562] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then by protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. Although early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we discuss recent advances in our understanding of how epigenetic players, such as histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| |
Collapse
|
45
|
Carreira J, Trevizan J, Kipper B, Perri S, Carvalho I, Rodrigues L, Silva C, Koivisto M. Impaired protamination and sperm DNA damage in a Nellore bull with high percentages of morphological sperm defects in comparison to normospermic bulls. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-7046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The routine semen evaluation assessing sperm concentration, motility and morphology, does not identify subtle defects in sperm chromatin architecture. Bulls appear to have stable chromatin, with low levels of DNA fragmentation. However, the nature of fragmentation and its impact on fertility remain unclear and there are no detailed reports characterizing the DNA organization and damage in this species. The intensive genetic selection, the use of artificial insemination and in vitro embryo production associated to the cryopreservation process can contribute to the chromatin damage and highlights the importance of sperm DNA integrity for the success of these technologies. Frozen-thawed semen samples from three ejaculates from a Nellore bull showed high levels of morphological sperm abnormalities (55.8±5.1%), and were selected for complementary tests. Damage of acrosomal (76.9±8.9%) and plasma membranes (75.7±9.3%) as well as sperm DNA strand breaks (13.8±9.5%) and protamination deficiency (3.7±0.6%) were significantly higher compared to the values measured in the semen of five Nellore bulls with normospermia (24.3±3.3%; 24.5±6.1%; 0.6±0.5%; 0.4±0.6% for acrosome, plasma membrane, DNA breaks and protamine deficiency, respectively) (P<0.05). Motility and percentage of spermatozoa with low mitochondrial potential showed no differences between groups. This study shows how routine semen analyses (in this case morphology) may point to the length and complexity of sperm cell damage emphasizing the importance of sperm function testing.
Collapse
|
46
|
Makala H, Pothana L, Sonam S, Malla A, Goel S. Regeneration of Leydig cells in ectopically autografted adult mouse testes. Reproduction 2015; 149:259-68. [DOI: 10.1530/rep-14-0576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ectopic autografting of testis tissue is a promising approach for studying testicular development, male germline preservation and restoration of male fertility. In this study, we examined the fate of various testicular cells in adult mouse testes following ectopic autografting at 1, 2, 4 and 8 weeks post grafting. Histological examination showed no evidence of re-establishment of spermatogenesis in autografts, and progressive degeneration of seminiferous tubules was detected. Expression of germ cell-specific proteins such as POU5F1, DAZL, TNP1, TNP2, PRM1 and PRM2 revealed that, although proliferating and differentiating spermatogenic germ cells such as spermatogonia, spermatocytes and spermatids could survive in autografts until 4 weeks, only terminally differentiated germ cells such as sperm persisted in autografts until 8 weeks. The presence of Sertoli and peritubular myoid cells, as indicated by expression of WT1 and ACTA2 proteins, respectively, was evident in the autografts until 8 weeks. Interestingly, seminal vesicle weight and serum testosterone level were restored in autografted mice by 8 weeks post grafting. The expression of Leydig cell-specific proteins such as CYP11A1, HSD3B2 and LHCGR showed revival of Leydig cell (LC) populations in autografts over time since grafting. Elevated expression of PDGFRA, LIF, DHH and NEFH in autografts indicated de novo regeneration of LC populations. Autografted adult testis can be used as a model for investigating Leydig cell regeneration, steroidogenesis and regulation of the intrinsic factors involved in Leydig cell development. The success of this rodent model can have therapeutic applications for adult human males undergoing sterilizing cancer therapy.
Collapse
|
47
|
Simard O, Grégoire MC, Arguin M, Brazeau MA, Leduc F, Marois I, Richter MV, Boissonneault G. Instability of trinucleotidic repeats during chromatin remodeling in spermatids. Hum Mutat 2014; 35:1280-4. [PMID: 25136821 DOI: 10.1002/humu.22637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/07/2014] [Indexed: 11/08/2022]
Abstract
Transient DNA breaks and evidence of DNA damage response have recently been reported during the chromatin remodeling process in haploid spermatids, creating a potential window of enhanced genetic instability. We used flow cytometry to achieve separation of differentiating spermatids into four highly purified populations using transgenic mice harboring 160 CAG repeats within exon 1 of the human Huntington disease gene (HTT). Trinucleotic repeat expansion was found to occur immediately following the chromatin remodeling steps, confirming the genetic instability of the process and pointing to the origin of paternal anticipation observed in some trinucleotidic repeats diseases.
Collapse
Affiliation(s)
- Olivier Simard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yuen BTK, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development 2014; 141:3483-94. [PMID: 25142466 DOI: 10.1242/dev.106450] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics.
Collapse
Affiliation(s)
- Benjamin T K Yuen
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Kelly M Bush
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Bonnie L Barrilleaux
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Rebecca Cotterman
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Genome Center, University of California Davis School of Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA 95817, USA
| |
Collapse
|
49
|
Fortes MRS, Satake N, Corbet DH, Corbet NJ, Burns BM, Moore SS, Boe-Hansen GB. Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology 2014; 2:370-8. [PMID: 24634207 DOI: 10.1111/j.2047-2927.2014.00196.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
Abstract
The primary purpose of spermatozoa is to deliver the paternal DNA to the oocyte at fertilization. During the complex events of fertilization, if the spermatozoon penetrating the oocyte contains compromised or damaged sperm chromatin, the subsequent progression of embryogenesis and foetal development may be affected. Variation in sperm DNA damage and protamine content in ejaculated spermatozoa was reported in the cattle, with potential consequences to bull fertility. Protamines are sperm-specific nuclear proteins that are essential to packaging of the condensed paternal genome in spermatozoa. Sperm DNA damage is thought to be repaired during the process of protamination. This study investigates the potential correlation between sperm protamine content, sperm DNA damage and the subsequent relationships between sperm chromatin and commonly measured reproductive phenotypes. Bos indicus sperm samples (n = 133) were assessed by two flow cytometric methods: the sperm chromatin structure assay (SCSA) and an optimized sperm protamine deficiency assay (SPDA). To verify the SPDA assay for bovine sperm protamine content, samples collected from testis, caput and cauda epididymidis were analyzed. As expected, mature spermatozoa in the cauda epididymidis had higher protamine content when compared with sperm samples from testis and caput epididymidis (p < 0.01). The DNA fragmentation index (DFI), determined by SCSA, was positively correlated (r = 0.33 ± 0.08, p < 0.05) with the percentage of spermatozoa that showed low protamine content using SPDA. Also, DFI was negatively correlated (r = -0.21 ± 0.09, p < 0.05) with the percentage of spermatozoa with high protamine content. Larger scrotal circumference contributes to higher sperm protamine content and lower content of sperm DNA damage (p < 0.05). In conclusion, sperm protamine content and sperm DNA damage are closely associated. Protamine deficiency is likely to be one of the contributing factors to DNA instability and damage, which can affect bull fertility.
Collapse
Affiliation(s)
- M R S Fortes
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Saint Lucia, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|