1
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
2
|
Al Dala Ali M, Longepied G, Nicolet A, Metzler-Guillemain C, Mitchell MJ. Spermatozoa in mice lacking the nucleoporin NUP210L show defects in head shape and motility but not in nuclear compaction or histone replacement. Clin Genet 2024; 105:364-375. [PMID: 38129135 DOI: 10.1111/cge.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Biallelic loss-of-function mutation of NUP210L, encoding a testis-specific nucleoporin, has been reported in an infertile man whose spermatozoa show uncondensed heads and histone retention. Mice with a homozygous transgene intronic insertion in Nup210l were infertile but spermatozoa had condensed heads. Expression from this insertion allele is undefined, however, and residual NUP210L production could underlie the milder phenotype. To resolve this issue, we have created Nup210lem1Mjmm , a null allele of Nup210l, in the mouse. Nup210lem1Mjmm homozygotes show uniform mild anomalies of sperm head morphology and decreased motility, but nuclear compaction and histone removal appear unaffected. Thus, our mouse model does not support that NUP210L loss alone blocks spermatid nuclear compaction. Re-analyzing the patient's exome data, we identified a rare, potentially pathogenic, heterozygous variant in nucleoporin gene NUP153 (p.Pro485Leu), and showed that, in mouse and human, NUP210L and NUP153 colocalize at the caudal nuclear pole in elongating spermatids and spermatozoa. Unexpectedly, in round spermatids, NUP210L and NUP153 localisation differs between mouse (nucleoplasm) and human (nuclear periphery). Our data suggest two explanations for the increased phenotypic severity associated with NUP210L loss in human compared to mouse: a genetic variant in human NUP153 (p.Pro485Leu), and inter-species divergence in nuclear pore function in round spermatids.
Collapse
Affiliation(s)
- Maha Al Dala Ali
- Aix Marseille University, Inserm, MMG, Marseille, France
- College of Medicine, Al-Iraqia University, Baghdad, Iraq
| | - Guy Longepied
- Aix Marseille University, Inserm, MMG, Marseille, France
| | - Aurore Nicolet
- Aix Marseille University, Inserm, MMG, Marseille, France
| | - Catherine Metzler-Guillemain
- Aix Marseille University, Inserm, MMG, Marseille, France
- AP-HM, Pôle Femmes-Parents-Enfants, Centre Clinico-biologique AMP-CECOS, Marseille Cedex 5, France
| | | |
Collapse
|
3
|
Richards CM, McRae SA, Ranger AL, Klegeris A. Extracellular histones as damage-associated molecular patterns in neuroinflammatory responses. Rev Neurosci 2023; 34:533-558. [PMID: 36368030 DOI: 10.1515/revneuro-2022-0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023]
Abstract
The four core histones H2A, H2B, H3, H4, and the linker histone H1 primarily bind DNA and regulate gene expression within the nucleus. Evidence collected mainly from the peripheral tissues illustrates that histones can be released into the extracellular space by activated or damaged cells. In this article, we first summarize the innate immune-modulatory properties of extracellular histones and histone-containing complexes, such as nucleosomes, and neutrophil extracellular traps (NETs), described in peripheral tissues. There, histones act as damage-associated molecular patterns (DAMPs), which are a class of endogenous molecules that trigger immune responses by interacting directly with the cellular membranes and activating pattern recognition receptors (PRRs), such as toll-like receptors (TLR) 2, 4, 9 and the receptor for advanced glycation end-products (RAGE). We then focus on the available evidence implicating extracellular histones as DAMPs of the central nervous system (CNS). It is becoming evident that histones are present in the brain parenchyma after crossing the blood-brain barrier (BBB) or being released by several types of brain cells, including neurons, microglia, and astrocytes. However, studies on the DAMP-like effects of histones on CNS cells are limited. For example, TLR4 is the only known molecular target of CNS extracellular histones and their interactions with other PRRs expressed by brain cells have not been observed. Nevertheless, extracellular histones are implicated in the pathogenesis of a variety of neurological disorders characterized by sterile neuroinflammation; therefore, detailed studies on the role these proteins and their complexes play in these pathologies could identify novel therapeutic targets.
Collapse
Affiliation(s)
- Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Athena L Ranger
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
4
|
Hamilton LE, Lion M, Aguila L, Suzuki J, Acteau G, Protopapas N, Xu W, Sutovsky P, Baker M, Oko R. Core Histones Are Constituents of the Perinuclear Theca of Murid Spermatozoa: An Assessment of Their Synthesis and Assembly during Spermiogenesis and Function after Gametic Fusion. Int J Mol Sci 2021; 22:ijms22158119. [PMID: 34360885 PMCID: PMC8347300 DOI: 10.3390/ijms22158119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The perinuclear theca (PT) of the eutherian sperm head is a cytoskeletal-like structure that houses proteins involved in important cellular processes during spermiogenesis and fertilization. Building upon our novel discovery of non-nuclear histones in the bovine PT, we sought to investigate whether this PT localization was a conserved feature of eutherian sperm. Employing cell fractionation, immunodetection, mass spectrometry, qPCR, and intracytoplasmic sperm injections (ICSI), we examined the localization, developmental origin, and functional potential of histones from the murid PT. Immunodetection localized histones to the post-acrosomal sheath (PAS) and the perforatorium (PERF) of the PT but showed an absence in the sperm nucleus. MS/MS analysis of selectively extracted PT histones indicated that predominately core histones (i.e., H3, H3.3, H2B, H2A, H2AX, and H4) populate the murid PT. These core histones appear to be de novo-synthesized in round spermatids and assembled via the manchette during spermatid elongation. Mouse ICSI results suggest that early embryonic development is delayed in the absence of PT-derived core histones. Here, we provide evidence that core histones are de novo-synthesized prior to PT assembly and deposited in PT sub-compartments for subsequent involvement in chromatin remodeling of the male pronucleus post-fertilization.
Collapse
Affiliation(s)
- Lauren E. Hamilton
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| | - Morgan Lion
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Luis Aguila
- Center for Research in Reproduction and Fertility, Department of Veterinary Sciences, Université de Montreal, St. Hyacinthe, QC J2S 2M2, Canada; (L.A.); (J.S.)
| | - João Suzuki
- Center for Research in Reproduction and Fertility, Department of Veterinary Sciences, Université de Montreal, St. Hyacinthe, QC J2S 2M2, Canada; (L.A.); (J.S.)
| | - Genevieve Acteau
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Nicole Protopapas
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
| | - Peter Sutovsky
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA;
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mark Baker
- School of Environmental and Life Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON K7L 3N6, Canada; (L.E.H.); (M.L.); (G.A.); (N.P.); (W.X.)
- Correspondence:
| |
Collapse
|
5
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
6
|
Protopapas N, Hamilton LE, Warkentin R, Xu W, Sutovsky P, Oko R. The perforatorium and postacrosomal sheath of rat spermatozoa share common developmental origins and protein constituents†. Biol Reprod 2020; 100:1461-1472. [PMID: 30939204 PMCID: PMC6561862 DOI: 10.1093/biolre/ioz052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 01/27/2023] Open
Abstract
The perinuclear theca (PT) is a cytosolic protein capsule that surrounds the nucleus of eutherian spermatozoa. Compositionally, it is divided into two regions: the subacrosomal layer (SAL) and the postacrosomal sheath (PAS). In falciform spermatozoa, a third region of the PT emerges that extends beyond the nuclear apex called the perforatorium. The formation of the SAL and PAS differs, with the former assembling early in spermiogenesis concomitant with acrosome formation, and the latter dependent on manchette descent during spermatid elongation. The perforatorium also forms during the elongation phase of spermiogenesis, suggesting that like the PAS, its assembly is facilitated by the manchette. The temporal similarity in biogenesis between the PAS and perforatorium led us to compare their molecular composition using cell fractionation and immunodetection techniques. Although the perforatorium is predominantly composed of its endemic protein FABP9/PERF15, immunolocalization indicates that it also shares proteins with the PAS. These include WBP2NL/PAWP, WBP2, GSTO2, and core histones, which have been implicated in early fertilization and zygotic events. The compositional homogeny between the PAS and perforatorium supports our observation that their development is linked. Immunocytochemistry indicates that both PAS and perforatorial biogenesis depend on the transport and deposition of cytosolic proteins by the microtubular manchette. Proteins translocated from the manchette pass ventrally along the spermatid head into the apical perforatorial space prior to PAS deposition in the wake of manchette descent. Our findings demonstrate that the perforatorium and PAS share a mechanism of developmental assembly and thereby contain common proteins that facilitate fertilization.
Collapse
Affiliation(s)
- Nicole Protopapas
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lauren E Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ruben Warkentin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter Sutovsky
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Colombia, Missouri, USA.,Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Colombia, Missouri, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Soley JT, du Plessis L. Ultra-imaging in applied animal andrology: The power and the beauty. Anim Reprod Sci 2020; 220:106306. [PMID: 32085922 DOI: 10.1016/j.anireprosci.2020.106306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Ultrastructural studies of the male gamete provide relevant complementary data of value for the clinical assessment of semen quality and assist in determining phylogenetic and structural/functional relationships. This is illustrated using semen samples and testicular material from vulnerable wild animals (cheetah and rhinoceros), commercially exploited exotic birds (ratites and tinamou) and poultry (chicken and duck). Transmission electron microscopy (TEM) was employed to record sperm and spermatid ultrastructural detail on a comparative basis. The power of the technique was demonstrated using normal and abnormal (the knobbed acrosome defect) formation of the acrosome in the cheetah and rhinoceros. The structural similarities of the defect across species was apparent. The determination of phylogenetic associations was illustrated by comparing structural characteristics between ratites (ostrich, emu and rhea), the tinamou and poultry (chicken and duck), highlighting the morphological peculiarities evident in the midpiece and proximal principal piece of the sperm tail. A clear distinction was obvious between the ratites and tinamou on the one hand and the Galliform and Anseriform birds on the other. The potential power of using molecular techniques in conjunction with ultrastructural studies to explain structural/functional relationships was demonstrated by describing a transient elaboration of the perinuclear theca that occurs during a specific stage of spermiogenesis in ratites, and which can only be imaged using TEM. The inherent aesthetic appeal of the structurally complex normal and defective male gamete was also emphasised.
Collapse
Affiliation(s)
- John T Soley
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.
| | - Lizette du Plessis
- Electron Microscope Unit, Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
8
|
Hamilton LE, Suzuki J, Acteau G, Shi M, Xu W, Meinsohn MC, Sutovsky P, Oko R. WBP2 shares a common location in mouse spermatozoa with WBP2NL/PAWP and like its descendent is a candidate mouse oocyte-activating factor. Biol Reprod 2019; 99:1171-1183. [PMID: 30010725 PMCID: PMC6299249 DOI: 10.1093/biolre/ioy156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2018] [Indexed: 11/19/2022] Open
Abstract
The sperm-borne oocyte-activating factor (SOAF) resides in the sperm perinuclear theca (PT). A consensus has been reached that SOAF most likely resides in the postacrosomal sheath (PAS), which is the first region of the PT to solubilize upon sperm–oocyte fusion. There are two SOAF candidates under consideration: PLCZ1 and WBP2NL. A mouse gene germline ablation of the latter showed that mice remain fertile with no observable phenotype despite the fact that a competitive inhibitor of WBP2NL, derived from its PPXY motif, blocks oocyte activation when coinjected with WBP2NL or spermatozoa. This suggested that the ortholog of WBP2NL, WBP2, containing the same domain and motifs associated with WBP2NL function, might compensate for its deficiency in oocyte activation. Our objectives were to examine whether WBP2 meets the developmental criteria established for SOAF and whether it has oocyte-activating potential. Immunoblotting detected WBP2 in mice testis and sperm and immunofluorescence localized WBP2 to the PAS and perforatorium of the PT. Immunohistochemistry of the testes revealed that WBP2 reactivity was highest in round spermatids and immunofluorescence detected WBP2 in the cytoplasmic lobe of elongating spermatids and colocalized it with the microtubular manchette during PT assembly. Microinjection of the recombinant forms of WBP2 and WBP2NL into metaphase II mouse oocytes resulted in comparable rates of oocyte activation. This study shows that WBP2 shares a similar testicular developmental pattern and location with WBP2NL and a shared ability to activate the oocyte, supporting its consideration as a mouse SOAF component that can compensate for a WBP2NL.
Collapse
Affiliation(s)
- Lauren E Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Joao Suzuki
- Centre de recherche en reproduction fertilité, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec, Canada
| | - Genevieve Acteau
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mengqi Shi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Marie-Charlotte Meinsohn
- Centre de recherche en reproduction fertilité, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec, Canada
| | - Peter Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, University of Missouri, Columbia, Missouri, USA.,Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Bizkarguenaga M, Gomez-Santos L, Madrid JF, Sáez FJ, Alonso E. Increase of germ cell nuclear factor expression in globozoospermic Gopc -/- knockout mice. Andrology 2019; 7:319-328. [PMID: 30786176 DOI: 10.1111/andr.12594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC) is a Golgi protein that plays a role in vesicular transport and intracellular protein trafficking and degradation. Mice deficient in GOPC protein have globozoospermia and are infertile. The germ cell nuclear factor (GCNF) is a member of the nuclear receptor superfamily which is expressed in male germ cells, from spermatocytes and spermatids, both in the nucleus and the acrosomal region. It is not known if its expression could be altered in Gopc-/- mice with defective acrosomes. OBJECTIVES The aim of the present work was to analyze the distribution of GCNF protein in spermatids of Gopc-/- knockout mice. MATERIALS AND METHODS We have analyzed the expression and distribution during spermatogenesis of GCNF and its deregulation in Gopc-/- mutant mice by RT-qPCR, Western blot, immunohistochemistry and immunogold. RESULTS Germ cell nuclear factor was localized in the nucleus of all the cell types in the seminiferous tubules. Despite being a nuclear protein, it was also located in the acrosome and in the manchette of elongating spermatids. We have found that in the absence of GOPC, the expression of GCNF was increased in the nucleus of spermatocytes, mainly in leptotene, and in the nucleus and the manchette during the spermatid elongation. DISCUSSION AND CONCLUSION Gopc-/- mice have defective acrosome and manchette. The manchette is involved in the transport of proteins through the cytoplasm and the nucleus. Considering that the GCNF protein is normally transported to the acrosome and the nucleus, it can be thought that transport deficiencies in Gopc-/- mice are responsible for the increased expression of this protein.
Collapse
Affiliation(s)
- M Bizkarguenaga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - L Gomez-Santos
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - F J Sáez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - E Alonso
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
10
|
Hamilton LE, Acteau G, Xu W, Sutovsky P, Oko R. The developmental origin and compartmentalization of glutathione-s-transferase omega 2 isoforms in the perinuclear theca of eutherian spermatozoa. Biol Reprod 2018; 97:612-621. [PMID: 29036365 PMCID: PMC5803777 DOI: 10.1093/biolre/iox122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023] Open
Abstract
The perinuclear theca (PT) is a condensed, nonionic detergent resistant cytosolic protein layer encapsulating the sperm head nucleus. It can be divided into two regions: the subacrosomal layer, whose proteins are involved in acrosomal assembly during spermiogenesis, and the postacrosomal sheath (PAS), whose proteins are implicated in sperm–oocyte interactions during fertilization. In continuation of our proteomic analysis of the PT, we have isolated two prominent PT-derived proteins of 28 and 31 kDa from demembranated bovine sperm head fractions. These proteins were identified by mass spectrometry as isoforms of glutathione-s-transferase omega 2 (GSTO2). Immunoblots probed with anti-GSTO2 antibodies confirmed the presence of the GSTO2 isoforms in these fractions while fluorescent immunocytochemistry localized the isoforms to the PAS region of the bull, boar, and murid PT. In addition to the PAS labeling of GSTO2, the performatorium of murid spermatozoa was also labeled. Immunohistochemistry of rat testes revealed that GSTO2 was expressed in the third phase of spermatogenesis (i.e., spermiogenesis) and assembled in the PAS and perforatorial regions of late elongating spermatids. Fluorescent immunocytochemistry performed on murine testis cells co-localized GSTO2 and tubulin on the transient microtubular-manchette of elongating spermatids. These findings imply that GSTO2 is transported and deposited in the PAS region by the manchette, conforming to the pattern of assembly found with other PAS proteins. The late assembly of GSTO2 and its localization in the PAS suggests a role in regulating the oxidative and reductive state of covalently linked spermatid/sperm proteins, especially during the disassembly of the sperm accessory structures after fertilization.
Collapse
Affiliation(s)
- Lauren E Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Genevieve Acteau
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
du Plessis L, Soley JT. Sperm head shaping in ratites: New insights, yet more questions. Tissue Cell 2016; 48:605-615. [DOI: 10.1016/j.tice.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
12
|
Sutovsky P, Aarabi M, Miranda-Vizuete A, Oko R. Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian J Androl 2016; 17:554-60. [PMID: 25999356 PMCID: PMC4492044 DOI: 10.4103/1008-682x.153847] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biomarker-based sperm analysis elevates the treatment of human infertility and ameliorates reproductive performance in livestock. The negative biomarker-based approach focuses on proteins and ligands unique to defective spermatozoa, regardless of their morphological phenotype, lending itself to analysis by flow cytometry (FC). A prime example is the spermatid specific thioredoxin SPTRX3/TXNDC8, retained in the nuclear vacuoles and superfluous cytoplasm of defective human spermatozoa. Infertile couples with high semen SPTRX3 are less likely to conceive by assisted reproductive therapies (ART) and more prone to recurrent miscarriage while low SPTRX3 has been associated with multiple ART births. Ubiquitin, a small, proteolysis-promoting covalent posttranslational protein modifier is found on the surface of defective posttesticular spermatozoa and in the damaged protein aggregates, the aggresomes of spermiogenic origin. Semen ubiquitin content correlates negatively with fertility and conventional semen parameters, and with sperm binding of lectins LCA (Lens culinaris agglutinin; reveals altered sperm surface) and PNA (Arachis hypogaea/peanut agglutinin; reveals acrosomal malformation or damage). The Postacrosomal Sheath WWI Domain Binding Protein (PAWP), implicated in oocyte activation during fertilization, is ectopic or absent from defective human and animal spermatozoa. Consequently, FC-parameters of PAWP correlate with ART outcomes in infertile couples and with fertility in bulls. Assays based on the above biomarkers have been combined into multiplex FC semen screening protocols, and the surface expression of lectins and ubiquitin has been utilized to develop nanoparticle-based bull semen purification method validated by field artificial insemination trials. These advances go hand-in-hand with the innovation of FC-technology and genomics/proteomics-based biomarker discovery.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Science and Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA,
| | | | | | | |
Collapse
|
13
|
Wu J, Mu S, Guo M, Chen T, Zhang Z, Li Z, Li Y, Kang X. Histone H2B gene cloning, with implication for its function during nuclear shaping in the Chinese mitten crab, Eriocheir sinensis. Gene 2016; 575:276-84. [DOI: 10.1016/j.gene.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
|
14
|
Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod 2015; 92:92. [PMID: 25673563 DOI: 10.1095/biolreprod.114.124255] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/06/2015] [Indexed: 01/29/2023] Open
Abstract
During fertilization, spermatozoa make essential contributions to embryo development by providing oocyte activating factors, centrosomal components, and paternal chromosomes. Protamines are essential for proper packaging of sperm DNA; however, in contrast to the studies of oocyte-related female infertility, the influence of sperm chromatin structure on male infertility has not been evaluated extensively. The objective of this study was to determine the sperm chromatin content of bull spermatozoa by evaluating DNA fragmentation, chromatin maturity/protamination, PRM1 protein status, and nuclear shape in spermatozoa from bulls with different fertility. Relationships between protamine 1 (PRM1) and the chromatin integrity were ascertained in spermatozoa from Holstein bulls with varied (high vs. low) but acceptable fertility. Sperm DNA fragmentation and chromatin maturity (protamination) were tested using Halomax assay and toluidine blue staining, respectively. The PRM1 content was assayed using Western blotting and in-gel densitometry, flow cytometry, and immunocytochemistry. Fragmentation of DNA was increased and chromatin maturity significantly reduced in spermatozoa from low-fertility bulls compared to those from high-fertility bulls. Field fertility scores of the bulls were negatively correlated with the percentage of spermatozoa displaying reduced protamination and fragmented DNA using toluidine blue and Halomax, respectively. Bull fertility was also positively correlated with PRM1 content by Western blotting and flow cytometry. However, detection of PRM1 content by Western blotting alone was not predictive of bull fertility. In immunocytochemistry, abnormal spermatozoa showed either a lack of PRM1 or scattered localization in the apical/acrosomal region of the nuclei. The nuclear shape was distorted in spermatozoa from low-fertility bulls. In conclusion, we showed that inadequate amount and localization of PRM1 were associated with defects in sperm chromatin structure, coinciding with reduced fertility in bulls. These findings are highly significant because they reveal molecular and morphological phenotypes of mammalian spermatozoa that influence fertility.
Collapse
Affiliation(s)
- Sule Dogan
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| | - Peter Vargovic
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Lauren E Belser
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| | | | | | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, Missouri Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| | - John Parrish
- Department of Animal Science, University of Wisconsin, Madison, Madison, Wisconsin
| | - Einko Topper
- Alta Genetics Incorporated, Watertown, Wisconsin
| | - Erdoğan Memili
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, Mississippi
| |
Collapse
|
15
|
Aarabi M, Balakier H, Bashar S, Moskovtsev SI, Sutovsky P, Librach CL, Oko R. Sperm‐derived WW domain‐binding protein, PAWP, elicits calcium oscillations and oocyte activation in humans and mice. FASEB J 2014; 28:4434-40. [DOI: 10.1096/fj.14-256495] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mahmoud Aarabi
- Department of Biomedical and Molecular SciencesSchool of MedicineQueen's UniversityKingstonOntarioCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | | | | | - Sergey I. Moskovtsev
- CReATe Fertility CentreTorontoOntarioCanada
- Department of Obstetrics and GynecologyUniversity of TorontoTorontoOntarioCanada
| | - Peter Sutovsky
- Division of Animal SciencesGynecology and Women's HealthSchool of MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of ObstetricsGynecology and Women's HealthSchool of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Clifford L. Librach
- CReATe Fertility CentreTorontoOntarioCanada
- Department of Obstetrics and GynecologyUniversity of TorontoTorontoOntarioCanada
| | - Richard Oko
- Department of Biomedical and Molecular SciencesSchool of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
16
|
Qi Y, Jiang M, Yuan Y, Bi Y, Zheng B, Guo X, Huang X, Zhou Z, Sha J. ADP-ribosylation factor-like 3, a manchette-associated protein, is essential for mouse spermiogenesis. Mol Hum Reprod 2013; 19:327-35. [DOI: 10.1093/molehr/gat001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
17
|
MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res 2012; 349:881-95. [PMID: 22729485 PMCID: PMC3429778 DOI: 10.1007/s00441-012-1429-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/04/2012] [Indexed: 01/07/2023]
Abstract
Sperm-zona pellucida (ZP) penetration during fertilization is a process that most likely involves enzymatic digestion of this extracellular coat by spermatozoa. Since the inner acrosomal membrane (IAM) is the leading edge of spermatozoa during penetration and proteins required for secondary binding of sperm to the zona are present on it, the IAM is the likely location of these enzymes. The objectives of this study were to identify and characterize proteinases present on the IAM, confirm their localization and provide evidence for their role in fertilization. Gelatin zymography of detergent extracts of the IAM revealed bands of enzymatic activity identified as serine and matrix metallo-proteinases (MMPs). Specific inhibitors to MMPs revealed that MMP activity was due to MMP2. Immunoblotting determined that the serine protease activity on the zymogram was due to acrosin and also confirmed the MMP2 activity. Immunogold labeling of spermatozoa at the electron microscope level showed that acrosin and MMP2 were confined to the apical and principal segments of the acrosome in association with the IAM, confirming our IAM isolation technique. Immunohistochemical examination of acrosin and MMP2 during spermiogenesis showed that both proteins originate in the acrosomic granule during the Golgi phase and later redistribute to the acrosomal membrane. Anti-MMP2 antibodies and inhibitors incorporated into in vitro fertilization media significantly decreased fertilization rates. This is the first study to demonstrate that MMP2 and acrosin are associated with the IAM and introduces the possibility of their cooperation in enzymatic digestion of the ZP during penetration.
Collapse
|
18
|
Ferrer M, Xu W, Oko R. The composition, protein genesis and significance of the inner acrosomal membrane of eutherian sperm. Cell Tissue Res 2012; 349:733-48. [PMID: 22592626 DOI: 10.1007/s00441-012-1433-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/11/2012] [Indexed: 11/28/2022]
Abstract
As a consequence of the acrosomal reaction during fertilization, the inner acrosomal membrane (IAM) becomes exposed and forms the leading edge of the sperm for adhesive binding to and subsequent penetration of the zona-pellucida (ZP) of the metaphase-II-arrested oocyte. A premise of this review is that the IAM of spermatozoa anchors receptors and enzymes (on its extracellular side) that are required for sperm attachment to and penetration of the ZP. We propose a sperm cell fractionation strategy that allows for direct access to proteins bound to the extracellular side of the IAM. We review the types of integral and peripheral IAM proteins that have been found by this approach and that have been implicated in ZP recognition and lysis. We also propose a scheme for the origin and assembly of these proteins within the developing acrosome during spermiogenesis. During development, the extravesicular side of the membrane of the acrosomic vesicle is coated by peripheral proteins that transport and bind this secretory vesicle to the spermatid nucleus. The part of the membrane that binds to the nucleus becomes the IAM, while its extravesicular protein coat, which is retained between the IAM and the nuclear envelope of spermatozoa becomes the subacrosomal layer of the perinuclear theca (SAL-PT). Another premise of this review is that the IAM of spermatozoa is bound with proteins (on its intracellular side), namely the SAL-PT proteins, which hold the clue to the mechanism of acrosomal-nuclear docking. We propose a sperm cell fractionation strategy that allows for direct access to SAL-PT proteins. We then review the types of SAL-PT proteins that have been found by this approach and that have been implicated in transporting and binding the acrosome to the sperm nucleus.
Collapse
Affiliation(s)
- Marvin Ferrer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
19
|
Tran MH, Aul RB, Xu W, van der Hoorn FA, Oko R. Involvement of classical bipartite/karyopherin nuclear import pathway components in acrosomal trafficking and assembly during bovine and murid spermiogenesis. Biol Reprod 2012; 86:84. [PMID: 22156475 DOI: 10.1095/biolreprod.111.096842] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study arose from our finding that SubH2Bv, a histone H2B variant residing in the subacrosomal compartment of mammalian spermatozoa, contains a bipartite nuclear localization signal (bNLS) but in spite of this did not enter the spermatid nucleus. Instead, it associated with proacrosomic and acrosomic vesicles, which were targeted to the nuclear surface to form the acrosome. On this basis we proposed that SubH2Bv targets proacrosomic/acrosomic vesicles from the Golgi apparatus to the nuclear envelope by utilizing the classical bipartite/karyopherin alpha (KPNA) nuclear import pathway. To test the protein's nuclear targeting ability, SubH2Bv, with and without targeted mutations of the basic residues of bNLS, as well as bNLS alone, were transfected into mammalian cells as GFP-fusion proteins. Only the intact bNLS conferred nuclear entry. Subsequently, we showed that a KPNA, most likely KPNA6, occupies the same sperm head compartment and follows the same pattern of acrosomal association during spermiogenesis as SubH2Bv. Sperm head fractionation combined with Western blotting located this KPNA to the subacrosomal layer of the perinuclear theca, while immunocytochemistry of testicular sections showed that it associates with the surface of proacrosomic/acrosomic vesicles during acrosomal biogenesis. The identical sperm-localization and testicular-expression patterns between KPNA and SubH2Bv suggested a potential binding interaction between these proteins. This was supported by recombinant SubH2Bv affinity pull-down assays on germ cell extracts. The results of this study provide a compelling argument that these two nuclear homing proteins work in concert to direct the acrosomic vesicle to the nucleus. Their final residence in the subacrosomal layer of the perinuclear theca of spermatozoa indicates a role for SubH2Bv and KPNA in acrosomal-nuclear docking.
Collapse
Affiliation(s)
- Mong Hoa Tran
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
The testicular and epididymal expression profile of PLCζ in mouse and human does not support its role as a sperm-borne oocyte activating factor. PLoS One 2012; 7:e33496. [PMID: 22428063 PMCID: PMC3299792 DOI: 10.1371/journal.pone.0033496] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
Phospholipase C zeta (PLCζ) is a candidate sperm-borne oocyte activating factor (SOAF) which has recently received attention as a potential biomarker of human male infertility. However, important SOAF attributes of PLCζ, including its developmental expression in mammalian spermiogenesis, its compartmentalization in sperm head perinuclear theca (PT) and its release into the ooplasm during fertilization have not been established and are addressed in this investigation. Different detergent extractions of sperm and head/tail fractions were compared for the presence of PLCζ by immunoblotting. In both human and mouse, the active isoform of PLCζ was detected in sperm fractions other than PT, where SOAF is expected to reside. Developmentally, PLCζ was incorporated as part of the acrosome during the Golgi phase of human and mouse spermiogenesis while diminishing gradually in the acrosome of elongated spermatids. Immunofluorescence localized PLCζ over the surface of the postacrosomal region of mouse and bull and head region of human spermatozoa leading us to examine its secretion in the epididymis. While previously thought to have strictly a testicular expression, PLCζ was found to be expressed and secreted by the epididymal epithelial cells explaining its presence on the sperm head surface. In vitro fertilization (IVF) revealed that PLCζ is no longer detectable after the acrosome reaction occurs on the surface of the zona pellucida and thus is not incorporated into the oocyte cytoplasm for activation. In summary, we show for the first time that PLCζ is compartmentalized as part of the acrosome early in human and mouse spermiogenesis and is secreted during sperm maturation in the epididymis. Most importantly, no evidence was found that PLCζ is incorporated into the detergent-resistant perinuclear theca fraction where SOAF resides.
Collapse
|
21
|
Fusion failure of dense-cored proacrosomal vesicles in an inducible mouse model of male infertility. Cell Tissue Res 2011; 346:119-34. [PMID: 21987219 DOI: 10.1007/s00441-011-1248-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 09/12/2011] [Indexed: 10/16/2022]
Abstract
The acrosome is a specialized secretory vesicle located in the head of spermatozoa and has an essential role during fertilization. This organelle and the sperm nucleus have aberrant morphologies in forms of male infertility in humans (teratozoospermia), often associated with poor motility (asthenoteratozoospermia). To further our understanding of the aetiology of these conditions, we have performed a pathological investigation of a model of asthenoteratozoospermia that can be induced in mice by N-butyldeoxynojirimycin (NB-DNJ). We have found that, in mice treated with NB-DNJ, instead of an acrosome forming over the round spermatid nucleus, multivesicular bodies (MVB) accumulate in the vicinity of this nucleus. Electron microscopy has revealed that proacrosomic vesicles or granules (PAG) secreted during the Golgi phase of spermiogenesis do not fuse together to form an acrosomic vesicle, but rather attach transiently to the spermatid nucleus. Immunocytochemistry has shown that acrosomal membrane proteins and cytosolic acrosome-associated proteins are redirected to MVB in affected testes, whereas glycoproteins originating in the dense core of the PAG are degraded. Thus, the major effect of NB-DNJ is to inhibit membrane fusion of Golgi-derived secretory vesicles destined for acrosome formation, raising the possibility that these vesicles are critically affected in forms of (astheno)teratozoospermia.
Collapse
|
22
|
Frohnert C, Schweizer S, Hoyer-Fender S. SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol Hum Reprod 2010; 17:207-18. [DOI: 10.1093/molehr/gaq099] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Ho HC. Redistribution of nuclear pores during formation of the redundant nuclear envelope in mouse spermatids. J Anat 2010; 216:525-32. [PMID: 20136667 DOI: 10.1111/j.1469-7580.2009.01204.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Extensive morphological modification occurs during mammalian spermiogenesis when spermatids change their spherical shape into cells with a compact head and a long tail. In this study, freeze-fracture was used to elucidate the alteration of the nuclear envelope during this process. Nuclear condensation resulted in a great reduction of spermatid nuclear volume and the formation of the redundant nuclear envelope. During nuclear condensation, distribution patterns of nuclear pores were greatly affected by the developing acrosome and manchette. As the acrosome enlarged to cap the nucleus, the pores redistributed caudally in the nuclear membranes and became exclusively localized to the redundant nuclear envelope. Manchette microtubules play an important role in shaping the nucleus, and formation of the manchette was associated with exclusion of nuclear pores from the underlying nuclear envelope; therefore, it is likely that the redistribution of nuclear pores was aided by manchette development. The appearance of an electron-lucent nuclear region surrounded by the nascent redundant nuclear envelope indicated a pathway for transporting degradation products through the nuclear pores to the residual cytoplasm. The packaging of the nuclear pores into the redundant nuclear envelope suggests that they play a role in late stages of sperm maturation or in fertilization, as most other unnecessary organelles of sperm are discarded during spermiogenesis or during shedding of the cytoplasmic droplet.
Collapse
Affiliation(s)
- Han-Chen Ho
- Department of Anatomy, Institute of Physiological and Anatomical Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
24
|
TLRR (lrrc67) interacts with PP1 and is associated with a cytoskeletal complex in the testis. Biol Cell 2010; 102:173-89. [PMID: 19886865 DOI: 10.1042/bc20090091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND INFORMATION Spermatozoa are formed via a complex series of cellular transformations, including acrosome and flagellum formation, nuclear condensation and elongation and removal of residual cytoplasm. Nuclear elongation is accompanied by the formation of a unique cytoskeletal structure, the manchette. We have previously identified a leucine-rich repeat protein that we have named TLRR (testis leucine-rich repeat), associated with the manchette that contains a PP1 (protein phosphatase-1)-binding site. Leucine-rich repeat proteins often mediate protein-protein interactions; therefore, we hypothesize that TLRR acts as a scaffold to link signalling molecules, including PP1, to the manchette near potential substrate proteins important for spermatogenesis. RESULTS TLRR and PP1 interact with one another as demonstrated by co-immunoprecipitation and the yeast two-hybrid assay. TLRR binds more strongly to PP1 gamma 2 than it does to PP1 alpha. Anti-phosphoserine antibodies immunoprecipitate TLRR from testis lysate, indicating that TLRR is a phosphoprotein. TLRR is part of a complex in testis that includes cytoskeletal proteins and constituents of the ubiquitin-proteasome pathway. The TLRR complex purified from 3T3 cells contains similar proteins, co-localizes with microtubules and is enriched at the microtubule-organizing centre. TLRR is also detected near the centrosome of elongated, but not mid-stage, spermatids. CONCLUSION We demonstrate here that TLRR interacts with PP1, particularly the testis-specific isoform, PP1 gamma 2. Immunoaffinity purification confirms that TLRR is associated with the spermatid cytoskeleton. In addition, proteins involved in protein stability are part of the TLRR complex. These results support our hypothesis that TLRR links signalling molecules to the spermatid cytoskeleton in order to regulate important substrates involved in spermatid transformation. The translocation of TLRR from the manchette to the centrosome region suggests a possible role for this protein in tail formation. Our finding that TLRR is associated with microtubules in cultured cells suggests that TLRR may play a common role in modulating the cytoskeleton in other cell types besides male germ cells.
Collapse
|
25
|
Oko R, Sutovsky P. Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J Reprod Immunol 2009; 83:2-7. [DOI: 10.1016/j.jri.2009.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 05/27/2009] [Indexed: 11/24/2022]
|
26
|
Biogenesis of the sperm head perinuclear theca during human spermiogenesis. Fertil Steril 2009; 92:1472-1473. [DOI: 10.1016/j.fertnstert.2008.12.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/24/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
|
27
|
Breed WG, Idriss D, Leigh CM, Oko RJ. Temporal deposition and spatial distribution of cytoskeletal proteins in the sperm head of an Australian rodent. Reprod Fertil Dev 2009; 21:428-39. [PMID: 19261220 DOI: 10.1071/rd08187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 11/09/2008] [Indexed: 11/23/2022] Open
Abstract
The Australian murine rodent, the plains mouse (Pseudomys australis), possesses a highly complex sperm head, in which there are, in addition to an apical hook, two ventral processes that extend from its upper concave surface. The present study set out to determine the temporal deposition and distribution of the proteins within these structures during late spermiogenesis by light and electron microscopy using various antibodies to bull and laboratory rat sperm-head cytoskeletal proteins. The findings show that there are two phases of protein deposition. In the first phase, perinuclear theca proteins are deposited at the base of the ventral processes around the acrosomal extensions of the developing spermatids. In the second phase, as the ventral processes expand, actin and then perforatorial proteins are laid down during which time the processes become progressively more bilaterally flattened. These various proteins are moulded together to give rise to the two very large cytoskeletal structures that extend from the upper concave surface of the sperm head. They may be involved in binding the spermatozoon to the outer surface of the zona pellucida and/or in aiding the spermatozoon in zona penetration at the time of fertilisation.
Collapse
Affiliation(s)
- William G Breed
- Discipline of Anatomical Sciences, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
28
|
Sánchez-Vázquez ML, Flores-Alonso JC, Merchant-Larios H, Reyes R. Presence and release of bovine sperm histone H1 during chromatin decondensation by heparin-glutathione. Syst Biol Reprod Med 2009; 54:221-30. [PMID: 19052960 DOI: 10.1080/19396360802357087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
During spermatogenesis, changes in sperm nuclear morphology are associated with the replacement of core somatic histones by protamines. Although protamines are the major nucleoproteins of mature sperm, not all species totally replace the histones. Histone H1, along with protamines, mediates chromatin condensation into an insoluble complex that is transcriptionally inactive. In vitro, heparin-reduced glutathione causes sperm decondensation, and the structures formed are morphologically similar to the in vivo male pronucleus. To study the participation of histone H1 in bovine sperm chromatin remodelling, we measured the presence and release of histone H1 by immunofluorescence, acetic acid-urea-triton-polyacrylamide gel electrophoresis, and immunoblotting. Nuclear decondensation was induced by 80 microM heparin and 15.0 mM reduced glutathione (GSH) for 7, 14, and 21 h at 37 degrees C. Additionally, nucleons, composed of nuclei isolated from the sperm, were decondensed with 20.0 microM heparin and 5.0 mM GSH for 4.0 h at 37 degrees C. Controls were incubated in buffer for similar periods of time. Immunofluorescent localization of histone H1 was carried out with mouse monoclonal antibody, and DNA localization was visualized by 0.001% quinacrine staining. Chromatin decondensation was accompanied by increased sperm nuclei and nucleon surface area. We observed that histone H1 was localized exclusively in the nuclei of intact sperm and nucleons. Histone H1 immunofluorescent intensity did not change in control samples but decreased over time in samples treated with heparin-GSH. There was a negative correlation between the surface area of sperm nuclei and immunohistochemical intensity of histone H1 (P < 0.05). Nucleon decondensation showed a similar relationship. By electrophoresis and immunoblotting, we verified the loss of histone H1 from the sperm and nucleons and its release into the incubation media. Based on these results, we propose that histone H1 is present in the bovine sperm nuclei. H1 depletion may participate in chromatin decondensation and nuclear swelling induced by heparin-GSH.
Collapse
Affiliation(s)
- María Luisa Sánchez-Vázquez
- Laboratorio de Biología de la Reproducción, Centro de Investigación Biomédica de Oriente, Hospital General de Zona #5, Metepec, Instituto Mexicano del Seguro Social, Puebla, México
| | | | | | | |
Collapse
|
29
|
Antelman J, Manandhar G, Yi YJ, Li R, Whitworth K, Sutovsky M, Agca C, Prather R, Sutovsky P. Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development. J Cell Physiol 2008; 217:529-43. [DOI: 10.1002/jcp.21528] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Mountjoy JR, Xu W, McLeod D, Hyndman D, Oko R. RAB2A: A Major Subacrosomal Protein of Bovine Spermatozoa Implicated in Acrosomal Biogenesis1. Biol Reprod 2008; 79:223-32. [DOI: 10.1095/biolreprod.107.065060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Gardiner J, McGee P, Overall R, Marc J. Are histones, tubulin, and actin derived from a common ancestral protein? PROTOPLASMA 2008; 233:1-5. [PMID: 18615236 DOI: 10.1007/s00709-008-0305-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/05/2008] [Indexed: 05/26/2023]
Abstract
Histones and the cytoskeletal components tubulin and actin all act as thermal ratchets, using the energy present in Brownian motion to do work. All three also bind to nucleotides. Here we suggest that histones, tubulin, and actin derive from a common ancestral protein. There is some sequence similarity between histone 2A and the bacterial tubulin homologue FtsZ. Histones and actin also share some sequence similarity in the nucleotides and at phosphate-binding sites. Thus, actin and tubulin may also be related, although this is not obvious from sequence analysis. Indeed, actin and tubulin are closely functionally related and cooperate in many cellular processes. Interestingly, recent advances in nanotechnology suggest that thermal ratchets may be able to impart lifelike properties; thus, the evolution of the ancestral histone, tubulin, and actin thermal ratchet may have been crucial in the development of complexity in living organisms.
Collapse
Affiliation(s)
- J Gardiner
- School of Biological Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | |
Collapse
|
32
|
Orozco Benítez MG, Lemus Flores C, Hernández Ballesteros JA, Navarrete Méndez R, Juárez-Mosqueda MDL. Alterations of domains in the plasmatic membrane due to damages of the perinuclear theca of pig preserved spermatozoa. Pak J Biol Sci 2008; 11:1360-1364. [PMID: 18817269 DOI: 10.3923/pjbs.2008.1360.1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Samples of semen from 12 pigs, three from Yorkshire, Landrace, Duroc and Mexican Hairless each where obtained to study cryopreservation methods. Three stages of boar semen cryopreservation were evaluated: none (fresh stage), cooling at 5 degrees C and freezing at -196 degrees C then thawing to 56 degrees C for 12 sec. Perinuclear theca damage and domain alterations were selected as indices of seminal quality, as measured by electronic and fluorescence microcopy, respectively according to two lineal models considering by separately the effect of semen preservation and breed. Integrity and absence of perinuclear theca significantly (p < 0.001) decreased and increased, respectively according to a decrease in temperature of cryopreservation, from 87.4 to 58.8% and from 0.8 to 26.2%, respectively. This same significant (p < 0.001) effect was found for acrosomal and post-acrosomal membrane distribution of domains, from 92.1 to 76.8% and from 3.1 to 13.1% in this same order. Slight but highly significant (p < 0.001) differences were observed when theca integrity was evaluated as affected by breed, with highest and lowest values for Yorkshire and Pel6n Mexicano pigs, respectively. No breed effect was encountered for presence of acrosomal domains. A strong interdependence was found between perinuclear theca damage and domain distribution. In this connection, a highly significant (p < 0.001) positive, interdependence was observed between the theca damage and acrosomal domain (r = 0.87), while this same relationship was although highly significant (p < 0.001), negative in nature for equatorial and post-acrosonal domains (r = -0.77 and -0.85, respectively). This experiment confirmed that cryopreservation methods may severely affect semen quality of pigs and that genotype may further influence these same indices. More research is needed for improving methods of preservation of pig semen quality, from the point of view of perinuclear theca and domain characteristics of spermatozoa.
Collapse
Affiliation(s)
- María Guadalupe Orozco Benítez
- Unidad Académica de Medicina Veterinaria y Zootecnia-Posgrado Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic CP 63190, Nayarit, México
| | | | | | | | | |
Collapse
|
33
|
Matsuoka Y, Miyagawa Y, Tokuhiro K, Kitamura K, Iguchi N, Maekawa M, Takahashi T, Tsujimura A, Matsumiya K, Okuyama A, Nishimune Y, Tanaka H. Isolation and characterization of the spermatid-specific Smrp1 gene encoding a novel manchette protein. Mol Reprod Dev 2008; 75:967-75. [PMID: 18163442 DOI: 10.1002/mrd.20835] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The manchette, which is the structure that appears around the nuclei of elongated spermatids, is assumed to be involved in nuclear shaping during spermiogenesis and the transport of various proteins between the nucleus and sperm tail. In this report, we describe the molecular cloning and characterization of a mouse spermatid-specific manchette-related protein 1 (Smrp1) from a spermatid-specific subtracted mouse testis cDNA library. The isolated Smrp1 cDNA clones could be divided into three variants based on sequence analysis. Computer-assisted analysis showed that these variants were splice variants from a single locus of the mouse genome. The three putative proteins consisted of 296, 260, and 175 amino acids, respectively. Although 155 amino acids of the N terminus were common to the three proteins, they were distinguished by their C-terminal regions. Western blot analyses using specific antisera showed that SMRP1 expression was specific to the testes and that only the 261-amino-acid form was translated into protein. Immunohistochemistry revealed that SMRP1 was localized to the cytoplasm of step 9-12 elongated spermatids. The protein appeared in a cap formation that covered the caudal sides of the elongated nuclei. This localization pattern coincided with that of the manchette. SMRP1 may play an important role as a functional protein that co-operates with manchette proteins.
Collapse
Affiliation(s)
- Yasuhiro Matsuoka
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang R, Sperry AO. Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids. BMC Cell Biol 2008; 9:9. [PMID: 18237440 PMCID: PMC2270827 DOI: 10.1186/1471-2121-9-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/31/2008] [Indexed: 01/21/2023] Open
Abstract
Background Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library. Results Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1). Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids. Conclusion We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor. TLRR is homologous to a class of regulatory subunits for PP1, a central phosphatase in the reversible phosphorylation of proteins that is key to modulation of many intracellular processes. TLRR may serve to target this important signaling molecule near the nucleus of developing spermatids in order to control the cellular rearrangements of spermiogenesis.
Collapse
Affiliation(s)
- Rong Wang
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA.
| | | |
Collapse
|
35
|
McGraw S, Morin G, Vigneault C, Leclerc P, Sirard MA. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:123. [PMID: 17980037 PMCID: PMC2190771 DOI: 10.1186/1471-213x-7-123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 11/02/2007] [Indexed: 01/15/2023]
Abstract
Background Various histone acetylases (HATs) play a critical role in the regulation of gene expression, but the precise functions of many of those HATs are still unknown. Here we provide evidence that MYST4, a known HAT, may be involved in early mammalian gametogenesis. Results Although MYST4 mRNA transcripts are ubiquitous, protein expression was restricted to select extracts (including ovary and testis). Immunohistochemistry experiments performed on ovary sections revealed that the MYST4 protein is confined to oocytes, granulosa and theca cells, as well as to cells composing the blood vessels. The transcripts for MYST4 and all-MYST4-isoforms were present in oocytes and in in vitro produced embryos. In oocytes and embryos the MYST4 protein was localized in both the cytoplasm and nucleus. Within testis sections, the MYST4 protein was specific to only one cell type, the elongating spermatids, where it was exclusively nuclear. Conclusion We established that MYST4 is localized into specialized cells of the ovary and testis. Because the majority of these cells are involved in male and female gametogenesis, MYST4 may contribute to important and specific acetylation events occurring during gametes and embryo development.
Collapse
Affiliation(s)
- Serge McGraw
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada.
| | | | | | | | | |
Collapse
|
36
|
Wu ATH, Sutovsky P, Xu W, van der Spoel AC, Platt FM, Oko R. The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport. Dev Biol 2007; 312:471-83. [PMID: 17988661 DOI: 10.1016/j.ydbio.2007.08.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/30/2007] [Accepted: 08/28/2007] [Indexed: 02/02/2023]
Abstract
PAWP (postacrosomal sheath WW domain-binding protein) exclusively resides in the postacrosomal sheath (PAS) of the sperm perinuclear theca (PT). Because of the importance of this region in initiating oocyte activation during mammalian fertilization [Sutovsky, P., Manandhar, G., Wu, A., Oko, R., 2003. Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc. Res. Tech. 61, 362-378; Wu, A., Sutovsky, P., Manandhar, G., Xu, W., Katayama, M., Day, B.N., Park, K.W., Yi, Y.J., Xi, Y.W., Prather, R.S., Oko, R., 2007. PAWP, A sperm specific ww-domain binding protein, promotes meiotic resumption and pronuclear development during fertilization. J. Biol. Chem. 282, 12164-12175], we were interested in resolving the origin and assembly of its proteins during spermatogenesis, utilizing PAWP as a model. Based on previous PT developmental studies, we predicted that the assembly of PAWP is dependent on microtubule-manchette protein transport and manchette descent and independent of subacrosomal PT formation. Consequently, we hypothesized that PAWP will colocalize with manchette microtubules during spermiogenesis. Utilizing specific antibodies, PAWP was first detected in the cytoplasmic lobe of spermatids beginning to undergo elongation and became most prominent in this region just prior to and during manchette descent. During this peak period, PAWP was concentrated over the manchette and colocalized with alpha- and beta-tubulin. It was then assembled as part of the PAS in the wake of manchette descent over the caudal half of the elongated spermatid nucleus. PAWP mRNA, on the other hand, was first detected in mid-pachytene spermatocytes, peaked by early round spermatids, and declined during spermatid elongation. In order to confirm that PAWP-PAS assembly was independent of subacrosomal PT development, PAWP immunolocalization was performed on the testes of NB-DNJ-treated mice which fail to form an acrosome and subacrosomal layer during spermiogenesis [van der Spoel, A.C., Jeyakumar, M., Butters, T.D., Charlton, H.M., Moore, H.D., Dwek, R.A., Platt, F.M., 2002. Reversible infertility in male mice after oral administration of alkylated imino sugars: a nonhormonal approach to male contraception. Proc. Natl. Acad. Sci. U.S.A. 99, 17173-17178] but whose elongated spermatids still retain egg-activating ability [Suganuma, R., Walden, C.M., Butters, T.D., Platt, F.M., Dwek, R.A., Yanagimachi, R., and van der Spoel, A.C., 2005. Alkylated imino sugars, reversible male infertility-inducing agents, do not affect the genetic integrity of male mouse germ cells during short-term treatment despite induction of sperm deformities. Biol. Reprod. 72, 805-813]. The same temporal and manchette-based pattern of PAWP-PAS assembly during spermiogenesis was evident as in controls supporting our hypothesis that PAS assembly is independent of subacrosomal PT formation and that egg-activating ability resides within the PAS.
Collapse
Affiliation(s)
- Alexander T H Wu
- Department of Anatomy and Cell Biology, Queen's University, 9th Floor, Botterell Hall, Kingston, Canada ON K7L 3N6
| | | | | | | | | | | |
Collapse
|
37
|
Chawanji AS, Hodgson AN, Villet MH, Sanborn AF, Phillips PK. Spermiogenesis in three species of cicadas (Hemiptera: Cicadidae). ACTA ZOOL-STOCKHOLM 2007. [DOI: 10.1111/j.1463-6395.2007.00285.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Wu ATH, Sutovsky P, Manandhar G, Xu W, Katayama M, Day BN, Park KW, Yi YJ, Xi YW, Prather RS, Oko R. PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J Biol Chem 2007; 282:12164-75. [PMID: 17289678 DOI: 10.1074/jbc.m609132200] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a novel alkaline extractable protein of the sperm head that exclusively resides in the post-acrosomal sheath region of the perinuclear theca (PT) and is expressed and assembled in elongating spermatids. It is a protein that shares sequence homology to the N-terminal half of WW domain-binding protein 2, while the C-terminal half is unique and rich in proline. A functional PPXY consensus binding site for group-I WW domain-containing proteins, and numerous unique repeating motifs, YGXPPXG, are identified in the proline-rich region. Considering these molecular characteristics, we designated this protein PAWP for postacrosomal sheath WW domain-binding protein. Microinjection of recombinant PAWP or alkaline PT extract into metaphase II-arrested porcine, bovine, macaque, and Xenopus oocytes induced a high rate of pronuclear formation, which was prevented by co-injection of a competitive PPXY motif containing peptide derived from PAWP but not by co-injection of the point-mutated peptide. Intracytoplasmic sperm injection (ICSI) of porcine oocytes combined with co-injection of the competitive PPXY peptide or an anti-recombinant PAWP antiserum prevented pronuclear formation and arrested fertilization. Conversely, co-injection of the modified PPXY peptide, when the tyrosine residue of PPXY was either phosphorylated or substituted with phenylalanine, did not prevent ICSI-induced fertilization. This study uncovers a group I WW domain module signal transduction event within the fertilized egg that appears compulsory for meiotic resumption and pronuclear development during egg activation and provides compelling evidence that a PPXY motif of sperm-contributed PAWP can trigger these events.
Collapse
Affiliation(s)
- Alexander T H Wu
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fitzgerald C, Sikora C, Lawson V, Dong K, Cheng M, Oko R, van der Hoorn FA. Mammalian transcription in support of hybrid mRNA and protein synthesis in testis and lung. J Biol Chem 2006; 281:38172-80. [PMID: 17040916 PMCID: PMC3158134 DOI: 10.1074/jbc.m606010200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Post-transcriptional mechanisms including differential splicing expand the protein repertoire beyond that provided by the one gene-one protein model. Trans-splicing has been observed in mammalian systems but is low level (sometimes referred to as noise), and a contribution to hybrid protein expression is unclear. In the study of rat sperm tail proteins a cDNA, called 1038, was isolated representing a hybrid mRNA derived in part from the ornithine decarboxylase antizyme 3 (Oaz3) gene located on rat chromosome 2 fused to sequences encoded by a novel gene on chromosome 4. Cytoplasmic Oaz3 mRNA is completely testis specific. However, in several tissues Oaz3 is transcribed and contributes to hybrid 1038 mRNA synthesis, without concurrent Oaz3 mRNA synthesis. 1038 mRNA directs synthesis of a hybrid 14-kDa protein, part chromosome 2- and part chromosome 4-derived as shown in vitro and in transfected cells. Antisera that recognize a chromosome 4-encoded C-terminal peptide confirm the hybrid character of endogenous 14-kDa protein and its presence in sperm tail structures and 1038-positive tissue. Our data suggest that the testis-specific OAZ3 gene may be an example of a mammalian gene that in several tissues is transcribed to contribute to a hybrid mRNA and protein. This finding expands the repertoire of known mechanisms available to cells to generate proteome diversity.
Collapse
Affiliation(s)
- Carolyn Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Curtis Sikora
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Vannice Lawson
- Department of Anatomy and Cell Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Karen Dong
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Min Cheng
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Richard Oko
- Department of Anatomy and Cell Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Frans A. van der Hoorn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada. Tel.: 403-220-4243; Fax: 403-210-8109;
| |
Collapse
|
40
|
Yu Y, Xu W, Yi YJ, Sutovsky P, Oko R. The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: characterization of its most prominent polypeptide (IAM38). Dev Biol 2005; 290:32-43. [PMID: 16386726 DOI: 10.1016/j.ydbio.2005.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/01/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
A consequence of the acrosome reaction is to expose the inner acrosomal membrane (IAM), which is a requirement for the sperm's ability to secondarily bind to and then penetrate the zona pellucida (ZP) of the mammalian oocyte. However, the proteins on the IAM responsible for binding and presumably penetrating the zona have not been identified. This issue can be resolved if direct information is made available on the composition of the IAM. For this purpose, we devised a methodology in order to obtain a sperm head fraction consisting solely of the IAM bound to the detergent-resistant perinuclear theca. On the exposed IAM surface of this fraction, we defined an electron dense protein layer that we termed the IAM extracellular coat (IAMC), which was visible on sonicated and acrosome-reacted sperm of several mammalian species. High salt extraction removed the IAMC coincident with the removal of a prominent 38 kDa polypeptide, which we termed IAM38. Antibodies raised against this polypeptide confirmed its presence in the IAMC of intact, sonicated and acrosome-reacted sperm. By immunoscreening of a bovine testicular cDNA library and sequencing the resulting clones, we identified IAM38 as the equivalent of porcine Sp38 [Mori, E., Kashiwabara, S., Baba, T., Inagaki, Y., Mori, T., 1995. Amino acid sequences of porcine Sp38 and proacrosin required for binding to the zona pellucida. Dev. Biol., 168, 575-583], an intra-acrosomal protein with ZP-binding ability, whose precise localization in sperm was unknown. The blockage of IVF at the level of the zona with anti-IAM38 antibodies and the retention of IAM38 after sperm passage through the zona support its involvement in secondary sperm-zona binding. This study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM for identifying other candidates for sperm-zona interactions.
Collapse
Affiliation(s)
- Yang Yu
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
41
|
Yang WX, Jefferson H, Sperry AO. The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 2005; 74:684-90. [PMID: 16371587 DOI: 10.1095/biolreprod.105.049312] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
KIFC1 is a C-terminal kinesin motor associated with the nuclear membrane and acrosome in round and elongating spermatids. This location in developing spermatids is consistent with possible roles in acrosome elongation and manchette motility or both. Here we describe the association of the KIFC1 motor with a complex containing the nucleoporin NUP62. Formation of this complex is developmentally regulated, being absent before puberty and appearing only after nuclear elongation has begun. In addition, the integrity of this complex is dependent on GTP hydrolysis and the GTP state of the small GTPase RAN. Concomitant with the association of this motor with the NUP62-containing complex is an apparent reorganization of the nuclear pore with loss of NUP62 from larger complexes containing other nucleoporins. The association of KIFC1 with a component of the nuclear membrane is more consistent with a role for this motor in acrosome/manchette transport along the nuclear membrane than for a role for this motor in transport of vesicles along the outer face of the manchette.
Collapse
Affiliation(s)
- Wan-Xi Yang
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|