1
|
Maitan P, Bromfield EG, Stout TAE, Gadella BM, Leemans B. A stallion spermatozoon's journey through the mare's genital tract: In vivo and in vitro aspects of sperm capacitation. Anim Reprod Sci 2022; 246:106848. [PMID: 34556396 DOI: 10.1016/j.anireprosci.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Conventional in vitro fertilization is not efficacious when working with equine gametes. Although stallion spermatozoa bind to the zona pellucida in vitro, these gametes fail to initiate the acrosome reaction in the vicinity of the oocyte and cannot, therefore, penetrate into the perivitelline space. Failure of sperm penetration most likely relates to the absence of optimized in vitro fertilization media containing molecules essential to support stallion sperm capacitation. In vivo, the female reproductive tract, especially the oviductal lumen, provides an environmental milieu that appropriately regulates interactions between the gametes and promotes fertilization. Identifying these 'fertilization supporting factors' would be a great contribution for development of equine in vitro fertilization media. In this review, a description of the current understanding of the interactions stallion spermatozoa undergo during passage through the female genital tract, and related specific molecular changes that occur at the sperm plasma membrane is provided. Understanding these molecular changes may hold essential clues to achieving successful in vitro fertilization with equine gametes.
Collapse
Affiliation(s)
- Paula Maitan
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Veterinary Sciences, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth G Bromfield
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Priority Research Centre for Reproductive Science, College of Engineering, Science and Environment, University of Newcastle, Australia
| | - Tom A E Stout
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Bart M Gadella
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Bart Leemans
- Departments of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
2
|
Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Sci Rep 2022; 12:6446. [PMID: 35440797 PMCID: PMC9019019 DOI: 10.1038/s41598-022-10390-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Fertilizing sperm are retained by adhesion to specific glycans on the epithelium of the oviduct forming a reservoir before sperm are released from the reservoir so fertilization can ensue. Capacitated sperm lose affinity for the oviduct epithelium but the components of capacitation that are important for sperm release are uncertain. One important correlate of capacitation is the development of hyperactivated motility. Hyperactivation is characterized by asymmetrical flagellar beating with high beat amplitude. We tested whether the development of full-type asymmetrical motility was sufficient to release sperm from immobilized oviduct glycans. Sperm hyperactivation was induced by four different compounds, a cell-permeable cAMP analog (cBiMPS), CatSper activators (4-aminopyridine and procaine), and an endogenous steroid (progesterone). Using standard analysis (CASA) and direct visualization with high-speed video microscopy, we first confirmed that all four compounds induced hyperactivation. Subsequently, sperm were allowed to bind to immobilized oviduct glycans, and compounds or vehicle controls were added. All compounds caused sperm release from immobilized glycans, demonstrating that hyperactivation was sufficient to release sperm from oviduct cells and immobilized glycans. Pharmacological inhibition of the non-genomic progesterone receptor and CatSper diminished sperm release from oviduct glycans. Inhibition of the proteolytic activities of the ubiquitin-proteasome system (UPS), implicated in the regulation of sperm capacitation, diminished sperm release in response to all hyperactivation inducers. In summary, induction of sperm hyperactivation was sufficient to induce sperm release from immobilized oviduct glycans and release was dependent on CatSper and the UPS.
Collapse
|
3
|
Saint-Dizier M, Mahé C, Reynaud K, Tsikis G, Mermillod P, Druart X. Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Mol Cell Endocrinol 2020; 516:110956. [PMID: 32712384 DOI: 10.1016/j.mce.2020.110956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Sperm migration through the female genital tract is not a quiet journey. Uterine contractions quickly operate a drastic selection, leading to a very restrictive number of sperm reaching the top of uterine horns and finally, provided the presence of key molecules on sperm, the oviduct, where fertilization takes place. During hours and sometimes days before fertilization, subpopulations of spermatozoa interact with dynamic and region-specific maternal components, including soluble proteins, extracellular vesicles and epithelial cells lining the lumen of the female tract. Interactions with uterine and oviductal cells play important roles for sperm survival as they modulate the maternal immune response and allow a transient storage before ovulation. The body of work reported here highlights the importance of sperm interactions with proteins originated from both the uterine and oviductal fluids, as well as hormonal signals around the time of ovulation for sperm acquisition of fertilizing competence.
Collapse
Affiliation(s)
- Marie Saint-Dizier
- INRAE, UMR PRC, 37380, Nouzilly, France; University of Tours, Faculty of Sciences and Techniques, 37000, Tours, France.
| | | | | | | | | | | |
Collapse
|
4
|
Machado SA, Sharif M, Kadirvel G, Bovin N, Miller DJ. Adhesion to oviduct glycans regulates porcine sperm Ca2+ influx and viability. PLoS One 2020; 15:e0237666. [PMID: 32822385 PMCID: PMC7442259 DOI: 10.1371/journal.pone.0237666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Before fertilization, sperm bind to epithelial cells of the oviduct isthmus to form a reservoir that regulates sperm viability and capacitation. The sperm reservoir maintains optimum fertility in species, like swine, in which semen deposition and ovulation may not be well synchronized. We demonstrated previously that porcine sperm bind to two oviductal glycan motifs, a biantennary 6-sialylated N-acetyllactosamine (bi-SiaLN) oligosaccharide and 3-O-sulfated Lewis X trisaccharide (suLeX). Here, we assessed the ability of these glycans to regulate sperm Ca2+ influx, capacitation and affect sperm lifespan. After 24 h, the viability of sperm bound to immobilized bi-SiaLN and suLeX was higher (46% and 41% respectively) compared to viability of free-swimming sperm (10–12%). Ca2+ is a central regulator of sperm function so we assessed whether oviduct glycans could affect the Ca2+ influx that occurs during capacitation. Using a fluorescent intracellular Ca2+ probe, we observed that both oviduct glycans suppressed the Ca2+ increase that occurs during capacitation. Thus, specific oviduct glycans can regulate intracellular Ca2+. Because the increase in intracellular Ca2+ was suppressed by oviduct glycans, we examined whether glycans affected capacitation, as determined by protein tyrosine phosphorylation and the ability to undergo a Ca2+ ionophore-induced acrosome reaction. We found no discernable suppression of capacitation in sperm bound to oviduct glycans. We also detected no effect of oviduct glycans on sperm motility during capacitation. In summary, LeX and bi-SiaLN glycan motifs found on oviduct oligosaccharides suppress the Ca2+ influx that occurs during capacitation and extend sperm lifespan but do not affect sperm capacitation or motility.
Collapse
Affiliation(s)
- Sergio A. Machado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Momal Sharif
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - David J. Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
5
|
Leahy T, Rickard JP, Pini T, Gadella BM, Graaf SP. Quantitative Proteomic Analysis of Seminal Plasma, Sperm Membrane Proteins, and Seminal Extracellular Vesicles Suggests Vesicular Mechanisms Aid in the Removal and Addition of Proteins to the Ram Sperm Membrane. Proteomics 2020; 20:e1900289. [DOI: 10.1002/pmic.201900289] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Tamara Leahy
- School of Life and Environmental SciencesFaculty of ScienceUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Jessica P. Rickard
- School of Life and Environmental SciencesFaculty of ScienceUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Taylor Pini
- Colorado Center for Reproductive Medicine Lone Tree Colorado 80124 USA
| | - Bart M. Gadella
- Department of Farm Animal Health and Department of Biochemistry and Cell BiologyFaculty of Veterinary MedicineUtrecht University Yalelaan 2, CM Utrecht 3584 The Netherlands
| | - Simon P. Graaf
- School of Life and Environmental SciencesFaculty of ScienceUniversity of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
6
|
Gatien J, Mermillod P, Tsikis G, Bernardi O, Janati Idrissi S, Uzbekov R, Le Bourhis D, Salvetti P, Almiñana C, Saint-Dizier M. Metabolomic Profile of Oviductal Extracellular Vesicles across the Estrous Cycle in Cattle. Int J Mol Sci 2019; 20:ijms20246339. [PMID: 31888194 PMCID: PMC6941065 DOI: 10.3390/ijms20246339] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023] Open
Abstract
Oviductal extracellular vesicles (oEVs) have been proposed as key modulators of gamete/embryo maternal interactions. The aim of this study was to examine the metabolite content of oEVs and its regulation across the estrous cycle in cattle. Oviductal EVs were isolated from bovine oviducts ipsilateral and contralateral to ovulation at four stages of the estrous cycle (post-ovulatory stage, early and late luteal phases, and pre-ovulatory stage). The metabolomic profiling of EVs was performed by proton nuclear magnetic resonance spectroscopy (NMR). NMR identified 22 metabolites in oEVs, among which 15 were quantified. Lactate, myoinositol, and glycine were the most abundant metabolites throughout the estrous cycle. The side relative to ovulation had no effect on the oEVs' metabolite concentrations. However, levels of glucose-1-phosphate and maltose were greatly affected by the cycle stage, showing up to 100-fold higher levels at the luteal phase than at the peri-ovulatory phases. In contrast, levels of methionine were significantly higher at peri-ovulatory phases than at the late-luteal phase. Quantitative enrichment analyses of oEV-metabolites across the cycle evidenced several significantly regulated metabolic pathways related to sucrose, glucose, and lactose metabolism. This study provides the first metabolomic characterization of oEVs, increasing our understanding of the potential role of oEVs in promoting fertilization and early embryo development.
Collapse
Affiliation(s)
- Julie Gatien
- Allice, 37380 Nouzilly, France; (J.G.); (S.J.I.); (D.L.B.); (P.S.)
| | - Pascal Mermillod
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
| | - Guillaume Tsikis
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
| | - Ophélie Bernardi
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
| | | | - Rustem Uzbekov
- Faculty of Medicine, University of Tours, 37000 Tours, France;
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119991 Moscow, Russia
| | | | - Pascal Salvetti
- Allice, 37380 Nouzilly, France; (J.G.); (S.J.I.); (D.L.B.); (P.S.)
| | - Carmen Almiñana
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
- VetSuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Marie Saint-Dizier
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
- Faculty of Sciences and Techniques, University of Tours, 37200 Tours, France
- Correspondence: ; Tel.: +33-247-427-508
| |
Collapse
|
7
|
Weber A, Argenti LE, de Souza APB, Santi L, Beys-da-Silva WO, Yates JR, Bustamante-Filho IC. Ready for the journey: a comparative proteome profiling of porcine cauda epididymal fluid and spermatozoa. Cell Tissue Res 2019; 379:389-405. [DOI: 10.1007/s00441-019-03080-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
|
8
|
Zhang N, Mao W, Zhang Y, Huang N, Liu B, Gao L, Zhang S, Cao J. The prostaglandin E 2 receptor PTGER2 and prostaglandin F 2α receptor PTGFR mediate oviductal glycoprotein 1 expression in bovine oviductal epithelial cells. J Reprod Dev 2017; 64:101-108. [PMID: 29276208 PMCID: PMC5902897 DOI: 10.1262/jrd.2017-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oviductal glycoprotein 1 (OVGP1), an oviductin, is involved in the maintenance of sperm viability and motility and contributes to sperm capacitation in the oviduct. In this study, the regulatory effects exerted by
prostaglandin E2 (PGE2) and F2α (PGF2α) on OVGP1 expression via their corresponding receptors in bovine oviductal epithelial cells (BOECs) were investigated. BOECs were
cultured in vitro, and their expression of receptors of PGE2 (PTGER1, PTGER2, PTGER3, and PTGER4) and PGF2α (PTGFR) was measured using RT-qPCR. Ca2+ concentration was
determined with a fluorescence-based method and cAMP was quantified by enzyme-linked immunosorbent assays to verify activation of PTGER2 and PTGFR by their corresponding agonists in these cells. OVGP1 mRNA and protein
expression was measured using RT-qPCR and western blotting, respectively, following PTGER2 and PTGFR agonist-induced activation. PTGER1, PTGER2, PTGER4, and PTGFR were found to be present in BOECs; however, PTGER3
expression was not detected. OVGP1 expression was significantly promoted by 10–6 M butaprost (a PTGER2 agonist) and decreased by 10–6 M fluprostenol (a PTGFR agonist). In addition, 3 μM H-89 (a PKA
inhibitor) and 3 μM U0126 (an ERK inhibitor) effectively inhibited PGE2-induced upregulation of OVGP1, and 5 μM chelerythrine chloride (a PKC inhibitor) and 3 μM U0126 negated OVGP1 downregulation by
PGF2α. In conclusion, this study demonstrates that OVGP1 expression in BOECs is enhanced by PGE2 via PTGER2-cAMP-PKA signaling, and reduced by PGF2α through the
PTGFR-Ca2+-PKC pathway.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Ying Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Na Huang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Long Gao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| |
Collapse
|
9
|
Intra J, Veltri C, De Caro D, Perotti ME, Pasini ME. In vitro evidence for the participation of Drosophila melanogaster sperm β-N-acetylglucosaminidases in the interactions with glycans carrying terminal N-acetylglucosamine residues on the egg's envelopes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21403. [PMID: 28695569 DOI: 10.1002/arch.21403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fertilization is a complex and multiphasic process, consisting of several steps, where egg-coating envelope's glycoproteins and sperm surface receptors play a critical role. Sperm-associated β-N-acetylglucosaminidases, also known as hexosaminidases, have been identified in a variety of organisms. Previously, two isoforms of hexosaminidases, named here DmHEXA and DmHEXB, were found as intrinsic proteins in the sperm plasma membrane of Drosophila melanogaster. In the present work, we carried out different approaches using solid-phase assays in order to analyze the oligosaccharide recognition ability of D. melanogaster sperm hexosaminidases to interact with well-defined carbohydrate chains that might functionally mimic egg glycoconjugates. Our results showed that Drosophila hexosaminidases prefer glycans carrying terminal β-N-acetylglucosamine, but not core β-N-acetylglucosamine residues. The capacity of sperm β-N-acetylhexosaminidases to bind micropylar chorion and vitelline envelope was examined in vitro assays. Binding was completely blocked when β-N-acetylhexosaminidases were preincubated with the glycoproteins ovalbumin and transferrin, and the monosaccharide β-N-acetylglucosamine. Overall, these data support the hypothesis of the potential role of these glycosidases in sperm-egg interactions in Drosophila.
Collapse
Affiliation(s)
- Jari Intra
- Department of Biosciences, University of Milano, Milano, Italy
| | - Concetta Veltri
- Department of Biosciences, University of Milano, Milano, Italy
| | - Daniela De Caro
- Department of Biosciences, University of Milano, Milano, Italy
| | | | | |
Collapse
|
10
|
Aguilera AC, Boschin V, Robina I, Elías-Rodríguez P, Sosa MA. Epididymal α-l-fucosidase and its possible role in remodelling the surface of bull spermatozoa. Theriogenology 2017; 104:134-141. [PMID: 28843076 DOI: 10.1016/j.theriogenology.2017.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 12/20/2022]
Abstract
The mammalian epididymis provides an appropriate environment for sperm maturation. During the epididymal transit, spermatozoa undergo biochemical and morphological changes that lead to the acquisition of the fertilizing capacity. In this study we analysed the fucosylation status of membrane glycoproteins in the spermatozoa obtained from different regions of the bull epididymis. High amounts of fucose were detected on caput spermatozoa (R.F.I. = 1010 ± 20.35), mostly located in the post-acrosome zone. A significant decrease in the fucose levels was detected toward the cauda (R.F.I. = 540.5 ± 49.93) (P < 0.05). This decrease was in line with the increased activity of α-l-fucosidase in the cauda fluid. In sperm from the cauda, the defucosylation occurred in some proteins, whereas others showed higher fucosylation rates. A significant decrease of fucose in the gametes was observed upon incubation of crude cauda fluid with caput spermatozoa (from R.F.I. = 1.45 ± 0.08 to 1.06 ± 0.03) (P < 0.05) indicating that the α-l-fucosidase present in the epididymal fluid is active on spermatozoa. Moreover, this effect was blocked with specific enzyme inhibitors. These results provide direct evidence that the α-l-fucosidase from epididymal fluid participates in the fucose removal from spermatozoa, as a step of sperm maturation in the bull epididymis.
Collapse
Affiliation(s)
- Andrea Carolina Aguilera
- Laboratorio de Biología y Fisiología Celular "Dr. Franciso Bertini", Instituto de Histología y Embriología - IHEM-CONICET-FCM-UNCuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Veronica Boschin
- Laboratorio de Biología y Fisiología Celular "Dr. Franciso Bertini", Instituto de Histología y Embriología - IHEM-CONICET-FCM-UNCuyo, 5500 Mendoza, Argentina
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Spain
| | - Pilar Elías-Rodríguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Spain
| | - Miguel Angel Sosa
- Laboratorio de Biología y Fisiología Celular "Dr. Franciso Bertini", Instituto de Histología y Embriología - IHEM-CONICET-FCM-UNCuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
11
|
Leemans B, Gadella BM, Stout TAE, De Schauwer C, Nelis H, Hoogewijs M, Van Soom A. Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization. Reproduction 2016; 152:R233-R245. [PMID: 27651517 DOI: 10.1530/rep-16-0420] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022]
Abstract
In contrast to man and many other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. The apparent inability of stallion spermatozoa to penetrate the zona pellucida in vitro is most likely due to incomplete activation of spermatozoa (capacitation) because of inadequate capacitating or fertilizing media. In vivo, the oviduct and its secretions provide a microenvironment that does reliably support and regulate interaction between the gametes. This review focuses on equine sperm-oviduct interaction. Equine sperm-oviduct binding appears to be more complex than the presumed species-specific calcium-dependent lectin binding phenomenon; unfortunately, the nature of the interaction is not understood. Various capacitation-related events are induced to regulate sperm release from the oviduct epithelium and most data suggest that exposure to oviduct secretions triggers sperm capacitation in vivo However, only limited information is available about equine oviduct secreted factors, and few have been identified. Another aspect of equine oviduct physiology relevant to capacitation is acid-base balance. In vitro, it has been demonstrated that stallion spermatozoa show tail-associated protein tyrosine phosphorylation after binding to oviduct epithelial cells containing alkaline secretory granules. In response to alkaline follicular fluid preparations (pH 7.9), stallion spermatozoa also show tail-associated protein tyrosine phosphorylation, hyperactivated motility and (limited) release from oviduct epithelial binding. However, these 'capacitating conditions' are not able to induce the acrosome reaction and fertilization. In conclusion, developing a defined capacitating medium to support successful equine IVF will depend on identifying as yet uncharacterized capacitation triggers present in the oviduct.
Collapse
Affiliation(s)
- Bart Leemans
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart M Gadella
- Departments of Farm Animal Health.,Biochemistry and Cell Biology
| | - Tom A E Stout
- Departments of Farm Animal Health.,Equine SciencesFaculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharina De Schauwer
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hilde Nelis
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Hoogewijs
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
The Role of Oviductal Cells in Activating Stallion Spermatozoa. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Leemans B, Gadella BM, Stout TAE, Sostaric E, Schauwer CD, Nelis H, Hoogewijs M, Van Soom A. Combined albumin and bicarbonate induces head-to-head sperm agglutination which physically prevents equine sperm–oviduct binding. Reproduction 2016; 151:313-30. [DOI: 10.1530/rep-15-0471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023]
Abstract
In many species, sperm binding to oviduct epithelium is believed to be an essential step in generating a highly fertile capacitated sperm population primed for fertilization. In several mammalian species, this interaction is based on carbohydrate-lectin recognition.d-galactose has previously been characterized as a key molecule that facilitates sperm–oviduct binding in the horse. We used oviduct explant and oviduct apical plasma membrane (APM) assays to investigate the effects of various carbohydrates; glycosaminoglycans; lectins; S-S reductants; and the capacitating factors albumin, Ca2+and HCO3−on sperm–oviduct binding in the horse. Carbohydrate-specific lectin staining indicated thatN-acetylgalactosamine,N-acetylneuraminic acid (sialic acid) andd-mannose ord-glucose were the most abundant carbohydrates on equine oviduct epithelia, whereasd-galactose moieties were not detected. However, in a competitive binding assay, sperm–oviduct binding density was not influenced by any tested carbohydrates, glycosaminoglycans, lectins ord-penicillamine, nor did the glycosaminoglycans induce sperm tail-associated protein tyrosine phosphorylation. Furthermore,N-glycosidase F (PNGase) pretreatment of oviduct explants and APM did not alter sperm–oviduct binding density. By contrast, a combination of the sperm-capacitating factors albumin and HCO3−severely reduced (>10-fold) equine sperm–oviduct binding density by inducing rapid head-to-head agglutination, both of which events were independent of Ca2+and an elevated pH (7.9). Conversely, neither albumin and HCO3−nor any other capacitating factor could induce release of oviduct-bound sperm. In conclusion, a combination of albumin and HCO3−markedly induced sperm head-to-head agglutination which physically prevented stallion sperm to bind to oviduct epithelium.
Collapse
|
14
|
Intra J, Concetta V, Daniela DC, Perotti ME, Pasini ME. Drosophila sperm surface alpha-L-fucosidase interacts with the egg coats through its core fucose residues. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:133-143. [PMID: 26101846 DOI: 10.1016/j.ibmb.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Sperm-oocyte interaction during fertilization is multiphasic, with multicomponent events, taking place between egg's glycoproteins and sperm surface receptors. Protein-carbohydrate complementarities in gamete recognition have observed in cases throughout the whole evolutionary scale. Sperm-associated α-L-fucosidases have been identified in various organisms. Their wide distribution and known properties reflect the hypothesis that fucose and α-L-fucosidases have fundamental function(s) during gamete interactions. An α-L-fucosidase has been detected as transmembrane protein on the surface of spermatozoa of eleven species across the genus Drosophila. Immunofluorescence labeling showed that the protein is localized in the sperm plasma membrane over the acrosome and the tail, in Drosophila melanogaster. In the present study, efforts were made to analyze with solid phase assays the oligosaccharide recognition ability of fruit fly sperm α-L-fucosidase with defined carbohydrate chains that can functionally mimic egg glycoconjugates. Our results showed that α-L-fucosidase bound to fucose residue and in particular it prefers N-glycans carrying core α1,6-linked fucose and core α1,3-linked fucose in N-glycans carrying only a terminal mannose residue. The ability of sperm α-L-fucosidase to bind to the micropylar chorion and to the vitelline envelope was examined in in vitro assays in presence of α-L-fucosidase, either alone or in combination with molecules containing fucose residues. No binding was detected when α-L-fucosidase was pre-incubated with fucoidan, a polymer of α-L-fucose and the monosaccharide fucose. Furthermore, egg labeling with anti-horseradish peroxidase, that recognized only core α1,3-linked fucose, correlates with α-L-fucosidase micropylar binding. Collectively, these data support the hypothesis of the potential role of this glycosidase in sperm-egg interactions in Drosophila.
Collapse
Affiliation(s)
- Jari Intra
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy.
| | - Veltri Concetta
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - De Caro Daniela
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - Maria Elisa Perotti
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, via Celoria 26, Milano 20133, Italy
| |
Collapse
|
15
|
Miller DJ. Regulation of Sperm Function by Oviduct Fluid and the Epithelium: Insight into the Role of Glycans. Reprod Domest Anim 2015; 50 Suppl 2:31-9. [DOI: 10.1111/rda.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023]
Affiliation(s)
- DJ Miller
- Department of Animal Sciences; University of Illinois; Urbana-Champaign IL USA
| |
Collapse
|
16
|
Machado SA, Kadirvel G, Daigneault BW, Korneli C, Miller P, Bovin N, Miller DJ. LewisX-containing glycans on the porcine oviductal epithelium contribute to formation of the sperm reservoir. Biol Reprod 2014; 91:140. [PMID: 25339106 DOI: 10.1095/biolreprod.114.119503] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In many mammals, after semen deposition, a subpopulation of the sperm is transported to the lower oviduct, or isthmus, to form a functional sperm reservoir that provides sperm to fertilize oocytes. The precise molecular interactions that allow formation of this reservoir are unclear. It is proposed that binding of sperm receptors (lectins) to their oviductal cell ligands is accomplished by glycans. Previous results indicated that Lewis trisaccharides are present in glycosphingolipids and O- and N-linked glycans of the porcine isthmus and that Le(X)-containing molecules bind porcine sperm. Immunohistochemistry indicated that the Lewis structures identified by mass spectrometry were, in fact, Lewis X (Le(X)) trisaccharides. These motifs were localized to the luminal border of the isthmus. Assays using fluoresceinated glycans showed that 3-O-sulfated Le(X) (suLe(X)) bound to receptors localized on the head of nearly 60% of uncapacitated boar sperm but that the positional isomer 3-O-sulfo-Le(A) (suLe(A)) bound to <5% of sperm. Sperm also bound preferentially to suLe(X) made insoluble by coupling to beads. Capacitation reduced the ability of suLe(X) to bind sperm to <10%, perhaps helping to explain why sperm are released at capacitation. Pretreatment of oviduct cell aggregates with the Le(X) antibody blocked 57% of sperm binding to isthmic aggregates. Blocking putative receptors on sperm with soluble Le(X) and suLe(X) glycans specifically reduced sperm binding to oviduct cells up to 61%. These results demonstrate that the oviduct isthmus contains Le(X)-related moieties and that sperm binding to these oviduct glycans is necessary and sufficient for forming the sperm reservoir.
Collapse
Affiliation(s)
- Sergio A Machado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Bradford W Daigneault
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Claudia Korneli
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
17
|
Kim EY, Noh EH, Noh EJ, Park MJ, Park HY, Lee DS, Riu KZ, Park SP. Effect of Glycosaminoglycans on In vitro Fertilizing Ability and In vitro Developmental Potential of Bovine Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:178-88. [PMID: 25049774 PMCID: PMC4093159 DOI: 10.5713/ajas.2012.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/01/2012] [Accepted: 10/12/2012] [Indexed: 11/27/2022]
Abstract
The glycosaminoglycans (GAGs) present in the female reproductive tract promote sperm capacitation. When bovine sperm were exposed to 10 μg/ml of one of four GAGs (Chondroitin sulfate, CS; Dermatan sulfate, DS; Hyaluronic acid, HA; Heparin, HP) for 5 h, the total motility (TM), straight-line velocity (VSL), and curvilinear velocity (VCL) were higher in the HP- or HA-treated sperm, relative to control and CS- or DS-treated sperm. HP and HA treatments increased the levels of capacitated and acrosome-reacted sperm over time, compared to other treatment groups (p<0.05). In addition, sperm exposed to HP or HA for 1 h before IVF exhibited significantly improved fertilizing ability, as assessed by 2 pronucleus (PN) formation and cleavage rates at d 2. Exposure to these GAGs also enhanced in vitro embryo development rates and embryo quality, and increased the ICM and total blastocyst cell numbers at d 8 after IVF (p<0.05). A real-time PCR analysis showed that the expression levels of pluripotency (Oct 4), cell growth (Glut 5), and anti-apoptosis (Bax inhibitor) genes were significantly higher in embryos derived from HA- or HP-treated sperm than in control or other treatment groups, while pro-apoptotic gene expression (caspase-3) was significantly lower in all GAG treatment groups (p<0.05). These results demonstrated that exposure of bovine sperm to HP or HA positively correlates with in vitro fertilizing ability, in vitro embryo developmental potential, and embryonic gene expression.
Collapse
Affiliation(s)
- Eun Young Kim
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| | - Eun Hyung Noh
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| | - Eun Ji Noh
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| | - Min Jee Park
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| | - Hyo Young Park
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| | - Dong Sun Lee
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| | - Key Zung Riu
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| | - Se Pill Park
- Mirae Biotech/Jeju National University Stem Cell Research Center, Seoul 143-193, Korea
| |
Collapse
|
18
|
Improving bovine semen diluents: insights from the male and female reproductive tracts, and the potential relevance of cervical mucins. Animal 2014; 8 Suppl 1:173-84. [DOI: 10.1017/s1751731114000287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Byrne K, Leahy T, McCulloch R, Colgrave ML, Holland MK. Comprehensive mapping of the bull sperm surface proteome. Proteomics 2012; 12:3559-79. [DOI: 10.1002/pmic.201200133] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/23/2012] [Accepted: 09/10/2012] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Russell McCulloch
- CSIRO Food Futures National Research Flagship; Division of Livestock Industries; Queensland Biosciences Precinct; St. Lucia; Queensland; Australia
| | | | | |
Collapse
|
20
|
Teijeiro JM, Marini PE. The effect of oviductal deleted in malignant brain tumor 1 over porcine sperm is mediated by a signal transduction pathway that involves pro-AKAP4 phosphorylation. Reproduction 2012; 143:773-85. [DOI: 10.1530/rep-11-0314] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction between sperm and oviduct results in the selection of sperm with certain qualities. Porcine oviductal deleted in malignant brain tumor 1, DMBT1 (previously called sperm-binding glycoprotein, SBG), has been proposed to be implicated in sperm selection through acrosome alteration and suppression of motility of a subpopulation of sperm that have begun capacitation prematurely. It producesin vitroacrosome alteration and decrease of motility of boar sperm, concomitant with tyrosine phosphorylation of a 97 kDa sperm protein (p97). We hypothesized that the phosphorylation of p97 may be a link between DMBT1 sensing by a subpopulation of boar sperm and its biological effect. In this work, p97 was identified by mass spectrometry and immunoprecipitation as a porcine homologue of AKAP4. Pro-AKAP4 was localized by immunofluorescence and subcellular fractionation to the periacrosomal membranes and was shown to be tyrosine phosphorylated by DMBT1 regardless of the presence of calcium or bicarbonate, and of cAMP analogs, protein kinase A inhibitors, or a protein kinase C inductor. A processed ∼80 kDa form of AKAP4 was also detected at the tail of boar sperm, which was not tyrosine phosphorylated by DMBT1 under the conditions tested. Immunohistochemistry of testis showed presence of AKAP4 in boar sperm precursor cells. The evidence presented here supports the involvement of AKAP4 in the formation of the fibrous sheath on boar precursor sperm cells and implicates the phosphorylation of pro-AKAP4 as an early step in the signal transduction pathway gated by DMBT1 that leads to sperm selection through acrosome alteration.
Collapse
|
21
|
Gómez PN, Alvarez JG, Parodi J, Romero F, Sánchez R. Effect of aracnotoxin from Latrodectus mactans on bovine sperm function: modulatory action of bovine oviduct cells and their secretions. Andrologia 2012; 44 Suppl 1:764-71. [PMID: 22211875 DOI: 10.1111/j.1439-0272.2011.01263.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 11/29/2022] Open
Abstract
Latrodectus mactans' aracnotoxin (Atx) induces changes in sperm function that could be used as a co-adjuvant in male contraceptive barrier methods. This effect includes the suppression of intracellular reactive oxygen species (ROS), an event necessary for capacitation, chemotaxis and acrosome reaction (AR). The sperm that are not trapped by the barrier method can reach the oviduct before fertilisation and be exposed to the secretions of the oviducts. This study evaluated the effect of bovine tubal explants (TU) and conditioned media (CM) from the ampullar and isthmal regions on spermatozoa exposed to Atx. Thawed bovine sperm were incubated with Atx, TU and CM from the ampullar and isthmal regions for 4 h and then DNA integrity, intracellular ROS and lysophosphatidylcholine-induced AR were determined. Spermatozoa exposed to Atx and co-incubated with TU and CM for 4 h produced an increase in sperm DNA damage, a decrease in ROS production and a decrease in %AR, compared with the control. A similar result was obtained from the co-incubation of spermatozoa with Atx. In conclusion, the effect of Atx is not modified by tubal cells or their secretions and this opens the door to future studies to evaluate the application of synthetic peptides obtained from Atx as a co-adjuvant of contraceptive barrier methods.
Collapse
Affiliation(s)
- P N Gómez
- Center of Neurosciences and Peptides Biology, CEBIOR, BIOREN, Universidad de La Frontera, Temuco, Chile
| | | | | | | | | |
Collapse
|
22
|
Gómez PN, Alvarez JG, Risopatrón J, Romero F, Sánchez R. Effect of tubal explants and their secretions on bovine spermatozoa: modulation of ROS production and DNA damage. Reprod Fertil Dev 2012; 24:871-6. [DOI: 10.1071/rd11180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 01/20/2012] [Indexed: 11/23/2022] Open
Abstract
Although low levels of reactive oxygen species (ROS) play a physiological role in maintaining sperm function, an increase in ROS generation above these levels may result in the induction of sperm membrane and DNA damage. The main objective of this study was to determine whether bovine oviducal explants (TU) and their conditioned media (CM) have a modulatory effect on the production of ROS, and consequently, on sperm DNA integrity. Thawed sperm were exposed to bovine TU and to CM obtained from the ampullar and isthmal regions after 4 and 12 h, and DNA damage and intracellular ROS production was assessed by TUNEL and DHE and SYTOX Green, respectively. Co-incubation of spermatozoa with oviducal explants from the ampullar region (TUa) for 4 h resulted in a statistically significant increase in the percentage of spermatozoa with DNA damage compared with controls (P = 0.0106), and this increase was positively correlated with ROS levels. Conversely, although the incubation of spermatozoa with explants and conditioned media from the isthmal region (TUi and CMi, respectively) for 12 h resulted in an increase of spermatozoa with DNA damage compared with controls (P < 0.0001), this increase was not correlated with ROS levels. In conclusion, significant oxidative stress may take place in the oviduct, particularly during short-term incubation, and this may be related to changes in the antioxidant factors present in the oviducal cells and secretions. A redox imbalance in pro-oxidants and antioxidants in the oviduct may lead to oxidative stress and sperm DNA damage.
Collapse
|
23
|
Holt WV, Fazeli A. The oviduct as a complex mediator of mammalian sperm function and selection. Mol Reprod Dev 2010; 77:934-43. [DOI: 10.1002/mrd.21234] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 07/22/2010] [Indexed: 12/22/2022]
|
24
|
Thys M, Nauwynck H, Maes D, Hoogewijs M, Vercauteren D, Rijsselaere T, Favoreel H, Van Soom A. Expression and putative function of fibronectin and its receptor (integrin alpha(5)beta(1)) in male and female gametes during bovine fertilization in vitro. Reproduction 2009; 138:471-82. [PMID: 19505962 DOI: 10.1530/rep-09-0094] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibronectin (Fn) is a 440 kDa glycoprotein assumed to participate in sperm-egg interaction in human. Recently, it has been demonstrated that Fn--when present during bovine IVF--strongly inhibits sperm penetration. The present study was conducted firstly to evaluate the expression of Fn and its integrin receptor (alpha(5)beta(1)) on male and female bovine gametes using indirect immunofluorescence and secondly, to determine the function of Fn during bovine IVF. Endogenous Fn was detected underneath the zona pellucida (ZP) and integrin alpha(5) on the oolemma of cumulus-denuded oocytes. Bovine spermatozoa displayed integrin alpha(5) at their equatorial segment after acrosome reaction. We established that the main inhibitory effect of exogenously supplemented Fn was located at the sperm-oolemma binding, with a (concurrent) effect on fusion, and this can probably be attributed to the binding of Fn to spermatozoa at the equatorial segment, as shown by means of Alexa Fluor 488-conjugated Fn. Combining these results, the inhibitory effect of exogenously supplemented Fn seemed to be exerted on the male gamete by binding to the exposed integrin alpha(5)beta(1) receptor after acrosome reaction. The presence of endogenous Fn underneath the ZP together with integrin alpha(5) expression on oolemma and acrosome-reacted (AR) sperm cell surface suggests a 'velcro' interaction between the endogenous Fn ligand and corresponding receptors on both (AR) sperm cell and oolemma, initiating sperm-egg binding.
Collapse
Affiliation(s)
- Mirjan Thys
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kon Y, Iwata H, Shiono H, Matsubara K, Kurita A, Sakaguchi Y, Kuwayama T, Monji Y. Effect of Carbohydrates on the Ability of Bull Sperm to Bind to Bovine Oviduct Epithelial Cells. Reprod Domest Anim 2009; 44:365-70. [DOI: 10.1111/j.1439-0531.2007.01013.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
SAKAGUCHI Y, IWATA H, KUWAYAMA T, MONJI Y. Effect of N-Acetyl-D-Glucosamine on Bovine Sperm-Oocyte Interactions. J Reprod Dev 2009; 55:676-84. [DOI: 10.1262/jrd.09-59h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Purohit S, Laloraya M, Kumar PG. Distribution of N- and O-linked oligosaccharides on surface of spermatozoa from normal and infertile subjects. Andrologia 2008; 40:7-12. [DOI: 10.1111/j.1439-0272.2008.00801.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Taitzoglou IA, Kokoli AN, Killian GJ. Modifications of surface carbohydrates on bovine spermatozoa mediated by oviductal fluid: a flow cytometric study using lectins. ACTA ACUST UNITED AC 2007; 30:108-14. [PMID: 17132154 DOI: 10.1111/j.1365-2605.2006.00717.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of the present study was to characterize and quantify changes in exposed saccharide residues of bovine sperm during capacitation in oviductal fluid (ODF) using flow cytometry (FC). Bovine sperm were incubated with 0% or 50% non-luteal ODF for 30 min or 3.5 h. After incubation, sperm were labelled with 11 fluorescein isothiocyanate-labelled lectins and evaluated for lectin binding with FC. Furthermore, inhibiting sugars were used to determine specificity of lectin binding to oligosaccharides on the sperm surface. After 30 min incubation, there was a 91% decrease in fluorescence intensity of labelled sperm incubated in WGA, a 76% decline for Con A, 75% decline for BS-I and a 36% decline for DBA. These differences remained approximately the same over the 3.5-h incubation. Interestingly, although there was no reduction in UEA-I binding at 30 min, a significant reduction (23%) was observed at 3.5 h. Con A fluorescence was mostly inhibited with either alpha-d-glucose or alpha-d-mannose (86% and 90% respectively). BS-I fluorescence was reduced after prior incubation of the control samples with N-acetyl-galactosamine and galactose by 74% and 80% respectively. After prior incubation with N-acetyl-galactosamine DBA fluorescence reduced by 18% in the control samples. With UEA-I no fluorescence reduction was observed after prior incubation with l-fucose. We have demonstrated that capacitation of bovine sperm in ODF is accompanied by a quantitative reduction in individual lectin binding sites. These modifications may be crucial to the subsequent signalling events involved with sperm-zona binding, zona penetration or interaction with the oolema.
Collapse
Affiliation(s)
- Ioannis A Taitzoglou
- Department of Dairy and Animal Science, John O. Almquist Research Center, Pennsylvania State University, State College, PA, USA.
| | | | | |
Collapse
|
29
|
Bergqvist AS, Ballester J, Johannisson A, Hernandez M, Lundeheim N, Rodríguez-Martínez H. In vitrocapacitation of bull spermatozoa by oviductal fluid and its components. ZYGOTE 2006; 14:259-73. [PMID: 16822337 DOI: 10.1017/s0967199406003777] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/06/2006] [Indexed: 11/06/2022]
Abstract
SummarySperm capacitation is crucial for fertilization. However, debate continues on exactly how, where and when capacitation is elicited in the bovine female genital tract. In this study we used merocyanine-540 and the chlortetracycline (CTC) assay to test how capacitation of bull spermatozoa is affectedin vitroby exposure to oviductal fluid (ODF) collectedin vivo, various glycosaminoglycans (GAGs) or bicarbonate. Following different durations of exposure, spermatozoa were stained with CTC or merocyanine-540, and evaluated with epifluorescent light microscopy or flow cytometry, respectively. Incubation time did not significantly affect capacitation. Exposure (30–120 min) to ODF capacitated (p< 0.05) bull spermatozoa as measured by either merocyanine-540 or CTC. Hyaluronan was the only GAG that induced a significant increase in B-pattern spermatozoa (capacitated;p= 0.012) compared with controls. Dermatan sulphate also induced capacitation (merocyanine-540 high fluorescence;p= 0.035). Exposure to bicarbonate-enriched media also yielded an increase in merocyanine-540 high fluorescence (p< 0.0001). When bicarbonate was added to the other treatments (ODF or GAGs) an equal increase in merocyanine-540 high fluorescence was noted (p< 0.0001), compared with before addition of bicarbonate and independent of the treatment before exposure. There was no significant difference in the number of B-pattern spermatozoa when bicarbonate was added, but an significant increase in spermatozoa with an acrosome-reacted (AR)-pattern (p< 0.0001) was observed. Exposure of spermatozoa to solubilized zonae pellucidae significantly increased the AR-pattern spermatozoa (p= 0.016). In conclusion, ODF was more potent in inducing capacitation of bull spermatozoa than the individual GAGs. Our results also indicate that bicarbonate is an effector of bull sperm capacitation.
Collapse
Affiliation(s)
- Ann-Sofi Bergqvist
- Division of Comparative Reproduction, Obstetrics and Udder Health, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|